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A NON-RESONANT GENERALIZED MULTI-POINT
BOUNDARY-VALUE PROBLEM OF DIRICHELET TYPE
INVOLVING A P-LAPLACIAN TYPE OPERATOR

CHAITAN P. GUPTA

ABSTRACT. We study the existence of solutions for the generalized multi-point
boundary-value problem

(")) = f@t,z,a")+e 0<t<1,

m—2 n—2
2(0) = Y aw(&), =z(1) =) bja(r),
i=1 Jj=1

in the non-resonance case. Our methods consist in using topological degree
and some a priori estimates.

1. INTRODUCTION

Let ¢ be an odd increasing homeomorphism from R onto R satisfying ¢(0) = 0,
f:1]0,1] x R x R — R be a function satisfying Carathéodory conditions and e :
[0,1] — R be a function in L[0,1]. Let &,7; € (0,1), a;, b; € R, i =1,2,...,m—2,
i=1,2,...n—2,0<& <& < <€pa<l0<m << - <Th_2a<1be
given. We study the problem of existence of solutions for the generalized multi-point
boundary-value problem

(p(2)) = f(t,z,2") +e, 0<t<1,

20)= Y aia@). #(1)= Y byalr). -y

in the non-resonance case. We say that this problem is non-resonant if the associ-
ated problem:
o) =0, 0<t<1,

m—2

n—2
(0= Y aa(&), 2(1) =Y bya(ry). (1-2)
. 2

2000 Mathematics Subject Classification. 34B10, 34B15, 341,30, 341.90.

Key words and phrases. Generalized multi-point boundary value problems; non-resonance;
p-Laplace type operator; a priori estimates; topological degree.

(©2007 Texas State University - San Marcos.

Published February 28, 2007.

127



128 C. P. GUPTA EJDE/CONF/15

has the trivial solution as its only solution. This is the case, (see Proposition
below), if

m—2 n—2 m—2 n—2
(Z a1§1><1— ij> 7é (1 — Z ai)(ijTj —].)

i=1 j=1 i=1 j=1
This problem was studied by Gupta, Ntouyas, and Tsamatos in [20] and by the
author in [16] when the homeomorphism ¢ from R onto R is the identity homeomor-
phism, i.e for second order ordinary differential equations. The study of multi-point
boundary value problems for second order ordinary differential equations was ini-
tiated by I'in and Moiseev in [22, 23] motivated by the works of Bitsadze and
Samarskii on nonlocal linear elliptic boundary value problems, [2, [3| 4] and has
been the subject of many papers, see for example, [5, [6l, 1T], 12 13| 14, [15] 17, 18]
19, 21), 24], 27, 28]. More recently multipoint boundary value problems involving a
p-Lalacian type operator or the more general operator —(¢(z’))’ has been studied
in [T [7, [8, @), 10} 25] to mention a few.

We present in Section 2 some a priori estimates for functions z(t) that satisfy
the boundary conditions in . Our a priori estimates are sharper versions of the
corresponding estimates in [16] and explicitly utilize the non-resonance condition
for the boundary value problem (1.1)). In section 3, we present an existence theorem
for the boundary value problem (|1.1)) using degree theory.

2. A PRIORI ESTIMATES

We shall assume throughout that ¢ is an odd increasing homeomorphism from
R onto R satisfying ¢(0) = 0. We shall also assume that the homeomorphism ¢
satisfies the following conditions:

(a) For any constant M > 0,

im su ¢(Mz)=a 00
hgrisoop o) - (M) < oo. (2.1)

(b) For any 0,0 <o < 1,
. A CE)

a(o) = limsup
2—00 (b(Z)
Proposition 2.1. The boundary-value problem (1.2)) has only the trivial solution

if and only if

<1. (2.2)

(TZ:; ai&') (1—21)3') # (1—2 ai>(2 b7 —1), (2.3)

Proof. Tt is obvious that x(t) = At + B, t € [0,1], A, B € R, is a general solution
for the differential equation
(p(z") =0, 0<t<1,

in (1.2). If, now, z(t) = At + B, t € [0,1], A, B € R, is a solution to the boundary
value problem (|1.2)) then we must have
m—2 n—2
B=) ai(A&+B), A+B=7 bj(Ar;+B).

i=1 j=1
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In other words A, B must satisfy the system of equations

m—2 m—2

A(Z ai&;) +B(i a;i—1) =0,
- (2:4)
A by = 1)+ B _bj—1) =0.

Now, the system of equations (2.4) has A = 0, B = 0 as the only solution if and

only if
m—2 . me2
(Zzbf S ;) ‘0,
or
m—2 n—2 m—2 n—2
(Z%@)( bjfl)*(zai*1)<zbj7'j*1>#0. (2.5)
i=1 j=1 i=1 j=1

It is now obvious that (2.5 is equivalent to (2.3)). Hence the boundary value
problem (|1.2)) has only the trivial solution if and only if the condition ([2.3)) holds.
This completes the proof of the Proposition. O

We shall assume in the following that &, 7; € (0,1), a;,b; € R4 =1,2,...,m—2,
71=12....n—2,0<&E <&E < <pa< i< << < Tho<l1
satisfy the condition (2.3). We observe that when condition (2.3)) holds at least
one of 1 — ZZ_IQ a;, 1 — Z;:f b; is non-zero. Now, for a € R, we set at =
max(a,0), a~ = max(—a,0) so that a = a™ —a~ and |a|] = a™ + a~. Next, in case
1— "% a; # 0, we notice that

_9 2 _
S el 143 7a;

m— ? m— € [07 1)
1+ Zi:12 a; Zi:12 aj }

is well-defined. Similarly, if 1 — Z;L;f b; # 0, we see that
n—2 n—2,—
SISy 1+ L)
n—2;—" n—2 ’
D D S D

is well-defined. Accordingly, let us define

o= min{

o2 = min{

gl 2ital 14377 e N ifl—S" 2,
o = TS e 1 e Ziilza”éo’ (2.6)
1 it 11— %a; = 0;

and

D 5l R ED D)l 0y o1 =2
oy = { MM TST e F € 0D i Zj:lzbj#o’ (2.7)
1 if1- "7 b =0.

The a priori estimate obtained in the following proposition is a sharpening of the a
priori estimate of Lemma 2 of [I6]. We repeat the details given in Lemma 2 of [16]
for the sake of completeness.
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Proposition 2.2. Let§;,7; € (0,1), a;, b € R, i=1,2,...,m—2,j=1,2,...,n—

2,0 <& <& << o< ,0< T << < Tpoo < 1, with
(S5 i) (1 = S0 # (1= S0 a)(S3mtbymy — 1) be given. Also le
the function :r( ) be such that z(t), z'(t) be absolutely continuous on [0,1] and

I(O) = Z =1 az (Sz) ( )7 27;12 bjfE(’Tj). Then

[#]loo < M]|2"||oo, (2.8)
where
m—2
M:mm{ Z | 7| 1 Zi:l J?Zil' )a
|Z7, 1 z| |172i:1 az’|

-2 m—
Z| | Z?:l |bj(1_Tj)|) 1+ Zi=12|aigi‘
J J n—2 ’ m—2
|1_Zj:1 byl 1=>250" adl
Zj:l \bj( -1 1 }
[ IR A e

)

1+

with Ay = max(§;,1 — &) fori =1,2...,m — 2, p; = max(r;,1 — ;) for j =
1,2,...,n—2, o1 as defined in (@ and oo as defined in .

Proof. We first observe that at least one of (1 —ZZ’;Q a;), (1= 2 b;) is non-zero,

Jj=1
in view of our assumption
m—2 n—2
(Z aiéi) (1~ Zb VA (=D ) (X m-1).
i=1 i=1 j=1
Accordingly, M < oo. Next, we see from xz(§) — fO‘ s)ds for 1 =
1,2,...,m — 2 and the assumption that x(0) = 21112 alx(fz), that
m—2 m—2 &i
(1- Z a;)z(0) = Z ai/ 2 (s)ds.
i=1 i=1 0
It then follows that
S laigi]
2(0)] < = 17| (2.9)
I1=>25 adl
Also, since z(t) = z(&;) + fg s)ds, we see that
m—2 m—2 m—2 t m—2 +
(Z a;)z(t) = Z a;x (&) + Z ai/ 2/ (s)ds = z(0) + Z ai/ z'(s)ds.
i=1 i=1 i=1 & i=1 i

We, now, use (2.9) to get

1Y alle(@)] < 1200) |+Z|al|\/ s)ds

Z |az§z
< eral *Z*'“Z')“x loe-
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It is now immediate that

1 S agti|
[ e q— = + 3 Alail ) [ oo (2.10)
|zi:12ai|<|1—z“ a; Z )

Similarly, starting from z(1) — z(7;) = le x'(s)ds and proceeding, as above, we

obtain the estimate

b;(
el < |E"1_2bz(z|1—|z Zwb Neloe: 211)
j=1"J 1 ]

If we next use the equation z(t) = ) + f s)ds and the estimate we
obtain

i laidil
ol < (=505

1—>200 ail
Similarly, starting from the equation z(t) = (1) — ftl x'(s)ds, we obtain the esti-
mate

>t bi(1 =)
2l < (=2 = + D2’ (2.13)
11 —2>25=1 byl

Next, since z(0) = >/ 12 a;z(&;) we see that

+ 1)\\x’\|oo. (2.12)

m—2

0+ Z arele) = Y afel€),

i—1

It follows that there must exist x1, x2 in [0, 1] such that

m—2 m—2
+ > a)e0a) = (Y af)a(xa). (2.14)
i=1 i=1
If, now, one of z(x1), (x2) is zero, we see using one of the two equations
x(t) = x(xx) + /t 2'(s)ds,k =1,2;t € [0,1] (2.15)
that !
[2lloe < ll2"[loc- (2.16)

If both x(x1), z(x2) are non-zero and 1 — > /") >a; # 0, so that 1 + ZmIQa #

POy 12 af, it is easy to see from 1} that z(x1) # x(x2). It then follows easily
from ([2.14) and (2.15) that
1
- 2] oo (2.17)

ol < =

where

Yiitel 1+¥
1+ Ei: i 2?112 a?‘
Similarly, we see from z(1) = Z;L 12 b (TJ) that either holds or

Loy
00> 2.18
— | (218)

ol < =

}6[01)

o1 = min{
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where
-2 -2,
PO D P L)
n—2;—" n—2 9 .
L+ 3000 Y b

The proposition is now immediate from (2.10)), (2.11)), (2.12)), (2.13), (2.16)), (2.17)
and (2.18)) and the definitions of o1, o9 as given in (2.6)), (2.7)). O

o2 = min{

The following lemma is needed in the next proposition.

Lemma 2.3. Let us set

m—2 n—2 n—2 m—2
A=[1=a)1 =Y b + > (-7t =Y a)]*
i=1 j=1 j=1 i=1 9.1
m—2 n—2 ( ’ 9)
+ la;&i(1 — Z bj)]Jr
i=1 j=1
and
m—2 n—2 n—2 m—2
B=[1- al)<1_ij)]_+2[bj(1_77)(l_ ai)]”
=1 Jj=1 j=1 =1 2 20)
m—2 n—2 ( ’
) a1 =) b))
i=1 =1
Then A # B, when the non-resonance assumption holds.
Proof. We note that
A-B
m—2 n—2 n—2 m—2 m—2 n—2
(1= a)(1=> b))+ D> bi(l—7)(1 = a)+ Y a&(l—) b
i=1 j=1 j=1 i=1 i=1 j=1
m—2 m—2 n—2 n—2 m—2
=1- Zaz_(l_ GZ)(ij)+(ZbJ)(1_ Zaz)
=1 =1 Jj=1 Jj=1 =1
m—2 n—2 m—2 n—2
_(1_ a,)(ZbJTJ)—i—(Zaiﬁi)(l—ij)
i=1 j=1 i=1 Jj=1
m—2 m—2 n—2 m—2 n—2
=1- a; — (1 - a,)(ZbJTJ)—i—(Zaiﬁi)(l—ij)
=1 =1 =1 i=1 Jj=1
m—2 n—2 m—2 n—2
= (D@l =)Y b)) — (1= @)D by —1) #0,
i=1 j=1 i=1 j=1

in view of the non-resonance assumption (2.3)). Hence A # B. This completes the
proof of the lemma. O

Let us define
A B
* = min{—, — 1 2.21
0" =min{%, =} €[0,1) (2.21)



EJDE-2006/CONF/15 A MULTI-POINT BOUNDARY-VALUE PROBLEM 133
where A, B are as defined in Lemma[2:3] Accordingly, we see that

a(o*) = limsup ¢(E;;Z) <1,

in view of our assumption (2.2). Let € > 0 be such that a(c*) +¢ < 1 and the
constant C, be such that

p(c%z) < (a(c™) +e)p(z) + Ce, for every z € R. (2.22)

Proposition 2.4. Let§;,7; € (0,1), a;,b; € R, i=1,2,...,m—2,j=1,2,...,n—
2,0< & <& < << ,0< 1 <1< < Talo < 1, with
(% a6 (1 — Z;:f b)) # (1 -2 al)(zyz_f bjTj — 1) be given. Also let
the function z(t) be such that x(t), z'(t) be absolutely continuous on [0,1] with
(¢(2"))" € L}0,1) and 2(0) = 317" as2(&), x(1) = Y727 bja(r;). Then

1 Ce

66" o + =

[6(z")]lo0 < 1—a mv

(%) —¢
where € and Ce are as in (2.22)).

Proof. For i =1,2,...,m — 2 we see using mean value theorem that there exist y;
in [0, 1] such that

(2.23)

z(&) — 2(0) = fiI/(Xi)-

It then follows using x(0) = Z":Q a;z(&;) that

m—2 m—2
1= a)z(0) = Y aitia’ (xa)- (2.24)
i=1 i=1
Again, for j =1,2,...,n — 2 we see using mean value theorem that there exist A;

in [0, 1] such that
z(1) —2(rj) = (1 = 75)2"(A)),

and we see using z(1) = E;’:—f bjxz(7;) that

(b — D) = 3 by(1 - 73)a’ (). (2.25)
j=1 j=1

Also, we see that there exists a A € [0,1] such that
z(1) — z(0) = 2’ (N). (2.26)
Now, we see from equations (2.24)), (2.25]), (2.26) that

m—2 n—2
-3 a) (X b - D)
=1 j=1
— (1= Y a) (3 by — 1)(a(1) - 2(0))
i=1 j=1

m—2

= (1= 3 a3 b0 =) ) = (3 by = DO astir’ ()

i=1
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It follows that

m—2 n—2 n—2 m—2
1= a)(1=) b’V + ) bl —m)1 =D a)a’
=1 j=1 j=1 i=1
m—2 n—2
+ Z a;&(1— ) bj)z'(xi) = 0.
i=1 j=1

Using, next, the intermediate value theorem we see that there exist vy, vg in [0, 1]
such that

Az'(v1) — Ba'(v2) = 0, (2.27)
where A, B are as defined in (2.19)), (2.20). Suppose, now, one of z'(v1), 2’'(v2) is
zero. We then see from one of the following equations

t

o(z' (1)) = o(2'(vr)) +/ (¢(2)(s)ds, k=1,2;t€[0,1] (2.28)
that
(2 loo < [1(#(2") |22 (0,1)- (2.29)

Let us, next, suppose that both z’(v1), 2’ (v2) are non-zero. Since, now, A # B, in
view of Lemma we see from equation (2.27) that z'(v1) # 2'(v2). We now use
the equations

t t

0w (0) = 9(a’(00)) + [ (0 (s)ds = 6(5w'(w2)) + [ (o)) (5)ds,

o' (0) = oa'(0) + [ (0 () = 65w (0) + [ (6 (5)as,

Vg Vg

along with the definition of o*, as given in (2.21)), (2.22) and the estimate (2.29) to
obtain the estimate (2.23). This completes the proof of the proposition. O

3. EXISTENCE THEOREM

Let ¢ be an odd increasing homeomorphism from R onto R satisfying ¢(0) = 0,
f:1]0,1] x R x R — R be a function satisfying Carathéodory conditions and e :
[0,1] — R be a function in L'[0,1]. Let &, 7; € (0,1), a;,b; € R, i=1,2,...,m—2,
ji=1,2,. —2,0< <8< << ,0< << <Th2 <1

with (X7 a@)( =) # (L= P a) (S by — 1),

Theorem 3.1. Let f:[0,1] Xx R x R — R be a function satisfying Carathéodory’s
conditions such that there exist non-negative functions di(t), d=(t), and r(t) in
L'(0,1) such that

|f (&, u,0)| < di(£)d(|ul) + d2(t)d(|v]) + (D),
for a. e. t €[0,1] and all u, v € R. Suppose, further,

a(M)|[di|[L10,1) + Id2llLr0,1) <1 —a(o”) (3.1)
where M is as deﬁned in Proposztzon 2.3 a(M) is as defined in [(2.1), c* and a(c*)
are as defined in , Then, for every given function e( ) € L'0,1], the

boundary value problem (1.1 has at least one solution z(t) € C*[0,1].
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Proof. We consider the family of boundary-value problems
(o)) = Af(t,x,2") + Xe,0 <t < 1,A €[0,1]

0= Y wr(e), w1)= Y balr),

Also, we define an operator ¥ : C[0,1] x [0,1] — C*[0,1] by setting for (x,\) €
C0,1] x [0,1]

eV /¢ +A/(ﬂﬂwﬂwww+dﬂMﬂw
0
(3.3)
+ ((0) — Z (&) Zb 2C)
Let us, suppose that z(t) € C*[0, 1] is a solution to the operator equation, for some

A€ 0,1],
x =Yz

(3.2)

/ ot )+ )\/s(f(T,JJ(T),(E/(T)) + e(7))dr)ds
0
Z a;x(&;)) +t(x Z bjx TJ

Evaluating this equation at ¢ = 0 we see that x(t) satisfies the boundary condition

m—2
= Z aix(&;)-
i=1

Next, we differentiate the equation (3.4) with respect to t to get

(3.4)

t

2'(t) :¢’1(¢($'(0))+)\/ (f(ra(r), (1)) + e(r))dr) + 2(1 Zb (7).

0

Evaluating, now, the equation (3.5 at ¢ = 0 we see that x(t) satlsﬁes the boundary

condition )
1) =Y bja(ry),
j=1

and on differentiating the equation (3.5)) with respect to t we get
(p(x")) = Nf(t,z,2") + e, 0<t<1, A€]0,1].

Thus we see that if 2(t) € C1[0,1] is a solution to the operator equation x = ¥(z, \)
for some A € [0, 1] then z(¢) is a solution to the boundary value problems for
the corresponding A € [0,1]. Conversely, it is easy to see that if z(t) € C[0,1] is a
solution to the boundary value problems for some A € [0, 1] then z(¢) € C*[0,1]
is a solution to the operator equation « = ¥(z, \) for the corresponding A € [0, 1].

Next, it is easy to show, following standard arguments, that ¥ : C*[0,1]x [0, 1] —
C1[0,1] is a completely continuous operator.

We shall next show that there is a constant R > 0, independent of A € [0, 1],
such that if z(¢) € C'[0, 1] is a solution to , equivalently to the boundary value
problems , for some A € [0,1] then ||z|c1j0,1) < R.
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We note first that if z(t) € C*[0, 1] satisfies
x = ¥(z,0), (3.6)

then z(t) = 0 for all ¢ € [0,1]. Indeed, from the definition of ¥ or from the
boundary value problem (3.2)), it follows that z(t) = x(0) + 2’(0)¢. It then follows
from the two boundary conditions in and the non-resonance assumption
that z(0) = 2/(0) = 0, implying z(¢) = 0 for all ¢ € [0, 1].

We shall assume, in the following, that A € (0,1]. We shall also assume that o*,
as defined in is positive, since the proof for the case ¢* = 0 is simpler. Let
us choose ¢ > 0 such that a(c*) +e < 1 and

((M) +¢)lldillro,1) + ldallLr0,1) < 1 —a(o”) —¢, (3.7)

which is possible to do, in view of our assumption (3.1). Here M is as defined in
Propostion [2.2] and a(M) is as defined in (2.1) so that for the e > 0, chosen above,
there exists a constant C! > 0 such that

H(Mz) < (a(M) +e)p(z) + CL,  for every z € R. (3.8)
Also, from Proposition we see that there is a constant C2? > 0, for the chosen
€ > 0, such that

1
P —
“1-a(o*)—¢

(1|2 1oc) 16 (2")) |1 0,0) + CZ. (3.9)

We, now, see from the equation in (3.2)), using our assumptions on the function f,

Proposition 2.2 and estimates (3.8)), (3.9) that

(@) IIL2(0,1)

< o(llzllso) ldrll o,y + Dl o) 1d2ll L2 0,1) + Il L2 (0,1) + llell o)

< ¢(M||2"[loc)lldrll L1 0,1) + (2" [loo) 12l L1 (0,1) + 1722 (0,1) + llellzr(o,1)

< ((a(M) +e)lldi]lLr0,1) + lld2ll 22 0,1))@(112"[[o0) + 7l £20,1) + €l 1 (0.1)
+ Cllda |1 0.1)

< (aM) +e)llduflzr o) + [ld2flzr

- 1—a(o*) —¢

0,1
U1(6(2")) |11 0.1) + Ce,

where Ce = ||r[L1(0,1) + llellzio,1) + C2lldillL1(0,1) + C2[(a(M) + €)l|da L1 (0,1) +
lldal| L1 (0,1)]- It, now, follows from (3.7) that there exists a constant Ry, independent
of A € [0, 1], such that if z(t) € C*[0, 1] is a solution to the boundary value problems
(3-2) for some A € [0,1] then

1(8(z")) 121 (0,1) < Ro-

This combined with (3.9) and (2.8) give that there exists a constant R > 0 such
that
zlloron) < R.
This then implies that deg; (I — ¥ (-, \), B(0, R), 0) is well-defined for all A € [0, 1],
where B(0, R) is the ball with center 0 and radius R in C1[0, R].
Let, now, X denote the two-dimensional subspace of C''[0, 1] given by

X ={A+ Bt |for A, B €R}. (3.10)
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Let us define the isomorphism i : R? — X by

z‘(é) :i(A> € X, for (g) c R?, (3.11)

B
where
i\ () =A+Bt, fortelo1]. (3.12)
(5
Also, we define a 2 x 2 matrix
~(1-X" e a4
A= <((1 %?:112 bj)) (1Z i?j bﬂj)) ' (8.13)
We note that
m—2 n—2 m—2 n—2
det A= (1- " a)(1=> bim)+ (D aili)(1 =D b;) #0,
i=1 j=1 i=1 j=1

in view of the non-resonance assumption (2.3).
Next, we define a function G : R? — R? by setting

A A
“(5) =+ (5)
_( A0 2%_12 a;) + B(Z?:ligifi) for <A> c R
—A(l - Zj:l bj) — B(1— Zj:l b;T5) B
We note that for v(t) = A+ Bt € X we have

(7= 20D =i ()
B

(3.14)

and it follows that

G=io((I-U(,0)|x o
Now, we see from the homotopy invariance property of the Leray-Schauder degree
that

degy 5T — W(-, 1), B0, R), 0) = deg, (T — ¥(-,0), B(0, R), 0)
=degp(I — ¥(-,0)[x, X NB(0,R),0)
— deg(G,B(0, R),0),
where B(0, R) denotes the ball of radius R in R? with center at the origin. Finally,

we have that

1, if detA >0
deg (G, B(0,R),0) ={
cgs(G, B(0, ), 0) {—1, if det A < 0.

Accordingly, we see from the non-resonance assumption (2.3) i.e.

m—2 n—2 m—2 n—2
det A= (1= 37 a)(1= 3o bm) + (3 aik)(1 = 3 by) #0
i=1 j=1 i=1 j=1

that deg; o(I — ¥(-,1), B(0,R),0) # 0 and there is x(t) € B(0, R) C C'[0,1] that
satisfies
x=U(z,1),
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equivalently z(t) is a solution to the boundary value (1.1]). This completes the proof
of the theorem. ([
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