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YOUNG MEASURE MINIMIZERS IN THE ASYMPTOTIC
ANALYSIS OF THIN FILMS

MARIAN BOCEA

Dedicated to Klaus Schmitt on the occasion of his 65th birthday

Abstract. An integral representation for a relaxed functional arising in the
membrane theory is obtained in terms of Young measures generated by se-

quences {(∇αuεn

˛̨
1

εn
∇3uεn )} of scaled gradients.

1. Introduction

Let ω ⊂ R2 be an open bounded domain with Lipschitz boundary, and consider
a thin three dimensional domain Ωε := ω × (−ε, ε) filled with an elastic material
with elastic energy density Wε and subject to dead loading body forces of densities
fε ∈ Lp′(Ωε, R3) where 1 < p < +∞, and p′ stands for the conjugate exponent of
p, i.e. 1

p + 1
p′ = 1. We assume that for fixed ε > 0, in order to reach equilibrium,

uε seeks to minimize

Eε(u) :=
∫

Ωε

Wε(x,∇u(x)) dx−
∫

Ωε

fε(x) · u(x) dx,

among all kinematically admissible fields u.
To study the effective behavior of a very thin film, we consider a sequence {εn}

of positive real numbers (half-thickness) converging to zero and we recast energy
functionals over varying domains Ωεn

into functionals with a fixed domain of in-
tegration Ω := ω × (−1, 1) by means of a reformulation of the problem through a
1

εn
-dilation in the transverse direction x3. With x = (x1, x2, x3), set

W (εn)(x, ·) := Wεn
(x1, x2, εnx3; ·),

f (εn)(x) := fεn(x1, x2, εnx3),

vn(x) := uεn
(x1, x2, εnx3).

After an appropriate rescaling, vn seeks to minimize

E(εn)(v) :=
∫

Ω

W (εn)

(
x,

(
∇αv

∣∣∣ 1
εn
∇3v

)
(x)

)
dx−

∫
Ω

f (εn)(x) · v(x) dx,
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among all kinematically admissible fields v = (v1, v2, v3) on Ω, where ∇αv stands
for the 3 × 2 matrix of partial derivatives ∂vi

∂xα
, i ∈ {1, 2, 3}, α ∈ {1, 2}, ∇3v is the

three-dimensional vector of partial derivatives ∂vi

∂x3
, i ∈ {1, 2, 3}, and (A|a) denotes

a 3× 3 matrix whose first two columns are those of the 3× 2 matrix A and the last
column is the vector a ∈ R3. We assume that the rescaled energy density W (εn)

does not explicitly depend on εn. Precisely, W (εn) = W where W : Ω×M3×3 → R
is a Carathéodory integrand (see Definition 2.6) satisfying for some 1 < p < +∞
the p-growth and coercivity condition

1
C
|A|p − C ≤ W (x, A) ≤ C(1 + |A|p) (1.1)

for L3-a.e x ∈ Ω and for all A ∈ M3×3, where C > 0 is a real constant and M3×3

denotes the space of real 3 × 3 matrices endowed with the usual Euclidean norm
|A| :=

√
tr (AT A). Assuming, moreover, that the rescaled body force density f (εn)

is independent of n (see e.g. [17]), the study of the effective energy of the limiting
system is hinged on the understanding of the asymptotic behavior of the energies

In(vn) :=
∫

Ω

W

(
x,

(
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

)
dx.

An extensive literature in this direction (see [2, 6, 7, 11, 12, 13, 17, 23, 24], among
others) is usually formulated in the natural mathematical setting of Γ-convergence,
and this approach gives rise to the so-called membrane theory. In view of the a
priori bound

sup
n∈N

∫
Ω

∣∣∣ (
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

∣∣∣pdx < +∞

for energy bounded sequences, and derived from (1.1), in this paper we obtain
an integral representation of the relaxed energy functional W : W 1,p(ω; R3) ×
Lp(Ω; R3) → R defined by

W(v, c) := inf
{

lim inf
n→+∞

∫
Ω

W

(
x,

(
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

)
dx : εn → 0+,

vn ⇀ v weakly in W 1,p(Ω; R3),
1
εn
∇3vn ⇀ c weakly in Lp(Ω; R3)

}
,

(1.2)

in terms of scaled gradient p-Young measures, which are essentially Young measures
generated by sequences of scaled gradients

{(
∇αvn

∣∣ 1
εn
∇3vn

)}
(see Definitions 2.1

and 2.5).

Definition 1.1. Let Ω := ω × (−1, 1), where ω ⊂ R2 is an open domain, and
let 1 ≤ p ≤ +∞. A Young measure µ on Ω × R9 is called a scaled gradient p-
Young measure (scaled gradient Young measure if p = +∞) if there exist sequences
εn → 0+ and {vn} ⊂ W 1,p(Ω; R3) such that

(i) {vn} is weakly (weakly * if p = +∞) convergent in W 1,p(Ω; R3),
(ii) { 1

εn
∇3vn} is weakly (weakly * if p = +∞) convergent in Lp(Ω; R3),

(iii) E“
∇αvn

∣∣ 1
εn
∇3vn

” ⇀ µ weakly * in C0(Ω× R9)′.

The weak (weak * if p = +∞) limit of vn in W 1,p(Ω; R3) is called an underlying
deformation for µ while the weak (weak * if p = +∞) limit of 1

εn
∇3vn in Lp(Ω; R3)
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is called a Cosserat vector associated to µ. For 1 ≤ p < +∞, we set

Y p
v,c :=

{
ν ∈ Y (Ω× R9) : ν is a scaled gradient p-Young measure with

underlying deformation v and associated Cosserat vector c
}

.

Our relaxation result is the following.

Theorem 1.2. Let 1 < p < +∞, Ω := ω × (−1, 1), where ω ⊂ R2 is an open,
bounded Lipschitz domain, and let W : Ω×M3×3 → R be a Carathéodory integrand
satisfying (1.1). Let v ∈ W 1,p(ω; R3) and c ∈ Lp(Ω; R3) be given, and define the
relaxed functional W : W 1,p(ω; R3)× Lp(Ω; R3) → R by (1.2). Then

W(v, c) = inf
ν∈Y p

v,c

∫
Ω×M3×3

Wdν. (1.3)

Moreover, the infimum on the right hand side is attained, i.e. there exists a scaled
gradient p-Young measure µ0 ∈ Y p

v,c such that

inf
ν∈Y p

v,c

∫
Ω×M3×3

Wdν =
∫

Ω×M3×3
Wdµ0. (1.4)

A challenging open problem is the identification of algebraic and analytical con-
ditions on parametrized probability measures both necessary and sufficient to guar-
antee that they belong to Y p

v,c. The corresponding program for probability measures
generated by gradients bounded in Lp was carried out by Kinderlehrer and Pedre-
gal (see [19, 20]) and subsequently generalized to the realm of A-quasiconvexity
by Fonseca and Müller in [15]. In the case of Young measures generated by se-
quences of scaled gradients, recent progress was made by Bocea and Fonseca [9],
where the slightly broader class of bending Young measures has been completely
characterized.

The crucial ingredient needed to prove Theorem 1.2 is the following decomposi-
tion result whose proof may be found in [8].

Theorem 1.3. Let Ω := ω × (−1, 1), where ω ⊂ R2 is an open, bounded Lipschitz
domain, let {εn} be a sequence of positive real numbers converging to zero, and
consider a sequence {vn} bounded in W 1,p(Ω; R3) (1 < p < +∞) and satisfying

sup
n∈N

∫
Ω

∣∣∣ (
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

∣∣∣pdx < +∞.

Suppose further that vn ⇀ v in W 1,p(Ω; R3) and 1
εn
∇3vn ⇀ c in Lp(Ω; R3). Then

there exists a subsequence {vnk
} of {vn} and a sequence {wk} ⊂ W 1,p(Ω; R3) such

that

lim
k→∞

L3 ({x ∈ Ω : wk(x) 6= vnk
(x)} ∪ {x ∈ Ω : ∇wk(x) 6= ∇vnk

(x)}) = 0, (1.5){(
∇αwk

∣∣∣ 1
εnk

∇3wk

)}
is p-equi-integrable, (1.6)

wk ⇀ v weakly in W 1,p(Ω; R3), (1.7)
1

εnk

∇3wk ⇀ c weakly in Lp(Ω; R3). (1.8)
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This theorem allows us to decompose (up to a subsequence)
{(
∇αvn

∣∣ 1
εn
∇3vn

)}
as a sum of a sequence

{(
∇αwn

∣∣ 1
εn
∇3wn

)}
whose p-th power is equi-integrable and

a remainder converging to zero in measure. We may say that
{(
∇αwn

∣∣ 1
εn
∇3wn

)}
carries the oscillations, while the remainder accounts for the concentration effects.

In the next section we present the basic facts about Young measures needed for
the proof of our relaxation theorem. The proof of Theorem 1.2 is the subject of
Section 3 of the paper.

2. Young measures

The characterization of (oscillatory) limits of nonlinear quantities in the Calcu-
lus of Variations has been successfully analyzed in several contexts by means of
Young measures. Young measures were originally introduced in Optimal Control
Theory by L.C. Young in connection to nonconvex problems, thus providing the
appropriate framework for the description of generalized minimizers in the Calculus
of Variations (see [29, 30]). Later, Tartar introduced the use of Young measures
in the PDE framework (see [26, 27, 28]). For more details regarding the study of
Young measures we refer the reader to [3, 4, 5, 16, 19, 20, 21, 22, 25], among others.

In this section we recall the definition and the relevant results about Young mea-
sures that we will need in the sequel; we follow closely the approach of Kristensen
(see [22]). Let D be an open subset of Rl(l ≥ 1), C(D) be the space of real-valued
continuous functions on D and define

C0(D) :=
{

ϕ ∈ C(D) : for every ε > 0 there exists a compact set K ⊂ D

such that |ϕ(x)| ≤ ε if x ∈ D \K
}

.

Endowed with the supremum norm, C0(D) is a separable Banach space. In view of
Riesz’ Theorem the dual space C0(D)′ can be identified with the space of bounded
Radon measures on D with the norm ‖µ‖ := |µ|(D), via the duality pairing

〈µ, ϕ〉 =
∫

D

ϕ(x) · dµ

d|µ|
(x)d|µ|(x),

where |µ| stands for the total variation of µ and is a non-negative, finite Radon
measure on D.

Definition 2.1. (i) A non-negative Radon measure µ on Ω × Rd with the
property

µ(B × Rd) = LN (B) for all Borel subsets of Ω,

is called a Young measure. The set of Young measures on Ω×Rd is denoted
by Y (Ω× Rd).

(ii) A Young measure µ for which there exists a LN -measurable mapping V :
Ω → Rd such that∫

Ω×Rd

fdµ =
∫

Ω

f(x, V (x))dx, for all f ∈ C0(Ω× Rd),

is called an elementary Young measure. We write

µ = EV :=
∫

Ω

δx ⊗ δV (x)dx,



EJDE-2007/CONF/15 YOUNG MEASURE MINIMIZERS 45

where δx and δV (x) are the Dirac measures on Ω concentrated at x and on
Rd concentrated at V (x), respectively.

(iii) A product measure
(
LNbΩ

)
⊗µ̃ on Ω×Rd, where µ̃ is a probability measure

on Rd, is called a homogeneous Young measure.

Remark 2.2. The definition of Young measures in Definition 2.1 (i) follows that
of Berliocchi and Lasry (see [5]). It can be shown (cf. [22]) to be equivalent to the
original definition of L.C. Young [29] and the ones used in literature (e.g., [3, 4, 25]).

Proposition 2.3. Let µ ∈ Y (Ω× Rd). Then there exists a mapping x 7→ µx from
Ω into the set of non-negative, finite Radon measures on Rd, such that

(i) µ =
∫
Ω

δx ⊗ µxdx, i.e. for any Borel function f : Ω × Rd → [0,+∞] the

function x 7→
∫

Rd

f(x,A)dµx(A) is LN -measurable, and∫
Ω×Rd

fdµ =
∫

Ω

∫
Rd

f(x, A)dµx(A)dx; (2.1)

(ii) µx(Rd) = 1, for LN -a.e. x ∈ Ω.
Moreover, if x 7→ νx is another such mapping then νx = µx for LN -a.e. x ∈ Ω.

Remark 2.4. Proposition 2.3 is a special case of a result in [10] (Proposition 13,
pp. 39-40). See also [1].

Consider a sequence {Vn} of measurable mappings of Ω into Rd. The corre-
sponding sequence {EVn} of elementary Young measures is bounded in C0(Ω×Rd)′

and thus, by virtue of Banach-Alaoglu’s Theorem, there exists a subsequence {Vnk
}

and a measure µ ∈ C0(Ω× Rd)′ such that

EVnk
⇀ µ weakly ∗ in C0(Ω× Rd)′. (2.2)

A necessary and sufficient condition for µ to be a Young measure is that

lim
R→∞

sup
k∈N

LN ({x ∈ Ω : |Vnk
(x)| ≥ R}) = 0, (2.3)

or, equivalently (see [18, 21]): There exists a Borel function g : Rd → [0,+∞] such
that lim|A|→+∞ g(A) = +∞, and

sup
k∈N

∫
Ω

g(Vnk
(x))dx < +∞.

Definition 2.5. If (2.2) and (2.3) hold, then we say that the Young measure µ is
generated by the sequence {Vnk

}.

Definition 2.6. (i) A function f : Ω × Rd → R ∪ {+∞} is called a normal
integrand if f is Borel measurable and f(x, ·) : Rd → R ∪ {+∞} is lower
semicontinuous for every x ∈ Ω.

(ii) A real-valued function f : Ω× Rd → R is called a Carathéodory integrand
if both f and −f are normal integrands.

Set f− := −min{f, 0}. The following result is well-known (see [3, 4, 5, 14, 20,
21, 22, 25]).

Lemma 2.7. Let {vn} be a sequence of measurable mappings from Ω into Rd which
generates the Young measure µ.



46 M. BOCEA EJDE/CONF/15

(i) If f : Ω × Rd → R ∪ {+∞} is a normal integrand and if {f−(·, vn)} is
equi-integrable then∫

Ω×Rd

fdµ ≤ lim inf
n→∞

∫
Ω

f(x, vn(x))dx.

Moreover, if f is a Carathéodory integrand then {f(·, vn)} is equi-integrable
if and only if ∫

Ω×Rd

fdµ = lim
n→∞

∫
Ω

f(x, vn(x))dx.

(ii) If {wn} is a sequence of measurable mappings from Ω into Rd such that
vn − wn → 0 in measure then {wn} also generates µ.

3. Proof of Theorem 1.2

We will identify R9 with the space of real 3× 3 matrices M3×3. To prove that

W(v, c) ≥ inf
ν∈Y p

v,c

∫
Ω×M3×3

Wdν, (3.1)

let εn → 0+ and {vn} ⊂ W 1,p(Ω; R3) be such that vn ⇀ v weakly in W 1,p(Ω; R3)
and 1

εn
∇3vn ⇀ c weakly in Lp(Ω; R3). Extract a subsequence (not relabelled) so

that

lim inf
n→∞

∫
Ω

W

(
x,

(
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

)
dx

= lim
n→∞

∫
Ω

W

(
x,

(
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

)
dx < +∞,

(3.2)

where the last inequality follows by (1.1). By Banach-Alaoglu’s Theorem, there
exists a subsequence

{(
∇αvnj

∣∣ 1
εnj

∇3vnj

)}
of

{(
∇αvn

∣∣ 1
εn
∇3vn

)}
such that

E„
∇αvnj

∣∣ 1
εnj

∇3vnj

« ⇀ µ weakly * in C0(Ω× R9)′,

for some Radon measure µ on Ω× R9. Since

sup
j∈N

∫
Ω

∣∣∣ (
∇αvnj

∣∣∣ 1
εnj

∇3vnj

)
(x)

∣∣∣pdx < +∞,

it follows that (2.3) holds, with k replaced by j, and Vnj by
(
∇αvnj

∣∣ 1
εnj

∇3vnj

)
.

Thus, µ is a Young measure. It is clear that we actually have µ ∈ Y p
v,c. By (1.1),

W (x, A) + C ≥ 0 for L3-a.e. x ∈ Ω and all A ∈ M3×3. Thus, we can apply Lemma
2.7 (i) (take f = W + C) and we obtain∫

Ω×M3×3
(W + C)dµ ≤ lim inf

j→∞

∫
Ω

(
W

(
x,

(
∇αvnj

∣∣∣ 1
εnj

∇3vnj

)
(x)

)
+ C

)
dx

= lim
j→∞

∫
Ω

W

(
x,

(
∇αvnj

∣∣∣ 1
εnj

∇3vnj

)
(x)

)
dx + CL3(Ω)

= lim
n→∞

∫
Ω

W

(
x,

(
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

)
dx + CL3(Ω),

where we have used (3.2). By Proposition 2.3 we have∫
Ω×M3×3

Cdµ =
∫

Ω

∫
M3×3

Cdµxdx = C

∫
Ω

µx(M3×3)dx = CL3(Ω),
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and in view of the previous equation we obtain∫
Ω×M3×3

Wdµ ≤ lim inf
n→∞

∫
Ω

W

(
x,

(
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

)
dx.

Thus,

inf
ν∈Y p

v,c

∫
Ω×M3×3

Wdν ≤ lim inf
n→∞

∫
Ω

W

(
x,

(
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

)
dx.

By the arbitrariness of {εn} and {vn} satisfying the admissibility conditions we
assert (3.1).

Conversely, let ν ∈ Y p
v,c. There exist sequences εn → 0+ and {vn} ⊂ W 1,p(Ω; R3)

such that vn ⇀ v weakly in W 1,p(Ω; R3), 1
εn
∇3vn ⇀ c weakly in Lp(Ω; R3), and

the sequence {(∇αvn

∣∣ 1
εn
∇3vn)} generates ν.

By Theorem 1.3 there exist a subsequence {vnk
} of {vn} and a sequence {wk} ⊂

W 1,p(Ω; R3) such that (1.5)-(1.8) hold. In view of (1.5), the sequence{(
∇αwk

∣∣∣ 1
εnk

∇3wk

)
−

(
∇αvnk

∣∣∣ 1
εnk

∇3vnk

)}
converges to zero in measure and thus, by Lemma 2.7 (ii), {(∇αwk

∣∣ 1
εnk

∇3wk)} also

generates ν. Since by (1.1) and (1.6) the sequence
{

W
(
·,

(
∇αwk

∣∣ 1
εnk

∇3wk

))}
is

equi-integrable, we deduce by (i) of Lemma 2.7 that∫
Ω×M3×3

Wdν = lim
k→∞

∫
Ω

W

(
x,

(
∇αwk

∣∣∣ 1
εnk

∇3wk

)
(x)

)
dx ≥ W(v, c),

where the last inequality follows by (1.7) and (1.8). Passing to the infimum over
all ν ∈ Y p

v,c we have that

inf
ν∈Y p

v,c

∫
Ω×M3×3

Wdν ≥ W(v, c).

Taking into account (3.1), we obtain that (1.3) holds. It remains to prove (1.4).

Claim: There exist sequences εn → 0+ and {vn} ⊂ W 1,p(Ω; R3) such that

vn ⇀ v weakly in W 1,p(Ω; R3),
1
εn
∇3vn ⇀ c weakly in Lp(Ω; R3),

lim
n→∞

∫
Ω

W

(
x,

(
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

)
dx = W(v, c).

(3.3)

Assuming that the claim holds, let µ0 be the scaled gradient p-Young measure
generated by a subsequence (not relabelled) of {(∇αvn

∣∣ 1
εn
∇3vn)}. Let {nk} ⊂ {n}

and {wk} ⊂ W 1,p(Ω; R3) be the sequences provided by Theorem 1.3. Taking into
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account (1.5)-(1.8), (3.3), and making use of Lemma 2.7, we have

W(v, c) ≤ lim inf
k→∞

∫
Ω

W

(
x,

(
∇αwk

∣∣∣ 1
εnk

∇3wk

)
(x)

)
dx

=
∫

Ω×M3×3
Wdµ0

≤ lim
n→∞

∫
Ω

W

(
x,

(
∇αvn

∣∣∣ 1
εn
∇3vn

)
(x)

)
dx

= W(v, c).

Thus, ∫
Ω×M3×3

Wdµ0 = W(v, c),

and in view of (1.3), we deduce (1.4).

Proof of Claim: For any n ∈ N, let {εk,n} ⊂ (0,+∞) and {vk,n} ⊂ W 1,p(Ω; R3)
be such that limk→∞ εk,n = 0, vk,n ⇀ v weakly in W 1,p(Ω; R3), 1

εk,n
∇3vk,n ⇀ c

weakly in Lp(Ω; R3) as k →∞ and, in addition,

W(v, c) ≤ lim inf
k→∞

∫
Ω

W

(
x,

(
∇αvk,n

∣∣∣ 1
εk,n

∇3vk,n

)
(x)

)
dx ≤ W(v, c) +

1
n

.

Extract an increasing subsequence {k(j, n)}j of {k} so that

lim inf
k→∞

∫
Ω

W

(
x,

(
∇αvk,n

∣∣∣ 1
εk,n

∇3vk,n

)
(x)

)
dx

= lim
j→∞

∫
Ω

W

(
x,

(
∇αvk(j,n),n

∣∣∣ 1
εk(j,n),n

∇3vk(j,n),n

)
(x)

)
dx,

and put εj,n := εk(j,n),n and vj,n := vk(j,n),n. Thus,

lim
j→∞

εj,n = 0, (3.4)

lim
n→∞

lim
j→∞

∫
Ω

W

(
x,

(
∇αvj,n

∣∣∣ 1
εj,n

∇3vj,n

)
(x)

)
dx = W(v, c), (3.5)

vj,n ⇀ v weakly in W 1,p(Ω; R3) as j →∞, and

1
εj,n

∇3vj,n ⇀ c weakly in Lp(Ω; R3) as j →∞.

Consider a countable family {ϕi}i∈N dense in Lp′(Ω). The weak convergence of vj,n

to v in W 1,p(Ω; R3) and that of 1
εj,n

∇3vj,n to c in Lp(Ω; R3) imply that for each
i, n ∈ N we have

lim
j→∞

∫
Ω

ϕi(x)vj,n(x)dx =
∫

Ω

ϕi(x)v(x)dx, (3.6)

lim
j→∞

∫
Ω

ϕi(x)
( 1

εj,n
∇3vj,n(x)

)
dx =

∫
Ω

ϕi(x)c(x)dx, (3.7)

lim
j→∞

∫
Ω

ϕi(x)∇vj,n(x)dx =
∫

Ω

ϕi(x)∇v(x)dx. (3.8)
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Taking into account (3.4), (3.5), (3.6), (3.7), and (3.8), a diagonalization process
allows us to find an increasing subsequence {j(n)} of {j} such that, after denoting
εn := εj(n),n and vn := vj(n),n we have

εn → 0+, vn ⇀ v weakly in W 1,p(Ω; R3),
1
εn
∇3vn ⇀ c weakly in Lp(Ω; R3),

and (3.3) holds. �
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