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ERROR ESTIMATES FOR ASYMPTOTIC SOLUTIONS OF
DYNAMIC EQUATIONS ON TIME SCALES

GRO HOVHANNISYAN

ABSTRACT. We establish error estimates for first-order linear systems of equa-
tions and linear second-order dynamic equations on time scales by using cal-
culus on a time scales [T} [} [5] and Birkhoff-Levinson’s method of asymptotic
solutions [3, 6], [8 [@].

1. RESULTS

Asymptotic behavior of solutions of dynamic equations and systems on time
scales was investigated in [B]. In this paper we establish error estimates of such
asymptotic representations, which may be applied to the investigation of stability
of dynamic equations (see f.e. [9]).

Consider the system of ordinary differential equations on time scales

a®(t) = A(t)a(t), t>T, (1.1)

where a® is delta (Hilger) derivative, a(t) is a n-vector function, and A(t) is a n x n
matrix function from C,4(T, 00) (definition of rd-continuous functions see in []).
A time scale is an arbitrary nonempty closed subset of the real numbers. Let T be
a time scale. For t € T we define the forward jump operator ¢ : T — T by

o(t) =inf{s € T:s > t}.
The graininess function p: T — [0, 00] is defined by

pu(t) =o(t) —t.
We assume that sup T = co.
Suppose we can find the exact solutions of the auxiliary system

VA = A)Y(t), t>T, (1.2)
with the matrix function Ay(t) € C,q(T,00) close to the matrix function A(t),
which means that condition (1.5 below is satisfied. Let ¥(¢) be the fundamental
matrix of the system (1.2]). Then the solutions of (L.1) can be represented in the

form

a(t) = T(t)(C + (1)), (1.3)
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where a(t),e(t), C' are the vector columns. We can consider ([1.3]) as a definition of
the error vector function e(t). Denote

H(t)=(1+ M(t)\lrl(t)\lfﬁ(t))‘1 TH(t) (A T(t) — T2 (D). (1.4)

Theorem 1.1. Assume there exist an invertible and differentiable matriz function
U(t) € Crg(T, 00) such that 1+ p(t) U= ()T (t) is invertible and

/oo( . ]og(1+m||H(5)H)A5) < o0, (1.5)

mN\p(s) m

Then every solution of (1.1) can be represented in form (1.3) and the error function
e(t) can be estimated as

le@®I < IOl (=1 + ey (00, 1)) , (1.6)

where ||.|| is the Euclidean vector (or matriz) norm: ||C|| = \/C? +---+ C2, and

expression in (L.5)) usually is used to define the exponential function on time scales
(see [1L14]):

e|m| (00, t) = exp (/too lim log(1 + mHH(S))As>. (1.7)

mN\u(s) m

Remark 1.2. Comparing with the similar result from [5] advantage of Theorem
is that it not only proves that error vector function approaches to zero as t
approaches to infinity, but inequality also estimates the speed of that approach
to zero.

From the estimate it follows also that the error vector function e(t) is

small when j;oo L, o) MAS is small.

Proof of Theorem[I1. Let a(t) be a solution of (L.1). The substitution a(t) =
U(t)u(t) transforms (|1.1)) into

u® = H(t)u(t), t>T,
where H is defined by (1.4). By integration we get

b
u(t)=C— / H(s)u(s)As, t<s<b, (1.8)
¢
where the constant vector C is chosen as in (1.3)). Estimating u(t)

b
lu@)] < (1€ +/t [H ()| - [[uls)]|As,

and applying Gronwall’s lemma (see [4]) we have
[u@I < IClleysy (b; 1). (1.9)

From representation (|1.3]) and expression (|1.7]), we have

b
e(t) =V (t)a(t) — C =u(t) — C = —/t H(s)u(s)As.
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Then using (1.9) we obtain
le(t)] < / | H (s)u(s)] As

<lel / IHE) - ey (b.s)
t
=IO [-1 + ey (b, 1)]
<|[CI [=1 + ey (o0, 1)] -
Note that from (1.5]), it follows that

lim [—14 e (00,t)] = hm [—l—l—exp/ lim 10g(1+m||H(s)||)As —0.
¢

t—o0 t—oo mN\p(s) m
(Il
Consider the second-order dynamic equation on time scales
Liz(t)] = 222 + p(t)z™ (t) + q(t)z(t) =0, t>1o >0, t € T. (1.10)

. From the functions ¢ »(t) € C%,(T, 00) let us construct auxiliary matrix-functions

(1.11)

_ (#1(t)  ea(t) _ -1 A1
o) = (20 1) #0 =0+ e o) s,
t
(

so= (Tt Sin)e 0= e

Theorem 1.3. Let 1 2(t) € C2,(T, 00) be complez-valued functions such that

/Oo (  log (1 +ml| (1 +m<1>1(t)<I>A(t))1B(t)||))At <o ki=12

lim

T NmN\u(s) m
(1.12)
where ||| is Euclidean matriz norm. Then for arbitrary constants Cy,Co there exist
solution of (L.1) that can be written in the form

z(t) = [C1 + ()] @1 () + [C2 + £2(1)] w2 (1), (1.13)
2®(t) = [Cr + e ()] f (1) + [Ca +e2(1)] 5 (). (1.14)

The error vector-function (t) = (£1(t),e2(t)) is estimated as
le@Il < ICI( =1+ eaqy (oo, 1)), (1.15)

where C' = (C1,Cy) is an arbitrary constant vector, and the matriz function H(t)
is defined in (|1.11)).
Proof. Rewrite equation (1.10)) in form (|1.1):

a®(t) = A(t)a(t), (1.16)

where

By substitution
a(t) = ¢(t)w(t), (1.17)
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in (1.16) we get
w? = H(t)w(t), (1.18)

where H(t) defined by (1.11)). To apply Theorem [I.1] to system (1.16)) we choose
A(t) = H(t) and A; = 0. Then the identity matrix is fundamental solution of (1.2]),

so conditions (|L.5)) turns to ((1.12)). ;From Theorem we have
w(t) =C+e(t), or a(t)=D)w(t)=2(t)(C+e(t)).
Representations ([1.13)),(1.14) and estimates ((1.15)) follow from Theorem O

Example 1.4. For solutions of the equation
1
AA
22 + (P + t—Q)m(t) =0, t>to,
we get representations (1.13)), (1.14)), where

1 = cos,(t, t), 2 =sin,(t,%o)

are trigonometric functions on time scales [4]. By direct calculations H = O(t~?)
as t — oo, and

< log(l+Cims™2 .
e <icl[-1ren ([ i LA Gy,
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