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EXISTENCE OF NON-NEGATIVE SOLUTIONS FOR
NONLINEAR EQUATIONS IN THE SEMI-POSITONE CASE

NAJI YEBARI, ABDERRAHIM ZERTITI

ABSTRACT. Using the fibring method we prove the existence of non-negative
solution of the p-Laplacian boundary value problem —Apu = Af(u), for any
X > 0 on any regular bounded domain of RY, in the special case f(t) = t? — 1.

1. INTRODUCTION AND MAIN RESULTS
In this paper we are interested in finding nonnegative solutions to the equation

—Apu = Af(u) in Q,

uw=0 on 09, (1.1)

for some specific f in the non positone case (f(0) < 0), under assumptions stated
below.

Here € is a connected and bounded subset of RY with boundary 9 in C12.
We set

Ayu = div(|VulP 2 V).

When p = 2, this type of problem in the nonpositone case can be studied via the
shooting method. Existence of a radially symmetric nonnegative solution for A > 0
sufficiently small have been obtained in [Il [2] and nonexistence of such a solution
for A > 0 large have been established in [IL [3], in the framework of the semi positone
case and f is superlinear. Observe that, since f(0) < 0, the constant 0 is an upper
solution of and as a consequence it is not possible, in general, to apply the
usual techniques (for example: the method of upper and lower solutions, etc.) and
we shall work in the framework of the so-called fibration method introduced by
Pohozaev in [5], and then developed in [0} [7, [8]. We shall assume that f has the
form

f@)=t1—1, withg>p—1 (1.2)
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To avoid the noncompactness problem we shall always assume that the problem is
subcritical, in the sense of the critical exponent for 2,

Mo if1<p< N
pr=a N b (13)
+oo ifp> N.
Let
uw=0v, 6=\ (1), p= AT > 0. (1.4)
and
“Apu=u?—p inQ,
uw>0 in , (1.5)
u=0 on 0f2

It can be seen that (1.1), (1.2)), (L.4) and (L.5) are equivalent. Also let p and ¢

satisfy
O<p—1l<g<p -1 (1.6)

where p* is given by (|1.3). Concerning p, we shall assume its positivity.
By a solution of (L.5)), we mean a Wy (Q2) N L>(Q) function which is a critical
point of the functional

1 1
E(v :—f/ vadx—ﬁ—i/ v|Tde — /vx dx
(v) pQI | q+19|| MQ\()l

and therefore satisfies
/(|Vu|p72Vu.V<p — (u? — p)p)dxr =0
Q
for every o € WyP(Q) N L>=(Q).
Our main result is as follows.

Theorem 1.1. Let assumptions (1.3)) and (1.6) be satisfied. Then there exists
a nontrivial nonnegative solution u € Wy P(Q) N L®(Q) of problem (L)) for any
A > 0. Moreover, u € C1:*(Q) for some o > 0.

2. PROOF OF THE MAIN THEOREM

The proof is based on the fibering method and is divided into five stages.
Step 1: We introduce the Euler functional associated with (1.5)) as follows

1 1
Eu:—f/ Vupdac—&-i/ uldtdz — /uac dx
() pQI | q+19|| Mgl()l

According to the fibering method, we set
u(z) = rv(x), (2.1)

where r € Rt and v € W, ?(Q). Then we obtain

~ p q+1
E(r,v) = E(r,v) = —ﬂ/ |VoulPdx + / lo| T da — ,m“/ lv(z)|dz (2.2)
P Jo q+1 Q

Q

We introduce the fibering functional

/Q |[VolPde =1 (2.3)
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Under condition (2.3) the functional E takes the form

P ratl
E(r,v)=——+ / Jv| T da — /LT/ |v(x)|dx
Q Q

P g+1
The bifurcation equation is
OE
0=— =—rP"1 4t [ |o|?Hdz — u/ |v(z)|dx
or Q Q

which gives
—rP + rq'H/ |v|7Tdx — ,ur/ |v(x)|dz = 0.
Q Q
Let set
E(v) = E(r(v)v)

Step 2: Let us consider the variational problem
Mo = sup {E(v); v e W&”’(Q)// VolPde = 1.
Q

It follows that
i B . rP PR
(v) = min E(r,v) = gpzlg{—; o

as a matter of fact, (2.6) gives

774’(11)777"‘”1(1;) v dx M v(x)|dx
2= [ uirttae 58 po(o)las,

On the other hand,
E(v) = E(r(v)v)

,77"#1(”) v|THde @ v(x)|dx
- /Q||+d+up/ﬂl()ld

p

7=4+1(U) a+1 B
+ T [ it — (o) [ ot

which gives

Nv—mrqﬂv | de — pr(v —} v(x)|dx
Bo) = T i) [ ottt — ()1 - 3) [ o(la

By (L6), E(v) < 0.

Let us prove the following Lemma.

/ |v| T dx — ,ur/ |v(z)|dz} < 0,
Q Q
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(2.10)

Lemma 2.1. The sequence mazimizing problem (2.8) is bounded in Wolp(Q)

Proof. Let (vy) be a maximizing sequence for (2.8]). We set

Un(2) = ¢p + Tp(2)

/Qﬁn(x)dx =0.

/ Von|Pdz = / Vo, Pde = 1
Q Q

with

Since

(2.11)

(2.12)

(2.13)
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and by the Sobolev embedding theorems (the Poincare-Wirtinger inequality), the
sequence (T,,) is bounded in WP(Q). From the bifurcation equation (2.5, we
obtain

=t [ e 4wt de = [ e+ alda. (2.14)
Q Q
Let us assume that
cn — +00, asm — +00. (2.15)
Then
) 1 7 v
1+ 2|7t de = /1 L \dax. 2.16
/Q| + Cn| * C%+17‘%7p+1 + CZT?L Q| + Cn| ’ ( )

By embedding results, there exists C' > 0 such that
||5n||W1,p(Q) <C, VneN

Using (2.15) and since by assumption (1.6 the space W1P(Q) is compactly em-
bedded in L9T1(Q2). We may assume that (v,) converges strongly in latter space.

Then from (2.16)) we have
/ 11+ 227+ dy — Q] > 0, asn — +oo. (2.17)
Q Cn
The proof is complete. O

Hence, we can assume that the sequence (v,,) converges weakly in Wy (Q). By
assumption ([1.6), it follows that v,, — v in L¢+1(Q). This implies that

1900, < liminf [V,

Since
V0,2 :/ VoulPde = 1,
Q
we obtain
0< Hwollﬁ = / |V |Pdx < 1. (2.18)
Q
Now we shall prove the equality
/ |Vuvg|Pdz = 1. (2.19)
Q
We assume the contrary; i.e, that
/ |VuglPdx < 1. (2.20)
Q
Note that
0< / |VuglPdx . (2.21)
Q

Otherwise, if fQ |[VuglPdx = 0, vg = ¢ is a constant, and from (2.8]), we have for
all € > 0 there exist ng € N such that for all n > ng we have

My —€< E(Un) < My.
Let 6 €]0,1[. Then
E(0v,) —e < My — € < E(v,) < My (2.22)
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by (2.10]). We recall that

= (P—q— 1/ -1
E(v, 27 at v | T da — i ( v (x)|dz .
(o) = B [ P2 [ o)
Using (2.22), we see that

-1

(1- 9)urn(L)/ |vn (z)|dz < € for all n > ny.

p Q

Then we have

rn/ |vn(x)|dxwo/ o (@) dz = 0
Q Q

as n — +oo and vg = ¢g = 0 which gives E(vo) = 0. This contradicts My < 0.

Due to (2.20) and (2.21)), there exists 0 > 1 (i.e., ” = 1/ [, [Vuvo(x)[Pdz > 1)

such that v, = fvy satisfies
/ Vo, (z)Pde =1
Q

and
~ ~ P PR
E(vi) = E(Ovg) = mm{ - — 4+ 79‘”1/ lvo |9 da — ,urﬁ/ [vo(z)|dx }
p g+l Q
it it
= min{ — pe,, q+1/\vo| dl’*#ﬂ/@o )|da}
P ptt
)|d
S0 o [ uooaz).
Thus,

E(v,) > E(v).

This inequality contradicts the definition of (2.8)). Thus, we have obtained a solution
to the variational problem.

Step 3:
B(un) = sup {E(0): v e W3 (@) [ [Volrdo =1}
Q

The fibering method implies r =rg = r(vo) where ro > 0 and

Q-‘rl .
vo| 9 da — T/v )| dx
q+1/|0| pro [ vo(w)|
—mln{——

d
min { - — q+1 M/Iv )ldz}

To complete the proof, we must show that the equation (1.5]) is verified. We can
assume that vy is nonnegative by replacing v, by |v,]. Moreover, there exists a
Lagrange multiplier o such that

~ /
B (vo).h = a(/ V)P ()b h e W) (2.23)
Q
From the above equation, and by taking vy as test function, we have

ro{ /Q((Toqfo)q — pvoda} = pJ/Q |V (vo)[Pdx = po .
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By (2.6) we obtain o = % > 0. Then we can write

E'(vg) = po(—Apv0)
which is equivalent to
—A,(rovo) = (rove)? — .
Then if we set u = rgug > 0, we can see that u is a solution of problem .

Step 4: For u > 0, we have E(vo) < 0, thus the solution u > 0 is non trivial.
Step 5: We have obtained the nonnegative nontrivial solution u to problem .
A standard bootstrap argument (see Drabek [4]) shows that u € L>°(2). Then the
asserted regularity of u € Cﬁo‘i(ﬂ) follows by Tolksdorf [9]. Thus the theorem is
proved.
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