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EXISTENCE AND UNIQUENESS OF A POSITIVE SOLUTION
FOR A NON HOMOGENEOUS PROBLEM OF FOURTH ORDER

WITH WEIGHTS

MOHAMED TALBI, NAJIB TSOULI

Abstract. In this work we study the existence of a positive solutions to the

non homogeneous equation

∆(|∆u|p−2∆u) = m|u|q−2u

with Navier boundary conditions, where 1 < p, q < p∗2 and m ∈ L∞(Ω) \ {0},
m ≥ 0. In the case p > q and m ∈ C(Ω), we prove the uniqueness of this
solution.

1. Introduction

We consider the following problem with Navier boundary conditions

∆2
pu = m|u|q−2u in Ω,

u > 0 in Ω,

u = ∆u = 0 on ∂Ω.

(1.1)

Here Ω is a smooth domain in RN (N ≥ 1), ∆2
p is the p-biharmonic operator defined

by ∆2
pu = ∆(|∆u|p−2∆u), m ∈ L∞(Ω) \ {0},m ≥ 0 and p, q ∈]1, p∗2[, p 6= q where

p∗2 =

{
Np

N−2p if p < N/2,

+∞ if p ≥ N/2.

In [9], we proved that the problem (1.1), without the second condition, has an
infinity of solutions in the case p > q by using the fundamental multiplicity theorem,
but for p < q we have applied the mountain-pass lemma to prove the existence of
nontrivial solution. Finally we have studied the regularity of these solutions. In
this work we are interested by the existence of a positive solution then in the case
p > q we prove the uniqueness of this solution. Notice that our approach does
not use the fundamental multiplicity theorem and the mountain-pass lemma. We
can refer the reader to [6] for the existence of a positive solution and to [8] for the
uniqueness.
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Similar results as ours, but with p-Laplacian operator, were studied by authors
[8, 2].

2. Preliminaries

In this paper, we consider the transformation of Poisson problem used by Drábek
and Ôtani [3]. We recall some properties of the Dirichlet problem for the Poisson
equation

−∆u = f in Ω,

u = 0 on ∂Ω.
(2.1)

It is well known that (2.1) is uniquely solvable in W 2,p(Ω) ∩ W 1,p
0 (Ω) for all f ∈

Lp(Ω) and for any p ∈]1,+∞[.
We denote by: X = W 2,p(Ω) ∩W 1,p

0 (Ω),
‖u‖p = (

∫
Ω
|u|pdx)1/p the norm in Lp(Ω),

‖u‖2,p = (‖∆u‖p
p + ‖u‖p

p)
1/p the norm in X,

‖u‖∞ the norm in L∞(Ω),
and 〈·, ·〉 is the duality bracket between Lp(Ω) and Lp′(Ω), where p′ = p/(p − 1).
Denote by Λ the inverse operator of −∆ : X → Lp(Ω). The following lemma gives
us some properties of the operator Λ (c.f. [3, 7]).

Lemma 2.1. (i) (Continuity): There exists a constant cp > 0 such that

‖Λf‖2,p ≤ cp‖f‖p

holds for all p ∈]1,+∞[ and f ∈ Lp(Ω).
(ii) (Continuity) Given k ∈ N∗, there exists a constant cp,k > 0 such that

‖Λf‖W k+2,p ≤ cp,k‖f‖W k,p

holds for all p ∈]1,+∞[ and f ∈ W k,p(Ω).
(iii) (Symmetry) The equality∫

Ω

Λu · vdx =
∫

Ω

u · Λvdx

holds for all u ∈ Lp(Ω) and v ∈ Lp′(Ω) with p ∈]1,+∞[.
(iv) (Regularity) Given f ∈ L∞(Ω), we have Λf ∈ C1,α(Ω̄) for all α ∈]0, 1[;

moreover, there exists cα > 0 such that

‖Λf‖C1,α ≤ cα‖f‖∞.

(v) (Regularity and Hopf-type maximum principle) Let f ∈ C(Ω̄) and f ≥ 0
then w = Λf ∈ C1,α(Ω̄), for all α ∈]0, 1[ and w satisfies: w > 0 in Ω, ∂w

∂n <
0 on ∂Ω.

(vi) (Order preserving property) Given f, g ∈ Lp(Ω) if f ≤ g in Ω, then Λf <
Λg in Ω.

Note that for all u ∈ X and all v ∈ Lp(Ω), we have v = −∆u if and only if
u = Λv.

Let us denote Np the Nemytskii operator defined by

Np(v)(x) =

{
|v(x)|p−2v(x) if v(x) 6= 0
0 if v(x) = 0.
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Then for all v ∈ Lp(Ω) and all w ∈ Lp′(Ω), we have Np(v) = w if and only if
v = Np′(w).

For v = −∆u which means that u = Λv. As X ↪→ Lq(Ω), then Λv ∈ Lq(Ω)∀v ∈
Lp(Ω). We define the functionals F,G : Lp(Ω) → R as follows:

F (v) =
1
p
‖v‖p

p and G(v) =
1
q

∫
Ω

m|Λv|qdx.

Then it is clear that F and G are well defined on Lp(Ω), and are of class C1 on
Lp(Ω) and for all v ∈ Lp(Ω) we have F ′(v) = Np(v) and G′(v) = Λ(mNq(Λv)) in
Lp′(Ω).

The operator Λ enables us to transform problem (1.1) to another problem which
we shall study in the space Lp(Ω).

Definition 1. We say that u ∈ X \ {0} is a solution of problem (1.1), if v = −∆u
is a solution of the problem: Find v ∈ Lp(Ω) \ {0}, v > 0, such that

Np(v) = Λ(mNq(Λv)) in Lp′(Ω). (2.2)

3. Existence of a positive solution

For solutions of (2.2) we understand critical points of the associated Euler-
Lagrange functional E ∈ C1(Lp(Ω)), which are given by

E(v) = F (v)−G(v).

As in [4, 10], we introduce the modified Euler-Lagrange functional defined on R×
Lp(Ω) by

A(t, v) = E(tv).
If v is an arbitrary element of Lp(Ω), ∂tA(., v) (resp. ∂ttA(., v))are the first (resp.
second) derivative of the real valued function: t 7→ A(t, v). Since the functional A
is even in t and that we are interested by the positive solutions, we limit our study
for t > 0.

Theorem 3.1. Problem (1.1) has a positive solution.

To prove theorem 3.1, we need the following preliminary results.

Case p > q: Let v be an arbitrary element of Lp(Ω) \ {0}. It is clair that the real
valued function t 7→ A(t, v) is decreasing on ]0, t(v)[, increasing on ]t(v),+∞[ and
attains its unique minimum for t = t(v), where

t(v) =
(qG(v)
pF (v)

) 1
p−q . (3.1)

On the other hand, a direct computation gives

A(t(v), v) =
(1
p
− 1

q

) (qG(v))
p

p−q

(pF (v))
q

p−q

< 0.

Furthermore we have proved in [9] that E is bounded bellow and coercive. We
deduce that A is also bounded bellow and if

α = inf
v∈Lp(Ω)\{0}

A(t(v), v), (3.2)

we get −∞ < α < 0. Let (vn) ⊂ Lp(Ω) \ {0} be a minimizing sequence of (3.2).
Put Vn = t(vn)vn. Since E is coercive the sequence (Vn) is bounded.
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Lemma 3.2. The sequence (Vn) satisfies

lim inf
n→+∞

‖Vn‖p > 0.

Proof. Suppose that there is a subsequence of (Vn), still denoted by (Vn) such that
limn→+∞ ‖Vn‖ = 0. It follows that limn→+∞ E(Vn) = 0; i.e. α = 0, which is
impossible since A(t(vn), vn) < 0. �

Lemma 3.3. If S is the unit sphere of Lp(Ω), we have

α = inf
v∈S,v≥0

A(t(v), v).

Proof. For every v ∈ Lp(Ω), we have |Λv| ≤ Λ|v| and since p > q, we get

A(t(v), v) ≥
(1
p
− 1

q

) (qG(|v|))
p

p−q

(pF (|v|))
q

p−q

= A(t(|v|), |v|).

On the other hand the relation (3.1) implies that ∀r > 0 and ∀v ∈ Lp(Ω) \ {0},
t(v) = 1

r t(v
r ). We deduce that

α = inf
v∈S,v≥0

A(t(v), v), (3.3)

where S is the unit sphere of Lp(Ω). �

Note that the minimizing sequences considered up to here are in S and are
nonnegative.

Lemma 3.4. Let (vn) ⊂ S be a minimizing sequence of (3.3), then (Vn) :=
(t(vn)vn) is Palais-Smale sequence for the functional E.

Proof. We have E(Vn) → α. We show that

E′(Vn) → 0 in Lp′(Ω).

Note that for every v ∈ Lp(Ω)\{0}, we have ∂tA(t(v), v) = 0 and ∂ttA(t(v), v) 6= 0.
The implicit function theorem implies that v → t(v) is C1 since A is. Let us
introduce the C1 functional B defined on S by

B(v) = A(t(v), v) = E(t(v)v).

Then
α = inf

v∈S,v≥0
B(v) and lim

n→+∞
B(vn) = α

Using the Ekeland variational principle on the complete manifold (S, ‖ · ‖p) to the
functional B, we conclude that

|B′(v)(ϕ)| ≤ 1
n
‖ϕ‖p, for every ϕ ∈ TunS,

where Tvn
S is the tangent space to S at the point vn. Moreover, for every ϕ ∈ Tvn

S,
one has

B′(vn)(ϕ) = ∂tA(t(vn), vn)t′(vn)(ϕ) + ∂vA(t(v), v)(ϕ)

= ∂vA(t(v), v)(ϕ),

since ∂tA(t(v), v) = 0, where t′(v) denotes the derivative of v 7→ t(v) at the point
v. Furthermore, let P : Lp(Ω) \ {0} → R× S,

v 7→ (P1(v), P2(v)) = (‖v‖p,
v

‖v‖p
).
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Applying Hölder’s inequality, for every (v, ϕ) ∈ Lp(Ω) \ {0} × Lp(Ω) we have

‖P ′
2(v)(ϕ)‖p ≤ 2

‖ϕ‖p

‖v‖p
.

From lemma 3.2 and by the fact that ‖Vn‖p = t(vn), there is a positive constant C
such that

t(vn) ≥ C, ∀n ∈ N.

Then for every ϕ ∈ Lp(Ω) we get

|E′(Vn)(ϕ)| = |∂tA(P1(Vn), P2(Vn))P ′
1(Vn)(ϕ) + ∂vA(P1(Vn), P2(Vn))P ′

2(Vn)(ϕ)|
= |∂vA(t(vn), vn)P ′

2(Vn)(ϕ)|
= |B′(vn)P ′

2(Vn)(ϕ)|

≤ 1
n
‖P ′

2(Vn)(ϕ)‖p

≤ 2
n

‖ϕ‖p

C
.

We easily conclude that limn→+∞ E′(Vn) = 0 in Lp′(Ω). �

Case p < q: If v is an arbitrary element of Lp(Ω) \ {0}, the real valued function
t 7→ A(t, v) is increasing on ]0, t(v)[, decreasing on ]t(v),+∞[ and attains its unique
maximum for t = t(v), where

t(v) =
(pF (v)
qG(v)

) 1
q−p . (3.4)

Lemma 3.5. If p < q, there exists a positive constant c(p, q,Ω,m) which depends
uniquely of p, q,Ω and m such that A(t(v), v) ≥ c(p, q,Ω,m).

Proof. A direct computation gives

A(t(v), v) =
(1
p
− 1

q

) (pF (v))
q

q−p

(qG(v))
p

q−p

.

Hence

A(t(v), v) ≥
(1
p
− 1

q

) 1

‖m‖
p

q−p
∞

(
‖v‖p

‖Λv‖q
)

pq
q−p .

The assertion (i) of Lemma 2.1 and the fact that X ↪→ Lq(Ω) imply that there
exists positive constants cq and c such that

A(t(v), v) ≥
(1
p
− 1

q

) 1

(cqc)
pq

q−p ‖m‖
p

q−p
∞

(
‖v‖p

‖v‖p + ‖Λv‖p
)

pq
q−p .

Finally the assertion (i) of lemma2.1 implies that there exits a positive constant cp

such that
A(t(v), v) ≥

(1
p
− 1

q

) 1

(cqcpc)
pq

q−p ‖m‖
p

q−p
∞

.

We take c(p, q,Ω,m) =
(

1
p −

1
q

)
1

(cqcpc)
pq

q−p ‖m‖
p

q−p
∞

. �

Put
α = inf

v∈Lp(Ω)\{0}
A(t(v), v).

Then Lemma 3.5 implies α > 0.
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Lemma 3.6. If S is the unit sphere of Lp(Ω), we have

α = inf
v∈S,v≥0

A(t(v), v).

Proof. For every v ∈ Lp(Ω) \ {0}, we have

A(t(v), v) =
(1
p
− 1

q

) (pF (v))
q

q−p

(qG(v))
p

q−p

.

Since |Λv| ≤ Λ|v|, we get

A(t(v), v) ≥
(1
p
− 1

q

)pF (|v|)
q

q−p

qG(|v|)
p

q−p

= A(t(|v|), |v|).

On the other hand, the relation (3.4) implies that for every r > 0 and for every
v ∈ Lp(Ω) \ {0}, t(v) = 1

r t(v
r ). Hence

α = inf
v∈S,v≥0

A(t(v), v). (3.5)

�

Let (vn) be a minimizing sequence of (3.5), as in the case p > q, we put

Vn = t(vn)vn.

The proof of the following lemmas can be done like in the previous case.

Lemma 3.7. lim infn→+∞ ‖Vn‖p > 0.

Lemma 3.8. Let (vn) ⊂ S be a minimizing sequence of (3.3). Then (Vn) :=
(t(vn)vn) is Palais-Smale sequence for the functional E.

Proof of theorem 3.1. In our paper [9] we showed that E verifies the Palais-Smale
condition. Then by lemma 3.4 and lemma 3.8, we deduce that there is a subsequence
of (Vn), still noted by (Vn) such that Vn → V , V ∈ Lp(Ω)\{0} and V ≥ 0. Moreover,
since E′(Vn) → 0, then E′(V ) = 0. i.e. V is a nonnegative solution of problem
(2.2). Hence

Np(V ) = Λ(mNq(ΛV )). (3.6)

The assertion (vi) of lemma 2.1, the relation (3.6) and the fact that m ∈ Lp(Ω)\{0},
m ≥ 0 enable us to claim that Np(V ) > 0 and V > 0. Furthermore U = ΛV is a
positive solution of problem (1.1). �

4. Uniqueness of the positive solution

Theorem 4.1. If m ∈ C(Ω), m ≥ 0 and p > q, then (1.1) has a unique nonnegative
solution.

Problem (2.2) is equivalent to the problem: Find v ∈ Lp(Ω) \ {0}, v > 0 such
that

Np(v) = ‖m1/qΛv‖q−p
q ‖m1/qΛv‖p−q

q Λ(mNq(Λv)) in Lp′(Ω). (4.1)

To prove that problem (2.2) has a unique nonnegative solution, we will study the
principal positive eigenvalue of the eigenvalue problem: Find v ∈ Lp(Ω) \ {0}×R∗+
such that

Np(v) = λ‖m1/qΛv‖p−q
q Λ(mNq(Λv)) in Lp′(Ω). (4.2)
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Consider the functionals f and g defined on Lp(Ω) by

f(v) =
1
p
‖v‖p and g(v) =

1
p
(
∫

Ω

m|Λv|qdx)
p
q .

Hence problem (4.2) is equivalent to the problem: Find (v, λ) ∈ Lp(Ω) \ {0} × R∗+
such that

f ′(v) = λg′(v) in Lp′(Ω). (4.3)
Define

λ1 = inf
v∈M

f(v),

where M = {v ∈ Lp(Ω)/g(v) = 1}. We need the preliminary results.

Lemma 4.2. (i) λ1 is the first positive eigenvalue of problem (4.2). Moreover
v1 is an eigenfunction associated with λ1 if and only if

f(v1)− λ1g(v1) = 0 = inf
v∈Lp(Ω)\{0}

f(v)− λ1g(v).

(ii) Every eigenfunction associated with λ1 is positive or negative.

Proof. (i) The functional f is weakly semi-continuous below and coercive on M .
Since g is weakly continuous, then M is weakly closed. Hence there is v1 ∈ M such
that f(v1) = λ1 = λ1g(v1).

The p-homogeneity of f and g implies that λ1 is an eigenvalue of problem (4.2)
if and only if

∀v ∈ Lp(Ω) \ {0}, λ1 ≤
f(v)
|g(v)|

if and only if for all v ∈ Lp(Ω) \ {0},
f(v)− λ1g(v) ≥ f(v)− λ1|g(v)| ≥ 0 = f(v1)− λ1g(v1).

Now we show that λ1 is the first positive eigenvalue: Suppose on the contrary that
there exits λ ∈]0, λ1[ and v ∈ Lp(Ω) \ {0} such that f(v)− λg(v) = 0. Then we get

0 = f(v1)− λ1g(v1) ≤ f(v)− λ1g(v) < f(v)− λg(v) = 0,

which is a contradiction.
(ii) Let v be an eigenfunction associated with λ1. From the assertion (i) and by the
fact that |Λv| ≤ Λ|v|, we get

0 = f(v)− λ1g(v) ≤ f(|v|)− λ1g(|v|) ≤ f(v)− λ1g(v) = 0.

Therefore, |v| an is eigenfunction associated with λ1. From the assertion in lemma
2.1(vi) and by the fact that

Np(|v|) = λ1Λ(mNq(|v|),
we deduce that |v| > 0 in Ω. Hence v is positive or negative in Ω. �

Lemma 4.3. If v and w are positive eigenfunctions of (2.2) associated with λ1,
then the functions max and min defined in Ω by max(x) = max(v(x), w(x)) and
min(x) = min(u(x), w(x)) are also solutions of (2.2) associated with λ1.

To prove lemma 4.3 we need the following results.

Lemma 4.4. Let a, b, c and p be reals such that a ≥ 0, b ≥ 0 and p > 1. If
c ≥ max{b− a, 0}, then

|a + c|p + |b− c|p ≥ ap + bp.
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For the proof of the above lemma see for example [3].

Lemma 4.5. Let a, b, c and d be in R+ such that a ≥ max(c, d). If a + b ≥ c + d,
then for every p ∈ [1,+∞[, ap + bp ≥ cp + dp.

Proof. If b ≥ min(c, d) or a ≥ c + d it is evident. Else, set α = a− d and β = c− b.
We can suppose that d ≤ c. Since a < c+d and a+ b ≥ c+d we deduce that α < c
and β ≤ α. Then

ap + bp = |d + α|p + |c− β|p ≥ |d + α|p + |c− α|p.
As α ≥ c− d, then from lemma 4.4 we conclude that ap + bp ≥ cp + dp. �

Proof of lemma 4.3. If u and v are two positive eigenfunctions associated with λ1,
we claim that ( ∫

Ω

m|Λ max(u, v)|qdx
) p

q

+
( ∫

Ω

m|Λ min(u, v)|qdx
) p

q

≥
( ∫

Ω

m|Λu|qdx
) p

q

+
( ∫

Ω

m|Λv|qdx
) p

q

.

(4.4)

Indeed, we have

max(u, v) = u +
v − u + |v − u|

2
.

Then the fact that for every w ∈ Lp(Ω), Λ|w| ≥ |Λw| enables us to deduce that

Λ max(u, v) ≥ Λu +
Λv − Λu + |Λv − Λu|

2
= max(Λu, Λv).

Hence ∫
Ω

m|Λ max(u, v)|qdx) ≥
∫

Ω

m|max(Λu, Λv)|qdx

≥ max(
∫

Ω

m|Λu|qdx,

∫
Ω

m|Λv|qdx).

Therefore, from lemma 4.5 we conclude inequality (4.4). If we put

φ(w) = f(w)− λ1g(w) ∀w ∈ Lp(Ω),

from (4.4) and from lemma 4.2, we deduce that

0 ≤ φ(max(u, v)) + φ(min(u, v) ≤ φ(u) + φ(v) = 0

and φ(max(u, v)) = φ(min(u, v)) = 0. Thus, min(u, v) and max(u, v) are eigen-
functions associated with λ1. �

Lemma 4.6. Every eigenfunction of problem (2.2) is in C(Ω).

Proof. If v is an eigenfunction of problem (2.2) associated with a positive eigenvalue
λ, then

v = λ1/(p−1)Np′(‖m1/qΛw‖p−q
q Λ(mNq(Λv))). (4.5)

Since |Λv| ≤ Λ|v|, we get

|v| ≤ λ1/(p−1)‖m‖
1

p−1
∞ ‖m1/qΛw‖

p−q
p−1
q Np′(ΛNq(|Λv|)). (4.6)

We showed in our paper [9] that Np′(ΛNq(|Λv|)) ∈ C(Ω). Hence from (4.6) we
deduce that v ∈ L∞(Ω) and from (4.5) and the assertion in lemma 2.1(iv) it follows
that v ∈ C(Ω). �
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Proposition 4.7. The eigenvalue λ1 is simple and every positive eigenfunction is
associated with λ1.

Proof. Let v and w be two positive eigenfunctions associated with λ1. For x0 ∈ Ω
set k = v(x0)/w(x0) and maxk(x) = max(v(x), kw(x)). Lemma 4.3 enables us to
claim that maxk is a solution of problem (2.2) associated with λ1. Since

Np(v) = λ1Λ(mNp(Λv)),

Np(w) = λ1Λ(mNp(Λw)),

Np(max k) = λ1Λ(mNp(Λ max k)),

Lemma 4.6 and lemma 2.1 imply that Np(v), Np(w), Np(maxk) ∈ C1,α(Ω) and
Np(v), Np(w) are positive in Ω. Then

Np(v)/Np(w) ∈ C1(Ω).

For any unit vector e, we have

Np(v)(x0 + te)−Np(v)(x0) ≤ Np(max k)(x0 + te)−Np(max k)(x0)

and

Np(kw)(x0 + te)−Np(kw)(x0) ≤ Np(max k)(x0 + te)−Np(max k)(x0).

Dividing these inequalities by t > 0 and t < 0 and letting t tend to 0±, we get

∇Np(v)(x0) = ∇Np(max k)(x0) = kp−1∇Np(w)(x0).

Thus

∇
( Np(v)
Np(w)

)
(x0) = ∇(

Np(v)
Np(w)

)(x0)

=
(∇(Np(v))(x0)Np(w)(x0)−Np(v)(x0)∇(Np(w))(x0))

(Np(w)(x0))2
= 0.

Hence

Np(
v

w
) =

Np(v)
Np(w)

= const = kp−1 in Ω

and
v

w
= k in Ω.

Now we show that every positive eigenfunction is associated with λ1: Let λ > λ1,
suppose that problem (2.2) has a positive eigenfunction w associated with λ and
let v be a positive solution of problem (2.2) associated with λ1, we have

Np(v) = λ1Λ(mNp(Λv)) and Np(w) = λΛ(mNp(Λw)).

Then from the assertion in lemma 2.1(v) we deduce that Np(v) and Np(w) are in
C1,α(Ω), and

∂(Np(v))/∂n < 0, ∂(Np(w))/∂n < 0 on ∂Ω.

It follows that Np(v)/Np(w) is in C(Ω). Set

a = max
x∈Ω

Np(v)(x)/Np(w)(x).

We deduce that Np(v) ≤ aNp(w). The monotonicity of Np′ implies

v ≤ a
1

p−1 w.
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Since problem (2.2) is homogeneous, a
1

p−1 w is also a solution of problem (2.2), we
may assume without loss of generality that v ≤ w. Then, from the assertion of
lemma 2.1(vi) and by the monotonicity of Nq, we get

Np(v) = λ1‖m1/qΛv‖p−q
q Λ(mNq(Λv))

≤ ‖m1/qΛw‖p−q
q λ1Λ(mNq(Λw))

= λ‖m1/qΛcw‖p−q
q Λ(mNq(Λcw))

= Np(cw),

where
c = (λ1/λ)1/(p−1) < 1.

Hence it follows by the monotonicity of Np′ that v < cw. Repeating this argument
n times, we obtain 0 ≤ v ≤ cnw. Therefore by letting n tend to infinity, we deduce
that v ≡ 0. This is a contradiction. �

Proof of theorem 4.1. Let v and w be two positive solutions of problem (4.1).
Then v and w are eigenfunctions associated with the eigenvalues ‖m1/qΛv‖q−p

q

and ‖m1/qΛw‖q−p
q respectively. From proposition 4.7 we deduce that

‖m1/qΛv‖q−p
q = ‖m1/qΛw‖q−p

q = λ1

and there is k > 0 such that w = kv. It follows that v = w. �
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[4] P. Dràbek, S. Pohozaev; Positive Solutions for the p-Laplacian: Application of the fibering
method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 703-726.

[5] I. Ekeland, On the Variational Principle, J. Math. Anal. Appl. 47 (1974) 324-353.

[6] A. El Hamidi, Multiple Solutions with Changing Sign Energy to a Nonlinear Elliptic Equa-
tions, Comm. Pure Appl. Anal. 3 (2004) 253-265.

[7] D. Gilbar, N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, Second

ed., Springer New York Tokyo (1983).
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