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POSITIVE SOLUTIONS FOR ELLIPTIC PROBLEMS WITH
CRITICAL INDEFINITE NONLINEARITY IN BOUNDED

DOMAINS

JACQUES GIACOMONI, JYOTSHANA V. PRAJAPAT, MYTHILY RAMASWAMY

Abstract. In this paper, we study the semilinear elliptic problem with critical

nonlinearity and an indefinite weight function, namely

−∆u = λu + h(x)u(n+2)/(n−2)

in a smooth open bounded domain Ω ⊆ Rn, n > 4 with Dirichlet boundary

conditions and for λ ≥ 0. Under suitable assumptions on the weight function,
we obtain the positive solution branch, bifurcating from the first eigenvalue

λ1(Ω). For n = 2, we get similar results for −∆u = λu + h(x)φ(u)eu where φ

is bounded and superlinear near zero.

1. Introduction

In this paper, we study the following (critical exponent) semilinear elliptic prob-
lem in an open bounded domain Ω ⊆ Rn with smooth boundary

−∆u = λu+ h(x)u
n+2
n−2 in Ω

u > 0 in Ω; u = 0 on ∂Ω
(1.1)

for dimensions n > 4, λ a nonnegative parameter and h a C2 function which changes
sign. If n = 2, we are interested in the following corresponding critical problem

−∆u = λu+ h(x)φ(u)eu in Ω
u > 0 in Ω; u = 0 on ∂Ω.

(1.2)

Concerning h, we assume the following hypotheses:
(H1) h belongs to C2(Ω̄),
(H2) h could change sign: Denoting by Ω+ := {x ∈ Ω : h(x) > 0} and by

Ω− := {x ∈ Ω : h(x) < 0}, we have Ω+ 6= ∅ and ∂Ω ⊂ ({h > 0} ∪ {h < 0}).
(H3) Γ := Ω+ ∩ Ω− ⊂ Ω with ∇h(x) 6= 0 for all x ∈ Γ.
(H4) Ω0 := Ω\Ω+ ∪ Ω−, possibly empty, satisfies:

(1) Ω0 ⊂ Ω−,
(2) ∂Ω0 ∩ ∂Ω+ = ∅, and
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(3) λ1(Ω0) > λ1(Ω+), where λ1(·) is the first eigenvalue of −∆ in · with
Dirichlet boundary conditions.

Notice that either ∂Ω ⊂ {h > 0} or ∂Ω ⊂ {h < 0} since Γ ∩ ∂Ω is empty. We
assume near each point x̄ ∈ S1 = {x ∈ Ω+|∇h(x) = 0}, either one of the following
flatness conditions holds:
(H5a) h(x) = h(x̄)+

∑n
i=1 ai|xi− x̄i|β−1(x− x̄)i +R(x) with ∇R(x) = o(|x− x̄|β),

ai 6= 0 , for all i and n− 2 < β < n if n ≥ 5.
(H5b) cdist(x, S1)β−1 ≤ |∇h(x)| ≤ C dist(x, S1)β−1 for all x ∈ Ω+ with c, C > 0

and, c1|xi|β ≤ x · ∇h(x + x̄) for x ∈ Bσ0(x̄) with i ∈ (1, . . . , n), c1, σ0 > 0
and

n− 2 < β < n for n ≥ 6
n− 2 < β < n− 1 for n = 5.

As h is C2, using Taylor’s expansion,

x · ∇h(x+ x̄) = 〈2D2h(x̄), x〉+ o(|x|2).

As β > n− 2 ≥ 2, this condition is likely to hold at minimum points of h but not
at maximum points.

Concerning φ, we assume, as in [1], that

(H6) φ is bounded, C1(R,R+) and C1u
p′ ≤ φ(u) ≤ Cup in a neighborhood of 0,

with p′ ≥ p > 1 and C1, C > 0. Moreover, φ(u) > C0 > 0, for ‖u‖ large.
(H7) φ′ is bounded and such that φ+ φ′ ≥ 0.

Under the above assumptions, we have the following result.

Theorem 1.1. (1) Suppose that assumptions (H1)-(H4) and (H5a) or (H5b)
are satisfied. Then, there exists a continuum of positive solutions, C, to
(1.1) in R+ × C1

0 (Ω) bifurcating from λ1(Ω) and satisfying
(i) ΠRC = [0, λ∗] where λ1(Ω) ≤ λ∗ < λ1(Ω+).
(ii) If

∫
Ω
hφ1

Ω

2n
n−2 < 0, then λ1(Ω) < λ∗ and there exist at least two solu-

tions to (1.1) for λ ∈ (λ1(Ω), λ∗). Here φ1
Ω is the first eigenfunction

of Laplacian in Ω.
(2) Suppose that assumptions (H1)-(H4) and (H6)-(H7) are satisfied. Then,

there exists a continuum of solutions, C, to (1.2) in R+×C1
0 (Ω) bifurcating

from λ1(Ω) and satisfying
(i) ΠRC = [0, λ∗] where λ1(Ω) ≤ λ∗ < λ1(Ω+).
(ii) If φ(u) ∼ C2u

q when u → 0+ and if
∫
Ω
hφ1

Ω
q
< 0, then λ1(Ω) < λ∗

and there exist at least two solutions to (1.2) for λ ∈ (λ1(Ω), λ∗).
Furthermore, in both cases, there exists (0, u0) ∈ C such that u0 > 0.

We remark that for n = 2, we can even assert that the branch extends beyond
0, as done in [1, Theorem 1.3].

If we consider star shaped domains as in [9], then we can relax the flatness
condition as follows:
(H5c) cdist(x, S1)β−1 ≤ |∇h(x)| ≤ C dist(x, S1)β−1 for all x ∈ Ω+ with c, C > 0

and n− 2 < β < n for n > 4.

Theorem 1.2. Suppose that assumptions (H1)-(H5c) are satisfied and Ω is star
shaped. Then the same conclusions as in Theorem 1.1, (1), hold for n > 4.
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Notice that we get at least one positive solution for both problems for λ > 0,
near zero and at least 2 solutions for some range of λ. We prove theorems 1.1 and
1.2 using the bifurcation theory of Rabinowitz (see [17]). The crucial step here is
to prove the existence of uniform a priori bound in L∞(Ω) of solutions to (1.1) and
(1.2) independent of λ in a compact set. Note that such a priori estimates are not
obvious since the nonlinearity is critical and indefinite in sign in both equations
(1.1) and (1.2). This problem has been studied when Ω0 is empty and h < 0 near
the boundary, in [1] for dimension 2 and in [14] for dimension 5 and above, using
uniform bounds. Our aim here is to extend these results to the case of nonempty
Ω0 and h positive near the boundary and also to explore other possible flatness
conditions.

Ouyang [21] has studied the bifurcation for equation (1.1) without the uniform
bound and flatness assumptions. Here we are able to conclude that (0, u0) lies in
the branch for some u0 > 0 because of the bound.

Several results regarding a priori estimates are available concerning the case, h
positive, for the subcritical case (i.e. up with 1 < p < n+2

n−2 instead of u
n+2
n−2 ) using

different methods: blow up methods in [6] (for 1 < p < n+1
n−1 ), [15], moving plane

methods in [13], for example.
In the indefinite case, a priori bounds are more delicate. In [3], assuming (H1),

(H2), (H3) and Ω0 = ∅ and using a blow up method as in [15], the authors prove
the existence of a priori bound for 1 < p < n+2

n−1 , for more general elliptic operators.
The restriction of p is due to a Liouville theorem they prove. In [2], assuming the
behaviour of h near Ω+∩Ω− instead of the nondegenerate assumption (H3), they get
a priori bound for a class of problems close to (1.1). The proof is carried out using a
blow up method in Ω+ and the existence of a supersolution in Ω0. Note that some
restrictions on the exponent p remain in this work. In [18], restricting to variational
and finite Morse index solutions, they prove that uniform a priori bounds exist for
all p between 1 and n+2

n−2 . In [11], assuming (H1)-(H3), 1 < p < n+2
n−2 , Ω0 = ∅ and

λ = 0, the authors prove that solutions are uniformly bounded. In this work, they
divide Ω into three regions and establish a priori estimates in each region. For this
they combine the blow up method, Harnack inequality and moving plane method
(in a neighborhood of Γ as in [13]). Then, the question is: is it true for p = n+2

n−2?
In [9], assuming (H1)-(H3), n ≥ 3, λ = 0, Ω is starshaped and an assumption

similar to (H5), they answer positively. They use the same approach as in [11]. The
crucial step is the uniform estimates in Ω+

δ := {x ∈ Ω+ | dist(x,Γ) ≥ δ} based upon
on the blow up analysis in [19] for critical superlinear problems in Sn. This blow up
analysis and some Pohozaev identities are also used to estimate solutions near the
boundary in [9]. In [8], a similar result is established for the same equation with
similar hypotheses but in Sn. But, these estimates are proved only for λ = 0. Here
we show that the estimates are also true and independent of λ 6= 0 and positive
in a compact interval and get the existence of solutions and multiplicity results for
(1.1) via bifurcation theory, extending the earlier results of [14].

Concerning a priori estimates for solutions to (1.2), we use a similar method as
for (1.1). Mainly, the difference is that to get a priori bound in Ω+

δ , we use the
blow up analysis of [5] instead of the blow up analysis of [19]. Furthermore, here we
use the specificity of two-dimensional case to estimate solutions at boundary via a
Kelvin transform as in [13] (see also [11]). We would like to point out that these a
priori estimates are independent of λ in a compact set as done earlier in [1].



110 J. GIACOMONI, J. PRAJAPAT, M. RAMASWAMY EJDE/CONF/15

Unlike [14] and [1], here Ω0 may be nonempty and h may be either positive or
negative near the boundary of Ω. For both problems the uniform estimate in Ω0 is
obtained by constructing a supersolution and is only valid for λ < λ1(Ω0). When
h > 0 near the boundary, the assumptions on the weight functions are suitably
used to avoid the boundary blow up. Now, let us state the main results concerning
a priori estimates for solutions to (1.1) and (1.2):

Proposition 1.3. Let us assume n > 4, (H1)-(H5a) or (H5b) or for star shaped
domains, (H5c). Let Λ such that 0 ≤ Λ < λ1(Ω+). Then for any solution (λ, u) to
(1.1), such that 0 ≤ λ ≤ Λ, we have

‖u‖L∞(Ω) ≤ C(Λ, n, h,Ω).

Similarly for (1.2), we have the estimate:

Proposition 1.4. Let us assume n = 2, (H1)-(H4) and (H6)-(H7). Let Λ be such
that 0 ≤ Λ < λ1(Ω+). Then for any solution (λ, u) to (1.2), such that 0 ≤ λ ≤ Λ,
we have

‖u‖L∞(Ω) ≤ C(Λ, h,Ω).

Finally, let us mention that using the same ideas, we can also deal with (1.1)
and (1.2) in the case of Ω = Rn. It has been done in [1], [14] with Ω0 = ∅. In
these works, h(x) → −∞ when |x| → +∞. Then the problem becomes sublinear at
infinity. So contrary to what we do in the present paper, no careful analysis near
the boundary has to be done. But uniform decay at infinity has to be worked out
thanks to the behaviour of h at infinity. Now, to conclude this introduction, let us
present the outline of this paper:

In the second section, we give first a priori bound in

Ω−
δ := {x ∈ Ω− : dist(x,Γ ∪ Ω0) ≥ δ}.

The estimate in this region is performed by a Lq-estimate and hypoellipticity ar-
guments. The third section, deals with a neighborhood of Γ and Ω0. We use the
moving plane method which allows us to give a priori bound in a neighborhood of
Γ for both problems as in [14] and [1] (see also [4]). After that, by exhibiting a
supersolution, we get an a priori estimate in a neighborhood of Ω0. Here the fact
that λ remains uniformly below to λ1(Ω0) is crucial for getting the existence of the
supersolution. Section 4 is on a priori bound in

Ω+
δ,η := {x ∈ Ω+

δ : dist(x, ∂Ω) ≥ η}

for some (δ, η > 0). As in [14], we extend the blow up analysis of [19] for λ ≥ 0,
indicating the proofs with either of the flatness assumptions (H5a), (H5b) or (H5c).

Section 5 is concerned with ∂Ω. Concerning (1.1), the most difficult case is when
h is positive near the boundary. In this case, we use a blow up method as in [9] to
estimate solutions close to the boundary. If h is non positive, we use the maximum
principle. This finalizes the proof of Propositions 1.3 and 1.4.

In the final section, we prove the main results. We would like to point out that
this result holds also in the pure superlinear case (ie. h > 0 in Ω).

2. A priori bound in Ω−
δ

Here we obtain a priori bounds for the solution u of (1.1) and (1.2) in the region
Ω−

δ . Note that Ω−
δ contains a neighborhood of ∂Ω if h < 0 near ∂Ω. The following

Lp estimate is crucial, which in fact is true in both sets Ω− and Ω+.
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Proposition 2.1. Let x0 ∈ Ω±, ε > 0, Λ ∈ R+, and Bε(x0) ⊂⊂ Ω±. Assume that
λ ≤ Λ.

(i) For n = 2, if u is a solution of (1.2) then∫
B ε

2
(x0)

eu ≤ C(ε, h,Λ). (2.1)

(ii) For n ≥ 3, if u is a solution of (1.1), then there exists C = C(ε,Λ) such
that ∫

B ε
2
(x0)

u
n+2
n−2 dx ≤

( C

infBε
|h|

)n+2
4
. (2.2)

This estimate follows by multiplying by the first eigenfunction of Laplacian in a
ball and using integration by parts. The details are in [1] and [14] respectively.

We present the proof for 1.1 here. The proof for the other equation is similar.
For a bound for u in Ω−

δ , we need to consider 2 cases:
(i) Either h < 0 near ∂Ω, or
(ii) h > 0 near ∂Ω.

In case (i), let us define a δ neighborhood of ∂Ω

G := {x ∈ Ω−
δ : dist(x, ∂Ω) ≤ δ}.

For δ small enough, by (H3) and (H4), G ⊂ Ω−
δ . Let A := {x ∈ Ω−

δ : −∆u(x) < 0}.
We split now the domain into three sets

Ω−
δ = (Ω−

δ \G) ∪ (G \A) ∪ (G ∩A).

We will get the apriori estimate in the first set using the earlier integral estimate
and in the second one, a pointwise estimate and then in the third set via maximum
principle and the previous estimates.

For x ∈ Ω−
δ \G, there exists a ball Bδ/2(x) ⊂ Ω−

δ
2

and the integral estimate (2.2)
hold for u in Bδ/4(x). Then we use the following Lemma [16, Lemma 9.20].

Lemma 2.2. Let u ∈ W 2,n(Ω) with Lu ≥ f where L is a strictly elliptic second
order operator and f ∈ Ln(Ω). For all B = Bε(y) ⊂ Ω and q > 0, we have

sup
B ε

2
(y)

u ≤ C(n, q, ε)
(( ∫

B

(u+)q
) 1

q

+ ‖f‖Ln(B)

)
. (2.3)

We combine this estimate for f = 0, q = n+2
n−2 and L = ∆ + λ in the ball

B δ
2
(x) ⊂ Ω−

δ/2 (since x ∈ Ω−
δ ), together with the estimate (2.2) to conclude that

sup
B δ

8
(x)

u ≤ C(n, λ, δ)
{ 1

infBδ/2(x) |h|

}(n−2)/4

. (2.4)

Note that here we can take any λ < Λ. Thus we have if x ∈ Ω−
δ \G,

u(x) ≤ C(n,Λ, δ)
{ 1

infΩ−
δ/2

|h|

}(n−2)/4

. (2.5)

In the case x ∈ G \A,

0 ≤ −∆u(x) = λu(x) + h(x)u
n+2
n−2 (x),



112 J. GIACOMONI, J. PRAJAPAT, M. RAMASWAMY EJDE/CONF/15

and hence
−h(x)u

n+2
n−2 (x) ≤ λu(x).

Since u(x) > 0, we have the pointwise estimate

u(x) ≤
( λ

infΩ−δ |h|

)(n−2)/4

for all x ∈ G \A. (2.6)

Using the above estimates and recalling that u = 0 on ∂Ω, we have for points on
∂(G ∩A),

u(x) ≤M, M = max
{
C(n, λ, δ){ 1

infΩ−
δ/2

|h|
}(n−2)/4, (

λ

infΩ−δ |h|
)(n−2)/4

}
. (2.7)

Define c(x) := λ+ h(x)u(x)4/n−2 and consider the equation

∆v + c(x)v ≥ 0 in (G ∩A). (2.8)

Note that for x ∈ A, c(x) < 0 and that u−M is a solution of (2.8). Hence, by the
weak maximum principle ([16, Theorem 9.1] with f ≡ 0), we have

u(x)−M ≤ 0 in (G ∩A).

Combining all the cases, we have the local estimate in this case.
Now let us consider the case (ii), h > 0 near ∂Ω. Then, by (H3) since Γ ⊂ Ω,

for δ small, dist(Ω−
δ/2, ∂Ω) > δ. Therefore a straightforward application of Lemma

2.2 yields (2.4).
Thus we have the following local estimate in Ω−

δ .

Proposition 2.3. Let 0 ≤ λ ≤ λ1(Ω+). Assume (H1)–(H3).
(i) For u, a solution of (1.2) and for 1 < p′ <∞,

sup
Ω−δ

u(x) ≤ C(λ1(Ω+), δ)
( 1

infΩ−
δ/2

|h|

)1/(p′−1)

. (2.9)

(ii) For u, a solution of (1.1)

sup
Ω−δ

u(x) ≤ C(n, λ1(Ω+), δ)
( 1

infΩ−
δ/2

|h|

)(n−2)/4

. (2.10)

Note that since infΩ−
δ/2

|h| > 0, from Proposition 2.3, we get uniform a priori

bounds in Ω−
δ .

3. A priori bound in a neighborhood of Γ and Ω0

Let us start by giving a priori bound in a neighborhood of Ω0. Let Ω0
δ be a

smooth δ-neighborhood of Ω0. By (H4)-1 and (H4)-2 and the results in the second
section (bounds in Ω−

δ ), solutions to (1.1) and (1.2) are uniformly bounded in ∂Ω0
δ

by a constant M . Now, Let ψ the solution to

−∆ψ = Λψ in Ω0
δ

ψ > 0 in Ω0
δ ; ψ = M on ∂Ω0

δ

(3.1)

which exists if Λ < λ1(Ω0) and δ small. By maximum principle and for λ ≤ Λ, any
solution (λ, u) to (1.1) and (1.2) satisfies u ≤ ψ in Ω0

δ .
Now, the estimates in a δ-neighborhood of Γ, Γδ, are similar to step 2 in [4] (for

solutions to (1.1) just replace p by n+2
n−2 ). Note that for solutions to (1.2), we use
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the assumption (H7) to carry out the moving plane method. Precisely, to show that
(taking the same notations as in step 2 in [4]) ∂f

∂x1
≤ 0 we use that φ(u)+φ′(u) ≥ 0

and bounded.

4. A Priori Bound in Ω+
δ,η

We start with (1.1). This part is done in [14] and used the blow up analysis in [19].
Precisely, let a sequence (λi, ui) be solutions of (1.1), such that 0 ≤ λi ≤ λ1(Ω+)
and a sequence of local maxima xi ∈ Ω+

δ of ui, such that ui(xi) → ∞ as i → ∞.
By the a priori bounds on Ω−

δ , Γ and Ω0) obtained in the earlier 2 sections, and
also in view of the bound to be obtained in the next section in a neighbourhood
of ∂Ω, {ui} remains uniformly bounded on the boundary of Ω+

δ,η. Thus xi has to
converge to some point in the interior of Ω+

δ,η. Note that the a priori bound near the
boundary is independent of the results of this section. We postpone that because
we need to use some results from this section, in particular, Proposition 4.1.

In the first subsection we recall the standard blow up argument to analyse ui,
in a small neighbourhood of xi and various local estimates required later on. In
the second subsection, we use these estimates to prove that a blow up point of ui

is necessarily a critical point of h. This motivates the flatness assumptions at the
critical points of h. Using this assumption, we analyse the nature of the blow up
points and show that in fact ui does not blow up, i.e the sequence {ui} is uniformly
bounded.

4.1. Blow up points of {ui}. We start by recalling several definitions and propo-
sitions which are extensions of some results in [19] to the case of λ > 0. As the
details are in [14], we give here only an outline, giving details only when new ideas
are involved. The following is a standard result in the blow up analysis (see for
example [22]).

Proposition 4.1. Suppose that h ∈ C1(Ω+
δ ) and there exist A1 and A2 such that

in Ω+
δ ,

h(x) ≥ 1
A1

, ‖∇h(x)‖ ≤ A2.

Then for every 0 < ε < 1, R > 1, there exist positive constants C0 and C1 depending
on A1, A2, ε, R, λ and n such that if v is a positive solution of

−∆v(x) = λv(x) + h(x)v
n+2
n−2 , v > 0 (4.1)

with maxB v > C0, then there exists a finite number k = k(v) and a set S(v, C0) =
{x1, . . . , xk} ⊂ Ω+

δ such that

(i) xj are the local maxima of v and for µj = v(xj)−
2

n−2 ,
{
BRµj (xj)

}
1≤j≤k

are
disjoint balls and

‖v(xj)−1v(xj + µjx)− δj(x)‖C2(B2R(0)) < ε,

where

δj(x) = (1 + hj |x|2)
2−n

2 with hj = (n(n− 2))−1h(xj)

is the unique solution of

∆δj + hjδ
n+2
n−2
j = 0 in Rn,

δj > 0 in Rn, δj(0) = 1,
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(ii) v(x) ≤ C1(dist(x, S))−( n−2
2 ), x ∈ Ω+

δ .

The above Proposition, in particular (ii), motivates the definition of an isolated
blow up point.

Definition 4.2. A point x0 ∈ Ω′ is called an isolated blow up point of {ui},
solutions of (1.1), if there exists 0 < r̄ < dist(x0, ∂Ω′) and C > 0 and a sequence
{xi} tending to x0, such that xi is a local maximum of {ui}, ui(xi) →∞ and

ui(x) ≤ C|x− xi|−( n−2
2 ) ∀x ∈ Br̄(x0)\{xi}.

Since we will be interested in the blow up points staying away from each other,
we also need to introduce the definition of a simple isolated blow up point.

Definition 4.3. A point x0 is an isolated simple blow up point of {ui}, solutions
of (1.1), if it is an isolated blow up point such that for some ρ > 0 (independent of
i), ṽi has precisely one critical point in (0, ρ) ∀ large i, where

ṽi(r) = r
n−2

2 vi(r), vi(r) =
1

|∂Br|

∫
∂Br(xi)

ui, r > 0.

The following is a corollary of Proposition 4.1.

Corollary 4.4. Let x0 be an isolated blow up point of {ui}. Then one can choose
Ri →∞ first and then εi → 0+ depending on Ri and a subsequence {ui} so that

(i) ri = Ri

(ui(xi))
2

n−2
→ 0 and xi is the only critical point of ui(x) in |x−xi| < ri.

(ii) ṽi(r) has a unique critical point in 0 < r < ri.

Another important result, we will use in the following, is the Harnack inequality

Lemma 4.5 (A Harnack inequality). Let h satisfy
1
A1

≤ h(x) ≤ A1 ∀x ∈ Ω+
δ (4.2)

and {ui} satisfy (1.1) having 0 as an isolated blow up point. Then for any 0 < r <
r̄
3 , with r̄ as in Definition 4.2, we have the Harnack inequality

max
B2r\Br/2

ui(y) ≤ C min
B2r\Br/2

ui(y) (4.3)

with a uniform C = C(n, λ, ‖h‖L∞(Ω+
δ )).

The proof of this lemma follows on the same lines as in [19], [7].
Now, we look for lower and upper bounds for ui, in a fixed neighbourhood of the

blow up point. The arguments for the lower bound are as in [19] (section 2 there).
For the upper bound, we need to exploit specifically the extra linear term in our
case, as in [14].

Proposition 4.6. Assume B2(0) ⊂ Ω+
δ and

A1 ≥ h(x) ≥ 1
A1

, ‖∇h(x)‖ ≤ A2 ∀x ∈ B2 (4.4)

for some positive constants A1, A2. Let ui be solutions of (1.1) and xi → 0 be an
isolated blow up point with

ui(x) ≤
A3

|x− xi|
n−2

2

for all x ∈ B2\{xi}. (4.5)
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Then there exists a positive constant C = C(n, λ0, A1, A2, A3), such that up to a
subsequence,

ui(x) ≥ Cui(xi)(1 + hiui(xi)
4

n−2 |x− xi|2)(2−n)/2 for all |x− xi| ≤ 1, (4.6)

where hi is as defined in Proposition 4.1. In particular, for any e ∈ Rn, |e| = 1, we
have

ui(xi + e) ≥ C−1ui(xi)−1. (4.7)

Proposition 4.7 (Upper bound). Let h and {ui} satisfy the conditions in Propo-
sition 4.6. Also, assume that xi → 0 is an isolated simple blow up point as defined
in Definition 4.3. Then there exists a positive constant C = C(n, λ0, A1, A2, A3, ρ)
such that

ui(x) ≤ Cui(xi)−1|x− xi|2−n for all 0 < |x− xi| ≤ 1. (4.8)

In particular, ui(xi + e)ui(xi) = O(1), where e is a unit vector in Rn.

The following lemma is crucial in our analysis.

Lemma 4.8. Under the assumptions of Proposition 4.7, let {(λi, ui)} be a sequence
of solutions of (1.1) and xi → 0 be an isolated simple blow up point. Then upto a
subsequence, we have

(i) if λi goes to zero, then

ui(x)ui(xi) → w(x) =
a

|x|n−2
+ g(x)

where a = h
−(n−2)/2
i and g is some harmonic function.

(ii) if λi goes to λ̃ > 0, then

ui(x)ui(xi) → w(x) =
αCn

|x|n−2
+ E(x) + ϕ(x)

where G(x) = αCn|x|2−n + E(x) is the unique solution in the sense of
distribution for the equation

−∆G = λG+ αδ0 in Bσ1(0)

G = 0 on ∂Bσ1(0)

and ϕ is the unique C2 solution of the boundary value problem

−∆ϕ = λϕ in Bσ1(0)

ϕ = w on ∂Bσ1(0).

Here σ1 is sufficiently small such that λ < λ1(Bσ1(0)).

The proofs are in [14]. There the following lemma is used to handle the linear
term. This imposes a restriction n > 4. Now, we fix e ∈ Rn such that |e| = 1. As
in [7] (see Proposition 3.5), we have the following result.

Lemma 4.9. Let us suppose {(λi, ui)} is a sequence of solutions of (1.1) and x̄ = 0
is an isolated and simple blow up point. Suppose also that n > 4. Then, there exists
a positive constant C = C(n, h, ρ) such that

λiui(xi)
2(n−4)

n−2 ≤ Cui(xi)2ui(xi + e)2 + o(1) . (4.9)
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4.1.1. Nature of Blow up points for solutions to (1.1). We need the following Iden-
tity.

Lemma 4.10 (Pohozaev Identity). Let v be a C2 solution of (1.1). Then for any
Bσ ⊂ Ω+

δ ,∫
∂Bσ

B(σ, x, v,∇v) =
{
λ

∫
Bσ

v2 − λ

2

∫
∂Bσ

σv2
}

+
n− 2
2n

∫
Bσ

(x · ∇h)v
2n

n−2

− σ(n− 2)
2n

∫
∂Bσ

h(x)v
2n

n−2 ,

where

B(σ, x, v,∇v) := − (n− 2)
2

v
∂v

∂ν
− σ

2
|∇v|2 + σ

∣∣∂v
∂ν

∣∣2
and ν denotes the unit outer normal vector field on ∂Bσ.

For a proof see for example [19], [14]. The earlier estimates and Pohozaev identity
can be used to derive various conclusions about the possible blow up points of {ui}.
In particular, the following result is often used.

Lemma 4.11. For u(x) = a
|x|n−2 + b(x) where a > 0 and b(x) is a nonnegative

differentiable function, with b(0) > 0, we have

B(σ, x, u,∇u) < 0,

on ∂Bσ for all σ small.

The proof follows from direct computations. After suitable rescaling of the solu-
tions, using the above identities, one can prove that in fact that the blow up points
are simple, isolated and they have to be the critical points of h, as in [19, 14].

Proposition 4.12. Suppose that (H1)-(H5) are satisfied. Then any isolated blow
up point is simple and is a critical point of h.

Proposition 4.13. Suppose that (H1)-(H5) are satisfied.The blow up points of
{ui}i are isolated: More precisely, for ε > 0 and R > 1, there exists some positive
constant r∗ = r∗(n, ε,R,A1, c1, c2, d, modulus of continuity of ∇h) such that for
any solution ui with maxΩ′ ui > C∗, we have

|ql − qj | ≥ r∗ ∀1 ≤ l 6= j ≤ k,

where ql = ql(ui), k = k(ui) are as in Proposition 4.1.

4.1.2. A priori estimates for solutions of (1.1).

Proposition 4.14. Assume (H1)-(H4). Further either (H5a) or (H5b) holds or
(H5c) holds for Ω star shaped. Let {(λi, ui)}i be a sequence of solutions of (1.1)
with 0 ≤ λi → λ̃. Then, {ui}i is uniformly bounded in L∞(Ω+

δ,η).

Proof. Let us first consider the case when (H5a) holds.
(i) If λ̃ > 0, the analysis follows from Proposition 5.5 (iii) of [14] . Using Pohozaev
identity in a ball around a blow up point, a contradiction is derived there. So λ̃
cannot be positive.
(ii) If λ̃ = 0 and n ≥ 5, we get a contradiction by using Pohozaev identity as in the
Appendix in [14]. Combining both, we conclude that the solutions are uniformly
bounded, if (H5a) holds.
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Below we recall the proof for λ̃ = 0 and n > 4 when (H5a) holds because some
estimates will be needed for the other cases. We will follow the arguments in [19,
Theorem 4.4], adapted here for the bounded domain Ω+

δ,η. In the proof, we need

the following Pohozaev identity: If u is a C2-solution to −∆u = λu+ h(x)u
n+2
n−2 in

Bσ for some σ > 0, then∫
Bσ

(∇h)u
2n

n−2 =
2n
n− 2

∫
∂Bσ

(
∂u

∂ν
∇u−1

2
|∇u|2ν)+

∫
∂Bσ

λ

2
u2ν+

∫
∂Bσ

hu
2n

n−2 ν (4.10)

where ν is the unit outward normal. Let {yi} ∈ Ω+
δ,η. Without loss of generality,

we can assume that yi → 0. Then, for a small ball Bσ around yi, by the above
Pohozaev identity, we have∫

Bσ

∇h(x)(ui(x))
2n

n−2 = I1 + I2 + I3

where

I1 =
2n
n− 2

∫
∂Bσ

(
∂ui

∂ν
∇ui −

1
2
|∇ui|2ν),

I2 =
λi

2

∫
∂Bσ

u2
i ν, I3 =

∫
∂Bσ

h(x)(ui(x))
2n

n−2 ν.

We will estimate Ik’s as follows: First, we observe that

|I1| ≤ C

∫
∂Bσ

|∇ui|2.

Then, we need to evaluate
∫

∂Bσ
|∇ui|2 for a suitable value of σ. For this, let

A := B 1
2
\Bσ1 such that σ1 <

1
2 . Let ηi a cut off function such that

ηi(x) =

{
1 if x ∈ Ai = {x, σ1 + εi ≤ |x| ≤ 1

2 − εi}
1− |x|

εi
if x ∈ A\Ai

where εi := ui(yi)−1. Now, multiplying the equation (1.1) by ηiui, we get∫
A

(∇ui · ∇(ηiui)) = λi

∫
A

u2
i ηi +

∫
A

hu
2n

n−2
i ηi.

It follows that∫
Ai

|∇ui|2 ≤
∫

A

|∇ui|2ηi

≤ λi

∫
A

u2
i +

∫
A

hu
2n

n−2
i +

1
2
|
∫

A\Ai

∇(u2
i ) · ∇ηi|,

(4.11)

∫
A

hu
2n

n−2
i ≤ C

(ui(yi))
2n

n−2
, (4.12)

|
∫

A\Ai

∇(u2
i ) · ∇ηi| ≤ C

( ∫
A\Ai

|∇(u2
i )|2

)1/2

×
( ∫

A\Ai

|∇ηi|2
)1/2

≤ C

(ui(yi))2
× 1

(ui(yi))n−1
=

C

(ui(yi))n+1
.

(4.13)
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Hence, from (4.11), (4.12) and (4.13), we get∫
Ai

|∇ui|2 ≤


C

(ui(yi))
2n

n−2
for n ≥ 6,

C

(ui(yi))
8
3

for n = 5.

Now, taking σi ∈ [σ1 + ε1,
1
2 − ε1] such that∫

∂Bσi

|∇ui|2 = min
σ∈[σ1+ε1, 1

2−ε1]

∫
∂Bσ

|∇ui|2,

we have ∫
∂Bσi

|∇ui|2 ≤


C

(ui(yi))
2n

n−2
× 1

( 1
2−σ1−2εi)

for n ≥ 6,

C

(ui(yi))
8
3
× 1

( 1
2−σ1−2εi)

for n = 5

Therefore,

|I1|, |I3| ≤


C

(ui(yi))
2n

n−2
for n ≥ 6,

C

(ui(yi))
8
3

for n = 5
(4.14)

Also we have for all n > 4,

|I3| ≤
C

(ui(yi))2n/(n−2)
.

Then ∫
Bσ

∇h(x)(ui(x))
2n

n−2 ≤


C

ui(yi)
2n

n−2
for n ≥ 6,

C

(ui(yi))
8
3

for n = 5

Now, we follow the arguments in [19, Theorem 4.4 and Corollary 4.1] to prove

Step 1: |yi| = O( 1

ui(yi)
2

n−2
) so that yiui(yi)

2
n−2 = ξi → ξ,

Step 2: Multiplying (4.10) by ui(yi)
2(β−1)

n−2 ), and using estimates on Ii and rescaling
arguments, we get

∫
Rn ∇h(z + ξ) dz

(1+k2|z|2)n = 0 which contradicts (H5a).

Let us consider the case when (H5b) holds. In this case, we use Lemma 4.10,∫
∂Bσ

B(σ, x, v,∇ui) =
{
λi

∫
Bσ

u2
i −

λi

2

∫
∂Bσ

σu2
i

}
+
n− 2
2n

∫
Bσ

(x · ∇h)u
2n

n−2
i

− σ(n− 2)
2n

∫
∂Bσ

h(x)u
2n

n−2
i ,

from which together with (H5b), σ < σ0 and λi ≥ 0 it follows that∫
Bσ

(x · ∇h)u
2n

n−2
i ≤ − 2n

n− 2

∫
∂Bσ

B(σ, x, v,∇ui) + σ

∫
∂Bσ

h(x)u
2n

n−2
i

+
λi

2

∫
∂Bσ

σu2
i .

(4.15)

Then, from (4.12) and (4.15) we get∫
Bσ

|x|βu
2n

n−2
i ≤

∫
Bσ

(x · ∇h)u
2n

n−2
i

≤ K1

∫
∂Bσ

ui|∇ui|+K2

∫
∂Bσ

|∇ui|2 +O(ui(yi)−
2n

n−2 ).
(4.16)
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The two boundary integrals can be estimated like I1 in (4.14). Hence, we get for
n > 5, ∫

Bri

|x|βu
2n

n−2
i ≤ O(ui(yi)−

2n−2
n−2 ). (4.17)

Now using a change of variable and using Proposition (4.1), (i), we see that the
left hand side integral is positive but the right hand side goes to 0, since β < n, a
contradiction. Similarly the case n = 5 can be handled.

Now let (H5c) hold for a star shaped domain Ω. The results of the previous sec-
tions imply that the blow up points in Ω+ are finite in number, say {p1, p2, . . . , pm}.
Using again the analysis from [14, Proposition 5.5 (iii)], λ̃ cannot be positive. Let
λ̃ = 0. Now assuming (H5c) and Ω is star shaped, we show that there cannot be
any blow up points, using the ideas in [9] (see section 3 there).

We apply Pohozaev identity to

Ωε = Ω \ ∪m
i=1Bε(pi)

for a fixed ε, to obtain{
λi

∫
Ωε

u2
i −

λi

2

∫
∂Ωε

(x · ν)u2
i

}
+
n− 2
2n

∫
Ωε

(x · ∇h)u
2n

n−2
i − (n− 2)

2n

∫
∂Ωε

h(x)u
2n

n−2
i (x · ν)

=
∫

∂Ωε

(
n− 2

2
∂ui

∂ν
ui −

1
2
|∇u|2(x · ν) +

∂ui

∂ν
(x · ∇ui))

Let yi tend to p1. Now multiply both sides by ui(yi)2 and take the limit as i→∞.
From Lemma 4.8, since λi → 0, we have

ui(x)ui(yi) → w(x) =
a1

|x− p1|n−2
+ · · ·+ am

|x− pm|n−2
+ g(x)

with some harmonic g(x). Since w is smooth outside each Bε(pi), we have

u2
i (yi)

∫
Ωε

(x · ∇h)u
2n

n−2
i =

1

u
2n

n−2−2

i

∫
Ωε

(x · ∇h)(ui(yi)ui(x))
2n

n−2 → 0.

Also using λi → 0,

λi

∫
Ωε

(ui(yi)ui(x))2 → 0.

Thus in the limit∫
∂Ωε

1
2
|∇w|2(x · ν) =

m∑
i=

∫
∂Bσ(pi)

(1
2
|∇w|2(x · ν)− n− 2

2
∂w

∂ν
w − ∂w

∂ν
(x · ∇w)

)
Since Ω is star shaped, (x · ν) > 0 on ∂Ω. Furthermore |∇w|2 > 0 on ∂Ω . Hence
at least for some i,

I =
∫

∂Bσ(pi)

(1
2
|∇w|2(x · ν)− n− 2

2
∂w

∂ν
w − ∂w

∂ν
(x · ∇w)

)
> 0.

Now we apply Pohozaev identity on Bσ(pi) and multiply by ui(yi)2 and pass to the
limit to get

I = lim(u2
i (yi)

∫
Bσ

(x · ∇h)u
2n

n−2
i )
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The same calculations as in the proof of [14, Proposition 5.5 (iii)] show that

u2
i

∫
Bσ

(x · ∇h)u
2n

n−2
i ≤ u2

i

∫
Bσ

|x|βu
2n

n−2
i

=
1

u
2β

n−2−2

i

( ∫ Ri

0

rβ+n−1

(1 + (hi)2r2)2n
dr + o(1)

)
→ 0

if n− 2 < β. Thus for λi approaching to 0, the solutions cannot blow up and hence
are uniformly bounded. These prove the proposition 1.3.

4.2. A priori bound for solutions to (1.2) in Ω+
δ,η. In the following, we assume

(H1)-(H4), (H6), n = 2, 0 ≤ λ ≤ Λ. We suppose also that the solutions to (1.2) are
uniformly bounded on ∂Ω+

δ,η. These bounds are to be proved in the next section
independent of the bounds obtained in this section. We recall the following result
from [5].

Theorem 4.15 (Blow-up analysis (Brezis-Merle)). Assume un a sequence of solu-
tions to

−∆un = Vn(x)eun in Ω (4.18)

where Ω is a bounded domain and Vn, un satisfy

(i) Vn ≥ 0,
(ii) ‖Vn‖Lp(Ω) ≤ C1, ‖eun‖Lp′ (Ω) ≤ C2 with p (1 < p ≤ ∞) and p′ conjugate

and C1, C2 positive.

Then, there exists a subsequence (unk
) satisfying the following alternative:

(i) Either unk
is bounded in L∞loc(Ω),

(ii) Or unk
→ −∞ uniformly in any compact subset of Ω.

(iii) Or the blow up set S (relative to unk
) is finite non empty and unk

→ −∞
in Ω/S. In addition, Vnk

eunk converges in the sense of measures in Ω to∑
αiδ(ai) with αi ≥ 4π

p′ , ∀ i and S = ∪i{ai}.

Indeed, arguing by contradiction: Let (λn, un) a sequence of solutions to (1.2)
such that |λn| ≤ Λ and ‖un‖L∞(Ω+

δ,η) → +∞. let Vn := (λnune
−un + φ(un)) which

is clearly bounded in L∞(Ω+
δ,η) independently of n. Since λn ≥ 0 and using theorem

4.15 and Lemma 2.1, we get the contradiction.

5. A priori bound in a neighborhood of ∂Ω

By assumptions (H2), (H3) and (H4), either h < 0 or h > 0 near the boundary
of Ω. We distinguish these two cases in the proof.

Consider first that h < 0 in a neighborhood of ∂Ω. Since a δ neighbourhood of
the boundary, Nδ(∂Ω) ⊂ Ω−

δ for δ > 0 small enough and since solutions to (1.1)
and (1.2) are uniformly bounded in Ω−

δ by the results of section 2, solutions to (1.1)
and (1.2) are uniformly bounded in a neighborhood of ∂Ω.

Now, let us see the more delicate case: h > 0 near ∂Ω. We apply different
arguments for (1.1) and (1.2). Concerning (1.1), we use a blow up analysis as in
[9]. For (1.2), we use the moving plane method as in [13].
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5.1. Blow up analysis near the boundary for (1.1). We will follow the main
steps in [9] to analyse the behaviour of a possible blowing up sequence at boundary
∂Ω. Let {λi, ui} a sequence of solutions to (1.1). If {ui} is not bounded, then from
Proposition 4.1, we can assert the existence of the sets

Si := {x : x is a local maximum of ui}

and for every C, define S̃i(C), a subset of Si, consisting of points satisfying: ui(x) ≥
C and for any two points p, q ∈ S̃i(C),

ui(p)d(p, q)
n−2

2 ≥ C.

Furthermore, we have
ui(x)d(x, S̃i(C))

n−2
2 ≤ K(C).

for a constant K(C) depending on C. We will show that for C large enough,

Nη(∂Ω) ∩ S̃i(C) = ∅, (5.1)

where Nη(∂Ω) is a η-neighborhood of ∂Ω. This will complete the proof in case of
(1.1). The proof is carried out as follows:
Step 1 We show that S̃i(C) is discrete.
Step 2 Nη(∂Ω) ∩ S̃i(C) = ∅ for η > 0 small enough and C large enough.

Step 1: Let us define for a fixed constant C, pi, qi ∈ S̃i(C) such that (thanks to
Proposition 4.1)

σi := d(pi, qi) = inf
p,q∈S̃i(C)

d(p, q)

di := d(pi, ∂Ω) ≤ d(qi, ∂Ω)

mi := u(pi)−
2

n−2 .

Arguing by contradiction, we assume that σi ,mi → 0 and pi tend to p0, a point on
the boundary, when i→ +∞. As in [9], we distinguish three main cases:

(1) mi = o(di) and σi = O(di),
(2) mi = o(di) and di = o(σi),
(3) di = O(mi).

In case 1, we use the rescaling function

vi(x) := σ
n−2

2
i ui(σix+ pi).

By definition of σi, vi has only isolated blow-up points. Moreover, since σi = o(di),
we can argue similarly as in subsection 3.1 (see in particular Proposition 4.12) to
get that {vi} is bounded. For this, note that if the sequence {vi} is not bounded,
then there exists at least two blow up points with finite distance between them.

In case 2, we use the rescaling function

vi(x) := d
n−2

2
i ui(dix+ pi).

Since di = o(σi) and mi = o(di), we are in the situation of one isolated and simple
blow up point in a half space (because Di = Ω−pi

di
→ H := {x, xn ≥ −1} up to

some standard geometric transformations). So we cannot use directly the blow up
analysis from Section 3.1. Since the proof is similar to section 2.2 in [9], we just
sketch the proof: From

−∆vi = λid
2
i vi + h̃v

n+2
n−2
i
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where h̃(x) = h(dix+ pi), we prove that

vi(x)vi(0) → w(x) := a
( 1
|x|n−2

− 1
|x+ e|n−2

+
xn + 1
2n−1

)
(5.2)

with a = lim
[n(n−2)

h(pi)

]
and e = (0, . . . , 2).

The contradiction is based on Lemma 4.10 (Pohozaev identity) in Di∩BR where
R is large. Indeed, multiplying this pohozaev identity by vi(0)2, we have

vi(0)2
∫

∂(BR∩Di)

B(R, x, vi,∇vi)

= vi(0)2
{
λid

2
i

∫
BR∩Di

|vi|2 −
λi

2
d2

i

∫
∂(BR∩Di)

x.νv2
i

}
+ vi(0)2di

n− 2
2n

∫
BR∩Di

(x · ∇h)v
2n

n−2

− vi(0)2
n− 2
2n

∫
∂(BR∩Di)

x.νh(dix+ pi)v
2n

n−2
i ,

where ν is the unit outward normal. Now, when i→ +∞, we have

vi(0)2
∫

∂(BR∩Di)

B(R, x, vi,∇vi) → IR =
∫

∂(BR∩H)

B(R, x,w,∇w), (5.3)

Moreover, IR tends to −∞ when R→ +∞ (see [9] p.76). Furthermore,

vi(0)2
λi

2
d2

i

∫
∂(BR∩Di)

v2
i x.ν → 0 (5.4)

which follows from (5.2) for any R fixed. Now we claim that

vi(0)2di
n− 2
2n

∫
BR∩Di

(x · ∇h)v
2n

n−2 → 0. (5.5)

We need to consider 2 cases: ∇h(p0) 6= 0 or ∇h(p0) = 0. Suppose that pi → p0

satisfying ∇h(p0) 6= 0. First,

di

∫
B 1

2

∇h(dix+ pi)v
2n

n−2
i

=
2n
n− 2

∫
∂B 1

2

(
∂vi

∂ν
∇vi −

1
2
|∇vi|2)ν +

2n
n− 2

∫
∂B 1

2

λi

2
v2

i ν +
∫

∂B 1
2

hv
2n

n−2
i ν.

(5.6)

Multiplying both sides of (5.6) by vi(0)2 and using (4.9) to estimate λi terms, we
get

divi(0)2 ≤ C.

from which (5.5) follows. If ∇h(p0) = 0, we argue as in [9] (see p. 75).(5.5) now
follows. From (5.3), (5.4), (5.5) and λi ≥ 0 we get the contradiction in case 2.

Finally, in case 3, we define

vi(x) := m
n−2

2
i ui(mix+ pi).

Using Proposition 4.1, we see that {vi} is bounded in Br(0) with r small enough.
Then, using results from subsection 3.1 we can show that
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(i) either {vi} is weakly convergent to v0 satisfying

−∆v0 = h(p0)v
n+2
n−2
0

v0(0) = 1 v0
∣∣
∂H

≡ 0,
(5.7)

where H := {x : xn ≥ −b} for some b > 0 (since di = O(mi)),
(ii) or there exists z̃i ∈ Di such that d(z̃i, ∂Di) → 0 and vi(z̃i) → +∞ when

i→ +∞.
In the first case, we get the contradiction since there is no solution to (5.7). In the
second case, let zi the preimage of z̃i and ri = d(zi, ∂Ω). Using the definition of σi,
wi(x) := ui(rix + pi) has only one possible blow up point in a half space. In this
case, we argue as in case 2 to get the contradiction. If {wi} is bounded, we use
again (5.7) to get the contradiction. Thus, we have proved that S̃i is discrete in a
neighborhood of ∂Ω for C large.
Step 2: To show that S̃i ∩ Nη(∂Ω) = ∅, we have just to repeat the arguments in
case 2 and case 3. This completes the proof of a priori bound in a neighborhood of
∂Ω for (1.1).

5.2. A priori bound in a neighborhood of ∂Ω for (1.2). Here we deal with
(1.2). We get the a priori bound using the moving plane method which implies that
solutions to (1.2) are nonincreasing near the boundary. Precisely, we proceed as in
[13]. Let (λ, u) be a solution to (1.2). We prove

(1) First an integral estimate: ∫
Ω

euφ1 ≤ C (5.8)

where φ1 is the first eigenfunction of−∆ with Dirichlet boundary conditions
satisfying ‖φ1‖∞ = 1.

(2) For any x0 in ∂Ω,

u ≤ C in Bδ(x0) ∩ Ω (5.9)

where C and δ do not depend on x0.
Proof of (5.8): Multiplying (1.2) by φ1 and integrating by parts, we get

λ1

∫
Ω

uφ1 = λ

∫
Ω

uφ1 +
∫

Ω

h(x)φ(u)euφ1. (5.10)

Using that {x : h(x) ≥ δ} = Ω+
δ ⊃ Nε(∂Ω), where Nε(∂Ω) is a ε-neighborhood of

∂Ω, and that
u(x) ≤ C in Ω\(Nε(∂Ω)) (5.11)

with C not depending on u, we have

λ

∫
Ω

uφ1 +
∫

Ω

h(x)φ(u)euφ1 ≥ (λ1(Ω) + a)
∫

Ω

uφ1 − C0 (5.12)

where C0 and a > 0 do not depend on u. From (5.10) and (5.12), we get
∫
Ω
uφ1 ≤ C

and using in addition (5.11), we get (5.8).
Proof of (5.9): This is done by moving plane method as in section 3 for points in
Γδ. We give the details here as some arguments are different. To apply moving
plane method in a neighbourhood of x0, we need that ∂Ω ∩Bδ(x0) is convex. If it
is not convex, we make a kelvin transform. Precisely, without generality, we can
assume x0 = 0 and the unit outward normal belongs to the x1-axis. Then, taking
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y0 in the x1-axis such that Bε0(y0) ∩ Ω = ∅ and ∂Bε0(y0) tangent in x0 to ∂Ω, we
define the inversion I(y0) defining in R2\{y0} as

I(y0) : x→ y = y0 +
|y0|2

|x− y0|2
(x− y0)

and

v(x) = u(y0 + |y0|2
(x− y0)
|x− y0|2

) for x in Ω∗ = I(y0)−1(Ω) ⊂ Bε0(y0)

which satisfies

−∆v =
|y0|4

|x− y0|4
(λv + h(y0 + |y0|2

(x− y0)
|x− y0|2

)φ(v)ev).

Now, we define

f(x, v) =
|y0|4

|x− y0|4
(λv + h(y0 + |y0|2

(x− y0)
|x− y0|2

)φ(v)ev).

Therefore, since v = 0 on I(y0)−1(∂Ω) which is strictly convex near x0, the moving
plane method can be carried out if

∂f(x, v)
∂ν

≤ 0 (5.13)

Let
Σε = {x ∈ Ω∗ | dist(x, ∂Ω∗) ≤ ε}.

Then, we prove (5.13) in Σε ∩Bε1(x0) as follows:

∂f(x, v)
∂ν

= |y0|4(λv + hφ(v)ev)∂ν
1

|x− y0|4

+
|y0|4

|x− y0|4
∂νh(y0 + |y0|2

(x− y0)
|x− y0|2

)φ(v)ev

≤ − C1

|x− y0|5
|y0|4(hφ(v)ev) +

C2‖∇h‖∞
|x− y0|6

|y0|6φ(v)ev

=
|y0|4

|x− y0|5
(−C1h+ C2‖∇h‖∞

|y0|2

|x− y0|
)φ(v)ev

≤ |y0|4

|x− y0|5
(−C1δ + C(|I(y0)x− y0|)φ(v)ev

≤ |y0|4

|x− y0|5
(−C1δ + C(|y0|+ ε+ ε1))φ(v)ev ≤ 0

(5.14)

since h ≥ δ > 0, C1 > 0 and for |y0|, ε1, ε small enough. Now, we proceed as in
[13] (see also [11]): the unit outward directions in x ∈ Bε1(x0) ∩ ∂Ω∗ forms a cone
centered at (1, 0) with a positive angle θ. Let

I = {ν ∈ R2 : ν.(1, 0) ≥ |ν| cos θ, |ν| ≤ 1
2
ε1}

be a piece of cone and Ix = {x− ν | ν ∈ I}. Then by above arguments, we have

v(y) ≥ v(x) for x ∈ B ε1
2

(x0) ∩ Ω∗, y ∈ Ix ∩ Ω∗.

Using (5.8), we get ∫
Ω∗
f(x, v) dist(x, ∂Ω∗)dx ≤ C.
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Therefore, for x ∈ B ε1
2

(x0) ∩ Ω∗,

C ≥
∫

Ω∗
f(y, v) dist(y, ∂Ω∗)dy

≥ k

∫
Ix

φ(v(y))ev(y) dist(y, ∂Ω∗)dy

≥ k1φ(v(x))ev(x)

since φ(·)e· is increasing. Thus, v(x) ≤ C for x ∈ B ε1
2

(x0)∩Ω∗ which implies (5.9)
for some δ depending on |y0|. The proof is now completed for solutions to (1.2).

6. Existence of solutions to (1.1) and (1.2)

Proof of Theorem 1.1 and 1.2. First, note that from previous sections, we have uni-
form a priori bound of solutions to (1.1) in [0,Λ]×L∞(Ω) with Λ < λ1(Ω0). From
assumption (H4)-3 and bootstrap arguments, we have that any solution (λ, u) to
(1.1) such that 0 ≤ λ ≤ λ1(Ω+) satisfies:

‖u‖C1
0 (Ω) ≤ C. (6.1)

Multiplying (1.1) by φ1
Ω+ and integrating by parts, we get that any non trivial

solution (λ, u) satisfies λ ≤ λ1(Ω+). Thus, (6.1) is also true for any nontrivial
solution (λ, u) with λ ≥ 0.

Now, the existence of C follows from global bifurcation theory of Rabinowitz
(see [17]). Furthermore, from (6.1), C reaches {λ = 0} and ΠRC = [0, λ∗] with
λ∗ < λ1(Ω+). This completes the proof of 1-(i) and 2-(i). To prove 1-(ii) and 2-(ii),
we have just to prove that the bifurcation from λ1(Ω) is supercritical (i.e. goes
towards the right). It implies that λ∗ > λ1(Ω). To get the supercritical branching,
we use standard arguments: From

∫
Ω
hφ1

Ω

2n
n−2 < 0 and the main result from [12], we

show that the unique curve of solutions to (1.1) emanating from λ1(Ω) is defined
only for λ > λ1(Ω) (see [21] for more details). To prove that the solution (0, u0)
is such that u0 > 0, we can follow the arguments from the proof of Theorem 1.2,
section 6 of [14]. This completes the proof of Theorem 1.1 and 1.2. �
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