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EXISTENCE AND UNIQUENESS OF A POSITIVE SOLUTION
FOR A NON HOMOGENEOUS PROBLEM OF FOURTH ORDER
WITH WEIGHTS

MOHAMED TALBI, NAJIB TSOULI

ABSTRACT. In this work we study the existence of a positive solutions to the
non homogeneous equation

A(|Au|P72Au) = m|u|? 2y
with Navier boundary conditions, where 1 < p,q < p5 and m € L>(Q) \ {0},

m > 0. In the case p > ¢ and m € C(Q2), we prove the uniqueness of this
solution.

1. INTRODUCTION
We consider the following problem with Navier boundary conditions
Aiu =mlu|?%u in Q,
u>0 in §, (1.1)
u=Au=0 on 0f.

Here © is a smooth domain in RY (N > 1), Af, is the p-biharmonic operator defined
by Alu = A(JAu[P~2Au), m € L*(Q) \ {0},m > 0 and p, q €]1,p3[, p # ¢ where

s — {7 P <N/2,
27 l400  ifp>N/2.

In [9], we proved that the problem , without the second condition, has an
infinity of solutions in the case p > ¢ by using the fundamental multiplicity theorem,
but for p < ¢ we have applied the mountain-pass lemma to prove the existence of
nontrivial solution. Finally we have studied the regularity of these solutions. In
this work we are interested by the existence of a positive solution then in the case
p > q we prove the uniqueness of this solution. Notice that our approach does
not use the fundamental multiplicity theorem and the mountain-pass lemma. We
can refer the reader to [6] for the existence of a positive solution and to [§] for the
uniqueness.
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Similar results as ours, but with p-Laplacian operator, were studied by authors
8 2].

2. PRELIMINARIES

In this paper, we consider the transformation of Poisson problem used by Drabek
and Otani [3]. We recall some properties of the Dirichlet problem for the Poisson
equation

—Au=f in§,
u=0 on Jf.

It is well known that is uniquely solvable in W2?(Q) N W, (Q) for all f €
LP(Q) and for any p €]1, +o0].

We denote by: X = W2P(Q) N W, (),
lull, = (fo |u|Pdz)*/P the norm in LP(f),
[ullzp = ([ Aullp + [[ull5)!/? the norm in X,
|lu|loo the norm in L°(£2),
and (-,-) is the duality bracket between LP(€2) and L? (Q), where p' = p/(p — 1).
Denote by A the inverse operator of —A : X — LP(Q). The following lemma gives
us some properties of the operator A (c.f. [3,[7]).

(2.1)

Lemma 2.1. (i) (Continuity): There exists a constant ¢, > 0 such that

[Afll2p < cpllflo

holds for all p €]1,+o0[ and f € LP(2).
(ii) (Continuity) Given k € N*, there exists a constant ¢, > 0 such that

[Aflwrrzr < cprllfllwsr

holds for all p €]1,+oc0] and f € WkP(Q).
(ii) (Symmetry) The equality

/Au-vdx:/u-/\vdx
Q Q

holds for all w € LP(Q) and v € LP (Q) with p €1, +o0l.
(iv) (Regularity) Given f € L*(Q), we have Af € C1*(Q) for all a €]0,1[;
moreover, there exists co, > 0 such that

[Afllore < callflloo-

(v) (Regularity and Hopf-type maximum principle) Let f € C(Q) and f > 0
then w = Af € CH*(Q), for all a €]0,1[ and w satisfies: w > 0 in €, %‘L’ <
0 on 09

(vi) (Order preserving property) Given f,g € LP(Q) if f < g in Q, then Af <
Ag in Q.

Note that for all v € X and all v € LP(f2), we have v = —Auw if and only if
u = Av.
Let us denote N, the Nemytskii operator defined by

ke = ) 2
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Then for all v € LP(Q) and all w € LP (Q), we have N,(v) = w if and only if
v = Ny (w).

For v = —Au which means that u = Av. As X — L(Q), then Av € LI(Q)Vv €
L?(Q). We define the functionals F, G : LP(2) — R as follows:

Fv) = 1||v||£ and G(v) = 1/ m|Av|?dz.
p qJa

Then it is clear that F' and G are well defined on LP(Q), and are of class C! on
LP(Q) and for all v € LP(§2) we have F'(v) = N,(v) and G'(v) = A(mNg(Av)) in
LY (Q).

The operator A enables us to transform problem to another problem which
we shall study in the space LP(Q).

Definition 1. We say that w € X \ {0} is a solution of problem (L.1)), if v = —Au
is a solution of the problem: Find v € LP(Q) \ {0}, v > 0, such that

N,(v) = A(mNy(Av)) in L¥ (). (2.2)
3. EXISTENCE OF A POSITIVE SOLUTION
For solutions of (2.2) we understand critical points of the associated Euler-
Lagrange functional E € C'(LP(f2)), which are given by
E(v) = F(v) — G(v).
As in [4 [10], we introduce the modified Euler-Lagrange functional defined on R x
L?(Q) by
A(t,v) = E(tv).
If v is an arbitrary element of LP(Q), 0;A(.,v) (resp. 91 A(.,v))are the first (resp.
second) derivative of the real valued function: ¢ — A(t,v). Since the functional A

is even in ¢t and that we are interested by the positive solutions, we limit our study
for t > 0.

Theorem 3.1. Problem (L.1)) has a positive solution.
To prove theorem we need the following preliminary results.

Case p > ¢: Let v be an arbitrary element of LP(Q2) \ {0}. It is clair that the real
valued function ¢ — A(t, v) is decreasing on ]0,%(v)[, increasing on ]¢(v), +oo[ and
attains its unique minimum for ¢ = ¢(v), where

1) = (23 ™. (3.1)

On the other hand, a direct computation gives

11, (4G) 75
Alt(v),v) = (- = =)

P @ (pF()
Furthermore we have proved in [9] that E is bounded bellow and coercive. We
deduce that A is also bounded bellow and if

inf  A(t(v),v), 3.2
veri™ o (t(v),v) (3.2)

we get —oo < o < 0. Let (vy,) € LP(Q) \ {0} be a minimizing sequence of (3.2)).
Put V,, = t(vp)v,. Since E is coercive the sequence (V},) is bounded.

< 0.
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Lemma 3.2. The sequence (V,,) satisfies

lim inf ||V, .

lim inf [V, [|,, > 0
Proof. Suppose that there is a subsequence of (14,), still denoted by (V;,) such that
limy, 100 |Va|| = 0. It follows that lim, 4o F(V,) = 0; i.e. o = 0, which is
impossible since A(t(v,,),vy,) < 0. O
Lemma 3.3. If S is the unit sphere of LP(2), we have

0= iy A0

Proof. For every v € LP(f), we have |Av| < Alv| and since p > ¢, we get
L1, (gG(o])7

- =) —— = A(t([v]), [v])-
P4 (pF(Jv])) 7

On the other hand the relation (3.1) implies that ¥r > 0 and Vv € LP(Q) \ {0},
t(v) = Lt(%). We deduce that

a= inf A(t(v),v), (3.3)

vES, >0

A(t(v),v) > (

where S is the unit sphere of LP(2). O

Note that the minimizing sequences considered up to here are in S and are
nonnegative.

Lemma 3.4. Let (v,) C S be a minimizing sequence of (3.9), then (Vi) :=
(t(vn)vy) is Palais-Smale sequence for the functional E.

Proof. We have E(V,,) — . We show that
E'(V,) — 0 in L¥ ().

Note that for every v € L?(Q2)\ {0}, we have 0, A(t(v),v) = 0 and 0 A(t(v),v) # 0.
The implicit function theorem implies that v — t(v) is C' since A is. Let us
introduce the C' functional B defined on S by

B(v) = A(t(v),v) = E(t(v)v).

Then
a= inf B(w) and lim B(v,) =«

veES,Ww>0 n—-+oo
Using the Ekeland variational principle on the complete manifold (S, || - ||,) to the
functional B, we conclude that

1
1B'(0)()l < el for every ¢ € T,,, S,

where T), S is the tangent space to S at the point v,,. Moreover, for every ¢ € T,, S,
one has

B'(vn) () = 0cA(t(vn), vn)t () () + Ou A(t(v), v) ()
—3 A(t( );0)(@);
)

since 0; A(t(v),v) = 0, where ¢'(v) denotes the derivative of v — ¢(v) at the point
v. Furthermore, let P : LP(Q) \ {0} - R x S,

v = (Pu(v), Pa(v)) = (llv]lp,

L)_

o]l
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Applying Hélder’s inequality, for every (v,¢) € LP(Q2) \ {0} x LP(2) we have

P4l < 2020
ol

From 1emma and by the fact that ||V,,||, = t(v,), there is a positive constant C
such that

t(vp) > C, VYneN
Then for every ¢ € LP(§2) we get
[E' (V) (0)] = |0 A(PL(Va), Pa(Va)) PV ) (9) + O A(PL(Vi), Po (Vi) P (V) ()]
= [0 A(t(vn), vn) P5 (V) ()]
| B (vn) P5(Va) ()]
(

Ly
HAAION

2 ||eollp
n C

We easily conclude that lim, 4. E'(V,) =0 in id Q). ]

IA

IN

Case p < ¢: If v is an arbitrary element of L?(Q) \ {0}, the real valued function
t — A(t,v) is increasing on |0, t(v)[, decreasing on |t(v), +-00[ and attains its unique
maximum for ¢ = t(v), where
PE(v)\ 15
t(v) = ar,
(v) = ( qG(U))

Lemma 3.5. If p < g, there exists a positive constant c(p,q, 2, m) which depends
uniquely of p,q,Q and m such that A(t(v),v) > ¢(p,q,Q,m).

(3.4)

Proof. A direct computation gives

1 1 (pF(v)T
A0 =60 6=
Hence
L1 1 lollp 2o
A(t(v),v) Z (* - = q—p

P
TP s e
The assertion (i) of Lemma [2.1] and the fact that X < L9(£) imply that there
exists positive constants ¢, and ¢ such that

Alt(w),0) > (2 = 4 1 ol ces,

P q (ch)ﬁum”gﬁ [vllp + [[Avllp

Finally the assertion (i) of lemma2.1|implies that there exits a positive constant c,

such that L1 )
At(v),v) > (= = =

- _pq_ _p_ "
P8 (eqepe)a=r m 5™
S 0

_Pa_ frp
(cqepe) =P |m|| &7

We take c¢(p,q,Q,m) = (% — l)

Put
o =

A(t(v),v).

in
veLr(Q)\{0}
Then Lemma |3.5| implies o > 0.
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Lemma 3.6. If S is the unit sphere of LP({2), we have
a= inf A(t(v),v).

vES,v>0

Proof. For every v € LP(Q2) \ {0}, we have

11 P
A =670) )=
Since |Av| < Alv], we get
11, pF(ju])7s

A(t(v),v) = (]; - Q)W = A(t(|l); [v])-

On the other hand, the relation (3.4) implies that for every r» > 0 and for every
ve LP(Q)\ {0}, t(v) = L£(%). Hence

a= velsr’lvaOA(t(v),v). (3.5)

(]

Let (v,,) be a minimizing sequence of , as in the case p > ¢, we put
Vi = t(vn)Un.
The proof of the following lemmas can be done like in the previous case.
Lemma 3.7. liminf, ., [|[V,|l, > 0.

Lemma 3.8. Let (v,) C S be a minimizing sequence of (3.3). Then (V) :=
(t(vn)vy) is Palais-Smale sequence for the functional E.

Proof of theorem[3-1l In our paper [9] we showed that E verifies the Palais-Smale
condition. Then by lemmal[3.4and lemmal[3.8] we deduce that there is a subsequence
of (V3,), still noted by (V;,) such that V,, — V.,V € LP(2)\{0} and V' > 0. Moreover,
since E'(V,,) — 0, then E'(V) = 0. i.e. V is a nonnegative solution of problem
. Hence

N, (V) = A(mNy(AV)). (3.6)
The assertion (vi) of lemma[2.1] the relation and the fact that m € LP(Q)\{0},
m > 0 enable us to claim that N,(V) > 0 and V' > 0. Furthermore U = AV is a
positive solution of problem . ([

4. UNIQUENESS OF THE POSITIVE SOLUTION

Theorem 4.1. Ifm € C(Q), m > 0 and p > q, then (L.1)) has a unique nonnegative
solution.

Problem (2.2) is equivalent to the problem: Find v € LP(2) \ {0}, v > 0 such
that
N,(v) = [[m7Av]|37P||m /9 Av [P~ 9A(mN,(Av)) in LP'(Q). (4.1)
To prove that problem (2.2)) has a unique nonnegative solution, we will study the
principal positive eigenvalue of the eigenvalue problem: Find v € LP(Q2)\ {0} x R%.
such that
N,(v) = N[m" 1 Av||P=IA(mNy(Av)) in  LF'(Q). (4.2)
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Consider the functionals f and g defined on L”( by

f(v>=];||v||p and  g(v / m| Av|Tdz)}

Hence problem (4.2)) is equivalent to the problem: Find (v,\) € LP(Q2) \ {0} x R%
such that

f'(v) =M (v) in LP(Q). (4.3)
Define

= il 1)

where M = {v € LP(Q?)/g(v) = 1}. We need the preliminary results.

Lemma 4.2. (i) A1 is the first positive eigenvalue of problem . Moreover
v1 18 an eigenfunction associated with A1 if and only if

f(v1) = Aig(v1) =0 = veLpi(r}zf)\{o} f(w) = Aig(v).

(ii) Every eigenfunction associated with A1 is positive or negative.
Proof. (i) The functional f is weakly semi-continuous below and coercive on M.
Since g is weakly continuous, then M is weakly closed. Hence there is v; € M such
that f(Ul) = )\1 = )\1g(1}1).
The p-homogeneity of f and g implies that A; is an eigenvalue of problem
if and only if

voe @)\ {0}, A < LW
if and only if for all v € L?(Q) \ {0},
fw) = Ag(v) = f(v) = Ailg(v)] = 0= f(v1) = Adrg(v1).

Now we show that A; is the first positive eigenvalue: Suppose on the contrary that
there exits A €]0, A1[ and v € LP(Q) \ {0} such that f(v) — Ag(v) = 0. Then we get

0= flv1) = Mg(vr) < f(v) = Mg(v) < fv) = Ag(v) =0,
which is a contradiction.
(ii) Let v be an eigenfunction associated with A;. From the assertion (i) and by the
fact that |[Av| < Av|, we get

0= f(v) = Aig(v) < f(lv]) = Ag(jv]) < f(v) = Aag(v) = 0.
Therefore, |v| an is eigenfunction associated with A;. From the assertion in lemma
2.1(vi) and by the fact that

Np([v]) = AA(mN,(Jv]),
we deduce that |v| > 0 in . Hence v is positive or negative in €. ]

Lemma 4.3. If v and w are positive eigenfunctions of (2.2)) associated with A1,
then the functions max and min defined in Q by max(x) = max(v(x),w(z)) and
min(z) = min(u(z), w(z)) are also solutions of (2.2)) associated with A;.

To prove lemma we need the following results.

Lemma 4.4. Let a,b,c and p be reals such that a > 0, b > 0 and p > 1. If
¢ > max{b — a,0}, then

la+c|P 4+ [b—c|P > aP + bP.
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For the proof of the above lemma see for example [3].

Lemma 4.5. Let a,b,c and d be in Ry such that a > max(c,d). Ifa+b>c+d,
then for every p € [1,4+00[, aP + P > P 4 dP.

Proof. If b > min(c,d) or a > ¢+ d it is evident. Else, set « = a —d and § = c—10.
We can suppose that d < ¢. Since a < ¢+d and a+b > ¢+ d we deduce that a < ¢
and 3 < «. Then

+WP=|d+afP+|c—0P > |d+ a|’ +|c— af.
As a > ¢ — d, then from lemma [£.4] we conclude that a? + b? > P + dP. O

Proof of lemma[].3 If u and v are two positive eigenfunctions associated with Ay,

we claim that
P

/m|Amax(u v)|? dx ! /m\Amm(u v)|qdm)

/ m|Au|qd:c / m|Av|qd:r

v—u-+|v—ul

2
Then the fact that for every w € LP(Q), AJlw| > |Aw| enables us to deduce that
Av — Au+ |Av — Aul
2

P

(4.4)

Indeed, we have

max(u,v) = u+

Amax(u,v) > Au+

= max(Au, Av).
Hence

/m|AmaX(u,v)|qd:v) z/m\maX(Au,Avﬂqdaj
Q Q

Zmax(/ m|Au|qu,/ m|Av|?dz).
Q Q

Therefore, from lemma we conclude inequality . If we put
p(w) = f(w) = Mg(w) Vw € LP(Q),
from and from lemma we deduce that
0 < ¢p(max(u,v)) + ¢(min(u,v) < ¢(u) + ¢(v) =0

and ¢(max(u,v)) = ¢(min(u,v)) = 0. Thus, min(u,v) and max(u,v) are eigen-
functions associated with \;. O

Lemma 4.6. Every eigenfunction of problem (2.2)) is in C(Q2).

Proof. If v is an eigenfunction of problem ([2.2]) associated with a positive eigenvalue
A, then
v =AY ETDN ([m9Aw||E~9A(mNy (Av))). (4.5)

Since |Av| < Alv]|, we get

—1_ pP=—q
o] < AED | & [m"/ e Aw||§ T Ny (AN (|Av])). (4.6)

We showed in our paper [9] that N, (AN,(|Av|)) € C(2). Hence from (4.6) we
deduce that v € L>°(Q) and from (4.5 and the assertion in lemma [2.1{iv) it follows
that v € C(Q). O
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Proposition 4.7. The eigenvalue A1 is simple and every positive eigenfunction is
associated with \i.

Proof. Let v and w be two positive eigenfunctions associated with A\;. For zy € Q
set k = v(zg)/w(xp) and maxy(z) = max(v(x), kw(x)). Lemma [4.3] enables us to
claim that maxy, is a solution of problem (2.2)) associated with A;. Since

Np(v) = M A(mN, (Av)),
Np(w) = A A(mN,(Aw)),
Np(max ) = MA(mN,(Amaxy)),

Lemma and lemma imply that N,(v), Np(w), Np(maxy) € CH*(Q) and
N,(v), Np(w) are positive in . Then

Ny(v)/Ny(w) € CH(9).
For any unit vector e, we have
Np(v)(zo + te) — Np(v)(zo) < Np(max)(zo + te) — Np(max i) (o)
and
N, (kw)(zo + te) — Np(kw)(xo) < Np(max ) (zo + te) — Np(max i) (o).
Dividing these inequalities by ¢ > 0 and ¢ < 0 and letting ¢ tend to 0%, we get
VN, (0)(30) = VN, (max ) (z0) = K~ VN, (w) (z0).

Thus
V(A ) = V(D )
(T o) Nyw)(w0) — Ny(0) o) TNy (w))(w0)

(Np(w)(wo))?
Hence

=const = kP71 in Q

and "
— =k inQ.
w

Now we show that every positive eigenfunction is associated with A;: Let A > Aq,
suppose that problem (2.2) has a positive eigenfunction w associated with A and
let v be a positive solution of problem (2.2)) associated with A;, we have

Ny (v) = MA(mN,(Av)) and N,(w) = AMA(mN,(Aw)).

Then from the assertion in lemma v) we deduce that N,(v) and N,(w) are in
Ch(Q), and

O(Np(v))/On <0, I(Np(w))/On <0 on ON.
It follows that N,(v)/Np(w) is in C(Q). Set

@ = mix N, (0) (@) /Ny (1) ().

We deduce that Np(v) < aNp(w). The monotonicity of N, implies

1
v < ar-Tw.
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Since problem ([2.2)) is homogeneous, a7 Tw is also a solution of problem (2.2, we
may assume without loss of generality that v < w. Then, from the assertion of
lemma vi) and by the monotonicity of N,, we get

Np(v) = Ai[[m"/ 9 A5~ IA(mN, (Av))
< [|m* Awl|[F= TN A(m Ny (Aw))
= A|m" 1 Acw|[p~ A (mNy(Acw))
= Np(cw),

where

c= /NP <,
Hence it follows by the monotonicity of IV, that v < cw. Repeating this argument
n times, we obtain 0 < v < ¢"w. Therefore by letting n tend to infinity, we deduce
that v = 0. This is a contradiction. O

Proof of theorem[{.1 Let v and w be two positive solutions of problem ({.1)).
Then v and w are eigenfunctions associated with the eigenvalues |m!/ IAv|[37P

and ||m!/ 4Aw||~P respectively. From proposition E we deduce that
Iy = /Al = Ay

and there is k& > 0 such that w = kv. It follows that v = w. O
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