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BOUNDARY CONDITIONS FOR THE EINSTEIN-CHRISTOFFEL
FORMULATION OF EINSTEIN’S EQUATIONS

DOUGLAS N. ARNOLD, NICOLAE TARFULEA

Abstract. Specifying boundary conditions continues to be a challenge in nu-

merical relativity in order to obtain a long time convergent numerical sim-

ulation of Einstein’s equations in domains with artificial boundaries. In this
paper, we address this problem for the Einstein-Christoffel (EC) symmetric hy-

perbolic formulation of Einstein’s equations linearized around flat spacetime.

First, we prescribe simple boundary conditions that make the problem well
posed and preserve the constraints. Next, we indicate boundary conditions

for a system that extends the linearized EC system by including the momen-
tum constraints and whose solution solves Einstein’s equations in a bounded

domain.

1. Introduction

In the Arnowitt-Deser-Misner or ADM decomposition, Einstein’s equations split
into a set of evolution equations and a set of constraint equations (see Section 2),
and what one does to construct a solution consists of first specifying the initial
data that satisfies the constraints and then applying the evolution equations to
compute the solution for later times. The problem of well-posedness in the ana-
lytic sense has been intensely studied, with the result that there is a great deal of
choice of formulations available for analytic studies (see [15, 48, 29, 6, 32, 4, 7, 8,
1, 11, 13, 14, 20, 21, 23, 27, 40, 41], among others). However, in numerical rela-
tivity, one usually solves the Einstein equations in a bounded domain (cubic boxes
are commonly used) and the question that arises is what boundary conditions to
provide at the artificial boundary. In general, most numerical approaches have
been made using carefully chosen initial data that satisfies the constraints. On the
other hand, finding appropriate boundary conditions that lead to well-posedness
and consistent with constraints is a difficult problem and subject to intense in-
vestigations in the recent years. In 1998, Stewart [49] has addressed this subject
within Frittelli–Reula formulation [29] linearized around flat space with unit lapse
and zero shift in the quarter plane. Both main system and constraints propagate
as first order strongly hyperbolic systems. This implies that vanishing values of
the constraints at t = 0 will propagate along characteristics. One wants the values
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of the incoming constraints at the boundary to vanish. However, one can not just
impose them to vanish along the boundaries since the constraints involve deriva-
tives of the fields across the boundary, not just the values of the fields themselves.
If the Laplace–Fourier transforms are used, the linearity of the differential equa-
tions gives algebraic equations for the transforms of the fields. Stewart deduces
boundary conditions for the main system in terms of Laplace–Fourier transforms
that preserve the constraints by imposing the incoming modes for the system of
constraints to vanish and translating these conditions in terms of Laplace–Fourier
transforms of the main system variables. In 1999, a well posed initial-boundary
value formulation was given by Friedrich and Nagy [22] in terms of a tetrad-based
Einstein-Bianchi formulation. In view of our work which is to be presented here,
of particular interest are the more recent investigations regarding special boundary
conditions that prevent the influx of constraint violating modes into the compu-
tational domain for various hyperbolic formulations of Einstein’s equations (see
[2, 3, 5, 12, 16, 17, 34, 31, 42, 44, 43, 52, 53], among others). A different approach
can be found in [28, 26], where the authors stray away from the general trend of
seeking to impose the constraints along the boundary. They argue that the projec-
tion of the Einstein equations along the normal to the boundary yields necessary
and appropriate boundary conditions for a wide class of equivalent formulations.
The ideas and techniques introduced in [28, 26] are further developed and proven to
be effective by the same authors in [25]. In principal, they show that the projection
of the Einstein tensor along the normal to the boundary relates to the propagation
of the constraints for two representations of Einstein’s equations with vanishing
shift vector, namely, the Arnowitt-Deser-Misner (ADM) formulation [10] and the
classical Einstein-Christoffel (EC) formulation [6]. In particular, they obtain a set
of boundary conditions for the EC formulation which has the same principal part
as one of those presented in [17] and [9]. However, it should be said that, although
the projection of the equations along the normal to the boundary represents an
interesting approach, there are several issues which have not been addressed. First
and foremost, there is the question of the well-posedness of the resulting bound-
ary conditions, that is, in the sense that the initial-boundary value problem has a
unique solution and this solution depends continuously on the initial and boundary
data. In fact, at least in the EC case, the projection of the equations itself does
not yield well-posed boundary conditions, because it provides too many conditions,
some of which are ill-posed for the system. Therefore, further considerations are
necessary in order to single out a subset of well-posed constraint-preserving bound-
ary conditions for the EC formulation (see [25]).

Of course, specifying constraint-preserving boundary conditions for a certain
formulation of Einstein’s equations does not solve entirely the complicated problem
of numerical relativity. There are other aspects that have to be addressed in order
to obtain good numerical simulations; for example, the existence of bulk constraint
violations, in which existing violations are amplified by the evolution equations
(see [18, 19, 36, 45], and references therein). A review of some work done in this
direction can be found in the introductory section of [34]. Before we end this very
brief review, it should also be mentioned the work done on boundary conditions for
Einstein’s equations in harmonic coordinates, when Einstein’s equations become
a system of second order hyperbolic equations for the metric components. The
question of the constraints preservation does not appear here, as it is hidden in the
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gauge choice, i.e., the constraints have to be satisfied only at the initial surface,
the harmonic gauge guarantees their preservation in time (see [38, 50, 51], and
references therein).

In this paper we address the boundary conditions problem for the classical EC
equations derived in [6], linearized with respect to the flat Minkowski spacetime,
and with arbitrary lapse density and shift perturbations. This problem has been
addressed before in [16] in the case of spherically symmetric black-hole spacetimes
in vacuum or with a minimally coupled scalar field, within the EC formulation of
Einstein’s equations. Here Stewart’s idea of imposing the vanishing of the ingo-
ing constraint modes as boundary conditions is employed once again. Then, the
radial derivative is eliminated in favour of the time derivative in the expression of
the ingoing constraints by using the main evolution system. The emerging set of
boundary conditions depends only on the main variables and their time derivative
and preserves the constraints. In [17] this technique is refined and employed for
the generalized EC formulation [32] when linearized around Minkowski spacetime
with vanishing lapse and shift perturbations on a cubic box. Again, the procedure
consists in choosing well-posed boundary conditions to the evolution system for
the constraint variables and translating them into well-posed boundary conditions
for the variables of the main evolution system. The scheme proposed in [17] ends
up giving two sets, called “Dirichlet and Neumann-like,” of constraint preserving
boundary conditions. However, the energy method used in [17] works only for
symmetric hyperbolic constraint propagation, which forces the parameter η of the
generalized EC system to satisfy the condition 0 < η < 2. Therefore the analysis
in [17] does not cover the case η = 4 required for the standard EC formulation
introduced in [6]. In [9] we announced and presented our results on the boundary
conditions problem for the standard EC formulation (η = 4) linearized around the
Minkowski spacetime with arbitrary lapse density and shift perturbations in the
Penn State Numerical Relativity Seminar. In essence, we introduced the very same
sets of boundary conditions that are under scrutiny in this material, i.e., (4.4) and
(4.13) (see [9]). Much of this material appeared also in the thesis of the second
author [52].

The organization of this paper is as follows: in Section 2 we introduce Ein-
stein’s equations and their ADM equations for vacuum spacetime. In Section 3,
by densitizing the lapse, linearizing, and defining a set of new variables, we derive
the linearized EC first order symmetric hyperbolic formulation around flat space-
time. The equivalence of this formulation with the linearized ADM is proven in
the Cauchy problem case. In Section 4 we indicate two distinct sets of well-posed
constraint-preserving boundary conditions for the linearized EC. We prove that the
linearized EC together with these boundary conditions is equivalent with linearized
ADM on polyhedral domains. In Section 5 we indicate boundary conditions for an
extended unconstrained system equivalent to the linearized ADM decomposition.
In Section 6 we discuss the case of inhomogeneous boundary conditions. We end
this work with a summary and a discussion of our results in Section 7. For reader’s
convenience, in the appendix we review a classical result on the L2 well-posedness
of maximal nonnegative boundary conditions for symmetric hyperbolic systems.



14 D. N. ARNOLD, N. TARFULEA EJDE/CONF/15

2. Einstein’s Equations and the ADM Decomposition

In general relativity, spacetime is a 4-dimensional manifold M of events endowed
with a pseudo-Riemannian metric gαβ that determines the length of the line ele-
ment ds2 = gαβdxαdxβ . This metric determines curvature on the manifold, and
Einstein’s equations relate the curvature at a point of spacetime to the mass-energy
there: Gαβ = 8πTαβ , where Gαβ is the Einstein tensor, i.e., the trace-reversed Ricci
tensor Gαβ := Rαβ − 1

2Rgαβ , and Tαβ is the energy-momentum tensor. In what
follows we will restrict ourselfs to the case of vacuum spacetime, that is Tαβ = 0.
Einstein’s equations can be viewed as equations for geometries, that is, their so-
lutions are equivalent classes under spacetime diffeomorphisms of metric tensors.
To break this diffeomorphisms invariance, Einstein’s equations must be first trans-
formed into a system having a well-posed Cauchy problem. In other words, the
spacetime is foliated and each slice Σt is characterized by its intrinsic geometry γij

and extrinsic curvature Kij , which is essentially the “velocity” of γij in the unit
normal direction to the slice. Subsequent slices are connected via the lapse function
N and shift vector βi corresponding to the ADM decomposition [10] (also [54]) of
the line element

ds2 = −N2dt2 + γij(dxi + βidt)(dxj + βjdt). (2.1)

This decomposition allows one to express six of the ten components of Einstein’s
equations in vacuum as a constrained system of evolution equations for the metric
γij and the extrinsic curvature Kij :

γ̇ij = −2NKij + 2∇(iβj),

K̇ij = N [Rij + (Kl
l )Kij − 2KilK

l
j ] + βl∇lKij + Kil∇jβ

l + Klj∇iβ
l −∇i∇jN,

Ri
i + (Ki

i )
2 −KijK

ij = 0,

∇jKij −∇iK
j
j = 0.

(2.2)
where we use a dot to denote time differentiation and ∇j for the covariant derivative
associated to γij . The spatial Ricci tensor Rij has components given by second order
spatial differential operators applied to the spatial metric components γij . Indices
are raised and traces taken with respect to the spatial metric γij , and paranthesized
indices are used to denote the symmetric part of a tensor.

3. Linearized Einstein–Christoffel

The Einstein-Christoffel or EC formulation [6] is derived from the ADM system
with a densitized lapse. That is, we replace the lapse N in (2.2) with α

√
g where α

denotes the lapse density. A trivial solution to this system is Minkowski spacetime in
Cartesian coordinates, given by γij = δij , Kij = 0, βi = 0, α = 1. In the remainder
of the paper we will consider the problem linearized about this solution. To derive
the linearization, we write γij = δij + ḡij , Kij = K̄ij , βi = β̄i, α = 1+ ᾱ, where the
bars indicate perturbations, assumed to be small. If we substitute these expressions
into (2.2) (with N = α

√
γ), and ignore terms which are at least quadratic in

the perturbations and their derivatives, then we obtain a linear system for the
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perturbations. Dropping the bars, the system is

ġij = −2Kij + 2∂(iβj), (3.1)

K̇ij = ∂l∂(jgi)l −
1
2
∂l∂lgij − ∂i∂jg

l
l − ∂i∂jα, (3.2)

C := ∂j(∂lglj − ∂jg
l
l) = 0, (3.3)

Cj := ∂lKlj − ∂jK
l
l = 0, (3.4)

where we use a dot to denote time differentiation.

Remark. For the linear system the effect of densitizing the lapse is to change the
coefficient of the term ∂i∂jg

l
l in (3.2). Had we not densitized, the coefficient would

have been −1/2 instead of −1, and the derivation of the linearized EC formulation
below would not be possible.

The usual approach to solving the system (3.1)–(3.4) is to begin with initial
data gij(0) and Kij(0) defined on R3 and satisfying the constraint equations (3.3),
(3.4), and to define gij and Kij for t > 0 via the Cauchy problem for the evolution
equations (3.1), (3.2). It can be easily shown that the constraints are then satisfied
for all times. Indeed, if we apply the Hamiltonian constraint operator defined in
(3.3) to the evolution equation (3.1) and apply the momentum constraint operator
defined in (3.4) to the evolution equation (3.2), we obtain the first order symmetric
hyperbolic system

Ċ = −2∂jCj , Ċj = −1
2
∂jC.

Thus if C and Cj vanish at t = 0, they vanish for all time.
The linearized EC formulation provides an alternate approach to obtaining a

solution of (3.1)–(3.4) with the given initial data, based on solving a system with
better hyperbolicity properties. If gij , Kij solve (3.1)–(3.4), define

fkij =
1
2
[∂kgij − (∂lgli − ∂ig

l
l)δjk − (∂lglj − ∂jg

l
l)δik]. (3.5)

Then −∂kfkij coincides with the first three terms of the right-hand side of (3.2),
so

K̇ij = −∂kfkij − ∂i∂jα. (3.6)
Differentiating (3.5) in time, substituting (3.1), and using the constraint equation
(3.4), we obtain

ḟkij = −∂kKij + Lkij , (3.7)
where

Lkij = ∂k∂(iβj) − ∂l∂[lβi]δjk − ∂l∂[lβj]δik (3.8)
The evolution equations (3.6) and (3.7) for Kij and fkij , together with the evolution
equation (3.1) for gij , form the linearized EC system. As initial data for this system
we use the given initial values of gij and Kij and derive the initial values for fkij

from those of gij based on (3.5):

fkij(0) =
1
2
{∂kgij(0)− [∂lgli(0)− ∂ig

l
l(0)]δjk − [∂lglj(0)− ∂jg

l
l(0)]δik}. (3.9)

In this paper we study the preservation of constraints by the linearized EC system
and the closely related question of the equivalence of that system and the linearized
ADM system. Our main interest is in the case when the spatial domain is bounded
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and appropriate boundary conditions are imposed, but first we consider the result
for the pure Cauchy problem in the remainder of this section.

Suppose that Kij and fkij satisfy the evolution equations (3.6) and (3.7) (which
decouple from (3.1)). If Kij satisfies the momentum constraint (3.4) for all time,
then from (3.6) we obtain a constraint which must be satisfied by fkij :

∂k(∂lfklj − ∂jf
l

kl ) = 0. (3.10)

Note that (3.5) is another constraint that must be satisfied for all time. The
following theorem shows that the constraints (3.4), (3.5), and (3.10) are preserved
by the linearized EC evolution.

Theorem 1. Let initial data gij(0) and Kij(0) be given satisfying the constraints
(3.3) and (3.4), respectively, and fkij(0) be defined by (3.9). Then the unique
solution of the evolution equations (3.1), (3.6), and (3.7) satisfies (3.4), (3.5), and
(3.10) for all time.

Proof. First we show that the initial data fkij(0) defined in (3.9) satisfies the con-
straint (3.10). Applying the constraint operator in (3.10) to (3.9) we find

∂k(∂lfklj − ∂jf
l

kl )(0) =
1
2
∂j(∂l∂kgkl − ∂k∂kgl

l)(0) =
1
2
∂jC(0) = 0. (by (3.3))

It is immediate from the evolution equations that each component Kij satisfies the
inhomogeneous wave equation

K̈ij = ∂k∂kKij − ∂kLkij − ∂i∂jα̇.

Applying the momentum constraint operator defined in (3.4), we see that each
component Cj satisfies the homogeneous wave equation

C̈j = ∂k∂kCj . (3.11)

Now Cj = 0 at the initial time by assumption, so if we can show that Ċj = 0 at
the initial time, we can conclude that Cj vanishes for all time. But, from (3.6) and
the definition of Cj ,

Ċj = −∂k(∂lfklj − ∂jf
l

kl ), (3.12)

which we just proved that vanishes at the initial time. Thus we have shown Cj

vanishes for all time, i.e., (3.4) holds. In view of (3.12), (3.10) holds as well. From
(3.7) and (3.1) we have

ḟkij =
1
2
∂kġij − ∂l∂[lβi]δjk − ∂l∂[lβj]δik.

Applying the momentum constraint operator to (3.1) and using (3.4), it follows
that

1
2
(∂lġli − ∂iġ

l
l) = ∂l∂[lβi],

so fkij − [∂kgij − (∂lgli − ∂ig
l
l)δkj − (∂lglj − ∂jg

l
l)δki]/2 does not depend on time.

From (3.9), we have (3.5). �

In view of this theorem it is straightforward to establish the key result that for
given initial data satisfying the constraints, the unique solution of the linearized
EC evolution equations satisfies the linearized ADM system, and so the linearized
ADM system and the linearized EC system are equivalent.
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Theorem 2. Suppose that initial data gij(0) and Kij(0) are given satisfying the
Hamiltonian constraint (3.3) and momentum constraint (3.4), respectively, and that
initial data fkij(0) is defined by (3.9). Then the unique solution of the linearized
EC evolution equations (3.1), (3.6), (3.7) satisfies the linearized ADM system (3.1)–
(3.4).

Proof. From Theorem 1, we know that Cj = 0 for all time, i.e., (3.4) holds. Then
from (3.1) and (3.4) we see that Ċ = −2∂jCj = 0, and, since C vanishes at initial
time by assumption, C vanishes for all time, i.e., (3.3) holds as well.

It remains to verify (3.2). From Theorem 1, we also have (3.5). Substituting
(3.5) in (3.6) gives (3.2), as desired. �

4. Maximal Nonnegative Constraint Preserving Boundary Conditions

In this section of the paper, we provide maximal nonnegative boundary condi-
tions for the linearized EC system which are constraint-preserving in the sense that
the analogue of Theorem 1 is true for the initial–boundary value problem. This will
then imply the analogue of Theorem 2. We assume that Ω is a polyhedral domain.

Consider an arbitrary face of ∂Ω and let ni denote its exterior unit normal.
Denote by mi and li two additional vectors which together ni form an orthonormal
basis. The projection operator orthogonal to ni is then given by τ j

i := mim
j + lil

j

(and does not depend on the particular choice of these tangential vectors). Note
that

δj
i = nin

j + τ j
i , τ j

i τk
j = τk

i . (4.1)
Consequently,

vlw
l = njvjniw

i + τ j
l vjτ

l
iw

i for all vl, wl. (4.2)
First we consider the following boundary conditions on the face:

nimjKij = niljKij = nkninjfkij = nkmimjfkij = nkliljfkij = nkmiljfkij = 0.
(4.3)

These can be written as well:

niτ jkKij = 0, nkninjfkij = 0, nkτ ilτ jmfkij = 0, (4.4)

and so do not depend on the choice of basis for the tangent space. We begin by
showing that these boundary conditions are maximal nonnegative for the hyperbolic
system (3.1), (3.6), and (3.7), and so, according to the classical theory of [24] and
[35] (also [30, 33, 37, 39, 46, 47], among others), the initial–boundary value problem
is well-posed. For convenience, in Appendix A we recall the definition and a classical
result due to Rauch [39] on L2 well-posedness of maximal nonnegative boundary
conditions.

Let V denote the vector space of triplets of constant tensors (gij ,Kij , fkij) all
three symmetric with respect to the indices i and j. Thus dim V = 30. The
boundary operator An associated to the evolution equations (3.1), (3.6), and (3.7)
is the symmetric linear operator V → V given by

g̃ij = 0, K̃ij = nkfkij , f̃kij = nkKij . (4.5)

A subspace N of V is called nonnegative for An if

gij g̃
ij + KijK̃

ij + fkij f̃
kij ≥ 0 (4.6)

whenever (gij ,Kij , fkij) ∈ N and (g̃ij , K̃ij , f̃kij) is defined by (4.5). The subspace is
maximal nonnegative if also no larger subspace has this property. Since An has six



18 D. N. ARNOLD, N. TARFULEA EJDE/CONF/15

positive, 18 zero, and six negative eigenvalues, a nonnegative subspace is maximal
nonnegative if and only if it has dimension 24. Our claim is that the subspace N
defined by (4.3) is maximal nonnegative. The dimension is clearly 24. In view of
(4.5), the verification of (4.6) reduces to showing that nkfkijK

ij ≥ 0 whenever
(4.3) holds. In fact, nkfkijK

ij = 0, that is, nkfkij and Kij are orthogonal (when
(4.3) holds). To see this, we use orthogonal expansions of each based on the normal
and tangential components:

Kij = nlnin
mnjKlm + nlniτ

m
j Klm + τ l

in
mnjKlm + τ l

i τ
m
j Klm, (4.7)

nkfkij = nlnin
mnjn

kfklm + nlniτ
m
j nkfklm + τ l

in
mnjn

kfklm + τ l
i τ

m
j nkfklm.

(4.8)

In view of the boundary conditions (in the form (4.4)), the two inner terms on the
right-hand side of (4.7) and the two outer terms on the right-hand side of (4.8)
vanish, and so the orthogonality is evident.

Next we show that the boundary conditions are constraint-preserving. This is
based on the following lemma.

Lemma 3. Suppose that α and βi vanish. Let gij, Kij, and fkij be a solution
to the homogeneous hyperbolic system (3.1), (3.6), and (3.7) and suppose that the
boundary conditions (4.3) are satisfied on some face of ∂Ω. Let Cj be defined by
(3.4). Then

Ċjn
l∂lC

j = 0 (4.9)
on the face.

Proof. In fact we shall show that njCj = 0 (so also njĊj = 0) and τp
j nl∂lC

j = 0,
which, by (4.2) implies (4.9). First note that

Cj = (δm
j δik − δk

j δim)∂kKim = (δm
j nink + δm

j τ ik − δk
j δim)∂kKim,

where we have used the first identity in (4.1). Contracting with nj gives

njCj = (nmnink + nmτ ik − nkδim)∂kKim

= −nmninkḟkim + τ ilτk
l nm∂kKim + nkδimḟkim

where now we have used the equation (3.7) (with βi = 0) for the first and last
term and the second identity in (4.1) for the middle term. From the boundary
conditions we know that nmninkfkim = 0, and so the first term on the right-hand
side vanishes. Similarly, we know that τ ilnmKim = 0 on the boundary face, and
so the second term vanishes as well (since the differential operator τk

l ∂k is purely
tangential). Finally, nkδimfkim = nk(ninm + lilm + mimm)fkim = 0, and so the
third term vanishes. We have established that njCj = 0 holds on the face.

To show that τp
j nl∂lC

j = 0 on the face, we start with the identity

τp
j nlδmjδik = τpm(nink + τ ik)nl = τpmni(δkl − τkl) + τpmτ iknl.

Similarly
τp
j nlδkjδim = τpknlninm + τpkτ imnl.

Therefore,

τp
j nl∂lC

j = τp
j nl∂l(δmjδik − δkjδim)∂kKim

= (τpmniδkl − τpmniτkl + τpmτ iknl − τpknlninm − τpkτ imnl)∂k∂lKim.
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For the last three terms, we again use (3.7) to replace ∂lKim with −ḟlim and
argue as before to see that these terms vanish. For the first term we notice that
δkl∂k∂lKim = ∂k∂kKim = K̈im (from (3.6) and (3.7) with vanishing α and βi).
Since τpmniKim vanishes on the boundary, this term vanishes. Finally we recognize
that the second term is the tangential Laplacian, τkl∂k∂l applied to the quantity
niτpmKim, which vanishes. This concludes the proof of (4.9). �

The next theorem asserts that the boundary conditions are constraint-preserving.

Theorem 4. Let Ω be a polyhedral domain. Given gij(0) and Kij(0) on Ω satisfying
the constraints (3.3) and (3.4), respectively, and fkij(0) defined by (3.9), define gij,
Kij, and fkij for positive time by the evolution equations (3.1), (3.6), and (3.7)
and the boundary conditions (4.3). Then the constraints (3.4), (3.5), and (3.10)
are satisfied for all time.

Proof. Exactly as for Theorem 1 we find that Cj satisfies the wave equation (3.11)
and both Cj and Ċj vanish at the initial time; these facts are unrelated to the
boundary conditions. Define the usual energy

E(t) =
1
2

∫
Ω

(ĊjĊ
j + ∂lCj∂lC

j) dx.

Clearly E(0) = 0. From (3.11) and integration by parts

Ė =
∫

∂Ω

Ċjn
l∂lC

jdσ. (4.10)

Therefore, if α = 0 and βi = 0, we can invoke Lemma 3, and conclude that E is
constant in time. Hence E vanishes identically. Thus Cj is constant, and, since it
vanishes at time 0, it vanishes for all time. By (3.12), the constraints (3.10) are
also satisfied for all time. This establishes that the constraints (3.4) and (3.10) hold
under the additional assumption that α and βi vanish.

To extend to the case of general α and βi we use Duhamel’s principle. Let
S(t) denote the solution operator associated to the homogeneous boundary value
problem. That is, given functions hij(0), κij(0), φkij(0) on Ω, define

S(t)(hij(0), κij(0), φkij(0)) = (hij(t), κij(t), φkij(t)),

where hij , κij , φkij is the solution to the homogeneous evolution equations

ḣij = −2κij , κ̇ij = −∂kφkij , φ̇kij = −∂kκij ,

satisfying the boundary conditions and assuming the given initial values. Then
Duhamel’s principle represents the solution gij , Kij , fkij of the inhomogeneous
initial-boundary value problem (3.1), (3.6), (3.7), (4.3) as

(gij(t),Kij(t), fkij(t))

= S(t)(gij(0),Kij(0), fkij(0)) +
∫ t

0

S(t− s)(2∂(iβj),−∂i∂jα(s), Lkij(s)) ds.

(4.11)
Now it is easy to check that the Hamiltonian constraint (3.3) is satisfied when gij is
replaced by 2∂(iβj) (for any smooth vector function βi), the momentum constraint
(3.4) is satisfied when Kij is replaced by −∂i∂jα(s) (for any smooth function α),
and the constraint (3.10) is satisfied when fkij is replaced by Lkij(s) defined by
(3.8) (for any smooth vector function βi). Hence the integrand in (4.11) satisfies
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the constraints by the result for the homogeneous case, as does the first term on
the right-hand side, and thus the constraints (3.4) and (3.10) are indeed satisfied
by Kij and fkij , respectively.

The proof of the fact that the constraints (3.5) are satisfied for all time follows
exactly as in Theorem 1.

Note that the boundary conditions (4.3) play a crucial role in proving that the
momentum constraints (3.4) are preserved for all time; the preservation of the
constraints (3.5) and (3.10) being a consequence of this fact. �

The analogue of Theorem 2 for the initial–boundary value problem follows from
the preceding theorem exactly as before.

Theorem 5. Let Ω be a polyhedral domain. Suppose that initial data gij(0) and
Kij(0) are given satisfying the Hamiltonian constraint (3.3) and momentum con-
straint (3.4), respectively, and that initial data fkij(0) is defined by (3.9). Then the
unique solution of the linearized EC initial–boundary value problem (3.1), (3.6),
(3.7), together with the boundary conditions (4.3) satisfies the linearized ADM sys-
tem (3.1)–(3.4) in Ω.

We close this section by noting a second set of boundary conditions which are
maximal nonnegative and constraint-preserving. These are

ninjKij = mimjKij = liljKij = miljKij = nknimjfkij = nkniljfkij = 0, (4.12)

or, equivalently,

ninjKij = 0, τ ilτ jmKij = 0, nkniτ jlfkij = 0. (4.13)

Now when we make an orthogonal expansion as in (4.7), (4.8), the outer terms
on the right-hand side of the first equation and the inner terms on the right-hand
side of the second equation vanish (it was the reverse before), so we again have the
necessary orthogonality to demonstrate that the boundary conditions are maximal
nonnegative. Similarly, to prove the analogue of Lemma 3, for these boundary
conditions we show that the tangential component of Ċj vanishes and the normal
component of nl∂lC

j vanishes (it was the reverse before). Otherwise the analysis
is essentially the same as for the boundary conditions (4.3).

5. Extended EC System

In this section we indicate an extended initial boundary value problem whose
solution solves the linearized ADM system (3.1)–(3.4) in Ω. This approach could
present advantages from the numerical point of view since the momentum constraint
is “built-in,” and so controlled for all time. The new system consists of (3.1), (3.7),
and two new sets of equations corresponding to (3.6)

K̇ij = −∂kfkij +
1
2
(∂ipj + ∂jpi)− ∂kpkδij − ∂i∂jα, (5.1)

and to a new three dimensional vector field pi defined by

ṗi = ∂lKli − ∂iK
l
l . (5.2)

Observe that the additional terms that appear on the right-hand side of (5.1)
compared with (3.6) are nothing but the negative components of the formal adjoint
of the momentum constraint operator applied to pi.
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Let Ṽ be the vector space of quadruples of constant tensors (gij ,Kij , fkij , pk)
symmetric with respect to the indices i and j. Thus dim Ṽ = 33. The boundary
operator Ãn : Ṽ → Ṽ in this case is given by

g̃ij = 0, K̃ij = nkfkij−
1
2
(nipj+njpi)+nkpkδij , f̃kij = nkKij , p̃i = −nlKil+niK

l
l .

(5.3)
The boundary operator Ãn associated to the evolution equations (3.1), (5.1), (3.7),
and (5.2) has six positive, 21 zero, and six negative eigenvalues. Therefore, a
nonnegative subspace is maximal nonnegative if and only if it has dimension 27.
We claim that the following boundary conditions are maximal nonnegative for (3.1),
(5.1), (3.7), and (5.2),

nimjKij = niljKij = nkninjfkij

= nk(mimjfkij + pk)

= nk(liljfkij + pk)

= nkmiljfkij = 0.

(5.4)

These can be written as well:

niτ jkKij = 0, nkninjfkij = 0, nk(τ ilτ jmfkij + τ lmpk) = 0, (5.5)

and so do not depend on the choice of basis for the tangent space.
Let us prove the claim that the subspace Ñ defined by (5.4) is maximal non-

negative. Obviously, dim Ñ = 27. Hence, it remains to be proven that Ñ is also
nonnegative. In view of (5.3), the verification of non-negativity of Ñ reduces to
showing that

nkfkijK
ij − nipjKij + nkpkKl

l ≥ 0 (5.6)
whenever (5.4) holds. In fact, we can prove that the left-hand side of (5.6) van-
ishes pending (5.4) holds. From the boundary conditions (in the form (5.5)) and
the orthogonal expansions (4.7) and (4.8) of Kij and fkij , respectively, the first
term on the right-hand side of (5.6) reduces to nkτ ilτ jmfkijKlm = −nkpkτ lmKlm.
Then, combining the first and third terms of the left-hand side of (5.6) gives
−nkpkτ ijKij+nkpkδijKij = nkpkninjKij . Finally, by using the orthogonal decom-
position pj = nkpknj + τkjpk and the first part of the boundary conditions (5.5)
the second term of the left-hand side of (5.6) is −nkpkninjKij − pkniτkjKij =
−nkpkninjKij , which is precisely the negative sum of the first and third terms of
the left-hand side of (5.6). This concludes the proof of (5.6).

Theorem 6. Let Ω be a polyhedral domain. Suppose that the initial data gij(0) and
Kij(0) are given satisfying the Hamiltonian (3.3) and momentum constraints (3.4),
respectively, fkij(0) is defined by (3.5), and pi(0) = 0. Then the unique solution
(gij ,Kij , fkij , pi) of the initial boundary value problem (3.1), (5.1), (3.7), and (5.2),
together with the boundary conditions (5.4), satisfies the properties pi = 0 for all
time, and (gij ,Kij) solves the linearized ADM system (3.1)–(3.4) in Ω.

Proof. Observe that the solution of the initial boundary value problem (3.1), (3.6),
(3.7), and (4.3) (boundary conditions), together with pi = 0 for all time, is the
unique solution of the initial boundary value problem (3.1), (5.1), (3.7), and (5.2),
together with the boundary conditions (5.4). The conclusion follows from Theo-
rem 5. �
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We close by indicating a second set of maximal nonnegative boundary conditions
(corresponding to (4.12)) for (3.1), (5.1), (3.7), and (5.2) for which Theorem 6 holds
as well. These are

ninjKij = mimjKij = miljKij

= liljKij = nknimjfkij −mkpk

= nkniljfkij − lkpk = 0,

(5.7)

or, equivalently,

ninjKij = 0, τ ilτ jmKij = 0, nkniτ jlfkij − τklpk = 0. (5.8)

6. Inhomogeneous Boundary Conditions

In this section we provide a formal method of constructing well-posed constraint-
preserving inhomogeneous boundary conditions for (3.1), (3.6), and (3.7) corre-
sponding to the two sets of boundary conditions (4.3) and (4.12), respectively. The
first set of inhomogeneous boundary conditions corresponds to (4.3) and can be
written in the following form

nimjK̃ij = niljK̃ij = nkninj f̃kij = nkmimj f̃kij = nklilj f̃kij = nkmilj f̃kij = 0,
(6.1)

where K̃ij = Kij − κij , f̃kij = fkij −Fkij , with κij and Fkij given in Ω for all time
and satisfying the constraints (3.4) and (3.10), respectively.

The analogue of Theorem 4 for the inhomogeneous boundary conditions (6.1) is
true.

Theorem 7. Let Ω be a polyhedral domain. Given gij(0) and Kij(0) on Ω satisfying
the constraints (3.3) and (3.4), respectively, and fkij(0) defined by (3.9), define gij,
Kij, and fkij for positive time by the evolution equations (3.1), (3.6), and (3.7)
and the boundary conditions (6.1). Then the constraints (3.4), (3.5), and (3.10)
are satisfied for all time.

Proof. Observe that gij , K̃ij , and f̃kij satisfy (3.1), (3.6), and (3.7) with the forcing
terms replaced by 2∂(iβj), −∂i∂jα−∂kFkij−κ̇ij , and Lkij−∂kκij−Ḟkij , respectively.
Exactly as in Theorem 4, it follows that K̃ij and f̃kij satisfy (3.4) and (3.10),
respectively, for all time. Thus, Kij and fkij satisfy (3.4) and (3.10), respectively,
for all time. Finally, same arguments as in Theorem 1 show that the constraints
(3.5) are also preserved through evolution for all time. �

The analogue of Theorem 5 for the case of the inhomogeneous boundary condi-
tions (6.1) follows from the preceding theorem by using the same arguments as in
the proof of Theorem 2.

Theorem 8. Let Ω be a polyhedral domain. Suppose that initial data gij(0) and
Kij(0) are given satisfying the Hamiltonian constraint (3.3) and momentum con-
straint (3.4), respectively, and that initial data fkij(0) is defined by (3.9). Then the
unique solution of the linearized EC initial–boundary value problem (3.1), (3.6),
(3.7), together with the inhomogeneous boundary conditions (6.1) satisfies the lin-
earized ADM system (3.1)–(3.4) in Ω.
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Note that there is a second set of inhomogeneous boundary conditions corre-
sponding to (4.12) for which Theorem 7 and Theorem 8 remain valid. These are

ninjK̃ij = mimjK̃ij = liljK̃ij = miljK̃ij = nknimj f̃kij = nknilj f̃kij = 0, (6.2)

where again K̃ij = Kij − κij , f̃kij = fkij − Fkij , with κij and Fkij given and
satisfying the constraints (3.4) and (3.10), respectively.

Similar considerations can be made for the extended system introduced in the
previous section. There are two sets of inhomogeneous boundary conditions for
which the extended system produces solutions of the linearized ADM system (3.1)–
(3.4) on a polyhedral domain Ω. These are

nimjK̃ij = niljK̃ij = nkninj f̃kij

= nk(mimj f̃kij + pk)

= nk(lilj f̃kij + pk)

= nkmilj f̃kij = 0

(6.3)

and
ninjK̃ij = mimjK̃ij = miljK̃ij

= liljK̃ij

= nknimj f̃kij −mkpk

= nknilj f̃kij − lkpk = 0,

(6.4)

where K̃ij and f̃kij are defined as before.
The next theorem is an extension of Theorem 6 to the case of inhomogeneous

boundary conditions.

Theorem 9. Let Ω be a polyhedral domain. Suppose that the initial data gij(0)
and Kij(0) are given satisfying the Hamiltonian (3.3) and momentum constraints
(3.4), respectively, fkij(0) is defined by (3.5), and pi(0) = 0. Then the unique
solution (gij ,Kij , fkij , pi) of the initial boundary value problem (3.1), (5.1), (3.7),
and (5.2), together with the inhomogeneous boundary conditions (6.3) (or (6.4)),
satisfies the properties pi = 0 for all time, and (gij ,Kij) solves the linearized ADM
system (3.1)–(3.4) in Ω.

Proof. Note that the solution of the initial boundary value problem (3.1), (3.6),
(3.7), and (6.1) (or (6.2), respectively), together with pi = 0 for all time, is the
unique solution of the initial boundary value problem (3.1), (5.1), (3.7), and (5.2),
together with the boundary conditions (6.3) (or (6.4), respectively). The conclusion
follows from Theorem 8. �

7. Concluding Remarks

We have studied the boundary conditions problem for the standard EC formula-
tion of Einstein’s equations linearized about the Minkowski spacetime. In Section 4,
we indicate two sets of maximal nonnegative boundary conditions (4.3) and (4.12),
respectively, which are consistent with the constraints. These boundary conditions
were announced in [9] and overlap with the boundary conditions found in [17] for
the generalized EC formulation for 0 < η < 2 with vanishing shift and lapse density
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perturbations. However, the energy method of [17] works only for the general-
ized EC formulation with 0 < η < 2; the standard EC formulation corresponds
to η = 4. Moreover, we prove that our boundary conditions are well-posed and
consistent with the constraints in the more general case of arbitrary shift and lapse
density perturbations by using a new argument involving the Duhamel’s principle.
Also, our approach emphasizes the relation between the ADM formulation and the
constrained evolution of the EC system in the linearized context. Besides, our
method is simpler, yet effective, and seems to be easily transferable to other formu-
lations and/or other background spacetimes. In fact, other Einstein’s hyperbolic
formulations, e.g., Alekseenko–Arnold [4], are analyzed in [52] by using the same
method. A subclass of the boundary conditions presented in this paper and intro-
duced previously in [9] has been pointed out by Frittelli and Gomez in [25] (in the
case of vanishing shift vector) as an example to their Einstein boundary conditions,
that is, the vanishing of the projection of Einstein’s tensor along the normal to the
boundary.

One of the main results in this paper is the construction of an extended symmetric
hyperbolic system which incorporates the momentum constrains as main variables.
For this extended system, we construct two sets of maximal nonnegative boundary
conditions and establish its relationship with the linearized ADM formulation. Such
a construction could serve as a model of how to control the bulk constraint violations
by making the constraints part of the main evolution system, and so keeping them
under control for all time. To the best of our knowledge, this is a new approach
regarding the bulk constraint violations control.

We also make some considerations about how inhomogeneous boundary condi-
tions consistent with the constraints could be constructed.

In some places, our methods of proof interfere with the techniques used in [16]
and [17], e.g., using the trading of normal derivatives for tangential and temporal
ones and the use of the energy method to prove that the constraints are preserved.
We apply these techniques to the slightly more general case of polyhedral domains
(as opposed to cubic boxes) and in a more systematic way. This could be of po-
tential interest to the case of curved boundary domains, for which the derivative
components trading techniques introduce new terms related to the geometry of the
boundaries (see [52], Section 4.2, for the analysis of a model problem similar to the
linearized EC formulation on curved domains). It is also expected that these or
similar techniques will be useful in the nonlinear case. For the interested reader,
we point out the work done in [34], where the authors construct new boundary
conditions for the nonlinear KST form [32] of the Einstein equations (which in-
cludes the EC formulation). Their boundary conditions are designed to prevent
the influx of constraint violations and physical gravitational waves into the compu-
tational domain. However, as specified in [34], there is no rigorous mathematical
well-posedness theoretical ground yet for these kind of boundary conditions, as
opposed to the simpler case of maximal nonnegative boundary conditions.

8. Appendix: Maximal nonnegative boundary conditions for
symmetric hyperbolic systems

Let Ω ⊂ Rn be a bounded domain with smooth boundary and T > 0. We
introduce the notations O = (0, T )×Ω and Γ = (0, T )×∂Ω. Consider the first order
differential operator L := ∂t +

∑n
i=1 Ai(t, x)∂i + B(t, x), where Ai ∈Lip(O), B ∈
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L∞(O), and (B + B∗)/2−
∑n

i=1 ∂iAi ∈ L∞(O). We suppose that L is symmetric,
that is, Ai = A∗i on O. Our interest is in solving the initial–boundary value problem

Lu = f(t, x) in O, u(0, ·) = g in Ω, u(t, x) ∈ N(t, x) for (t, x) ∈ [0, T ]× ∂Ω,
(8.1)

where N(t, x) is a Lipshitz continuous map from [0, T ] × ∂Ω to the subspaces of
Cn. Set ni be the outer unit normal to Γ, and denote by An(t, x) the boundary
matrix/operator An(t, x) :=

∑n
i=1 ni(x)Ai(t, x). We assume that Γ is characteristic

of constant multiplicity in the sense that dim kerAn is constant on each component
of Γ. We next suppose that N is maximal nonnegative, that is, the following two
conditions hold on Γ:

〈An(t, x)v, v〉 ≥ 0, ∀(t, x) ∈ Γ, ∀v ∈ N(t, x) (8.2)

and

dim N(t, x) = # nonnegative eigenvalues of An(t, x) counting multiplicity. (8.3)

The maximality condition (8.3) implies that the boundary subspace N cannot be
enlarged while preserving (8.2).

Let HO := {u ∈ L2(O) : Lu ∈ L2(O)}. It is easy to prove that HO is a Hilbert
space with respect to the inner product 〈u, u〉HO := 〈u, u〉L2(O) + 〈Lu,Lu〉L2(O).

Theorem 10 (L2 well-posedness, [39, Theorem 9]). For any f ∈ L1((0, T ) : L2(Ω))
and g ∈ L2(Ω) there is a unique u ∈ HO satisfying (8.1). In addition, u ∈ C((0, T ) :
L2(Ω)),

sup
0≤t≤T

‖u(t)‖L2(Ω) ≤ C‖f‖L1((0,T ):L2(Ω)) + ‖g‖L2(Ω),

and

‖u(t2)‖L2(Ω) − ‖u(t1)‖L2(Ω) ≤
∫ t2

t1

‖f(σ)‖L2(Ω) + C‖u(σ)‖L2(Ω) dσ.
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