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ERROR ESTIMATES FOR ASYMPTOTIC SOLUTIONS OF
DYNAMIC EQUATIONS ON TIME SCALES

GRO HOVHANNISYAN

Abstract. We establish error estimates for first-order linear systems of equa-
tions and linear second-order dynamic equations on time scales by using cal-

culus on a time scales [1, 4, 5] and Birkhoff-Levinson’s method of asymptotic

solutions [3, 6, 8, 9].

1. Results

Asymptotic behavior of solutions of dynamic equations and systems on time
scales was investigated in [5]. In this paper we establish error estimates of such
asymptotic representations, which may be applied to the investigation of stability
of dynamic equations (see f.e. [9]).

Consider the system of ordinary differential equations on time scales

a∆(t) = A(t)a(t), t > T, (1.1)

where a∆ is delta (Hilger) derivative, a(t) is a n-vector function, and A(t) is a n×n
matrix function from Crd(T,∞) (definition of rd-continuous functions see in [4]).
A time scale is an arbitrary nonempty closed subset of the real numbers. Let T be
a time scale. For t ∈ T we define the forward jump operator σ : T → T by

σ(t) = inf{s ∈ T : s > t}.
The graininess function µ : T → [0,∞] is defined by

µ(t) = σ(t)− t.

We assume that sup T = ∞.
Suppose we can find the exact solutions of the auxiliary system

ψ∆(t) = A1(t)ψ(t), t > T, (1.2)

with the matrix function A1(t) ∈ Crd(T,∞) close to the matrix function A(t),
which means that condition (1.5) below is satisfied. Let Ψ(t) be the fundamental
matrix of the system (1.2). Then the solutions of (1.1) can be represented in the
form

a(t) = Ψ(t)(C + ε(t)), (1.3)
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where a(t), ε(t), C are the vector columns. We can consider (1.3) as a definition of
the error vector function ε(t). Denote

H(t) ≡
(
1 + µ(t)Ψ−1(t)Ψ∆(t)

)−1
Ψ−1(t)

(
A(t)Ψ(t)−Ψ∆(t)

)
. (1.4)

Theorem 1.1. Assume there exist an invertible and differentiable matrix function
Ψ(t) ∈ Crd(T,∞) such that 1 + µ(t)Ψ−1(t)Ψ∆(t) is invertible and∫ ∞

t

(
lim

m↘µ(s)

log(1 +m‖H(s)‖)
m

∆s
)
<∞. (1.5)

Then every solution of (1.1) can be represented in form (1.3) and the error function
ε(t) can be estimated as

‖ε(t)‖ ≤ ‖C‖
(
−1 + e‖H‖(∞, t)

)
, (1.6)

where ‖.‖ is the Euclidean vector (or matrix) norm: ‖C‖ =
√
C2

1 + · · ·+ C2
n, and

expression in (1.5) usually is used to define the exponential function on time scales
(see [1, 4]):

e‖H‖(∞, t) = exp
(∫ ∞

t

lim
m↘µ(s)

log(1 +m‖H(s)‖)
m

∆s
)
. (1.7)

Remark 1.2. Comparing with the similar result from [5] advantage of Theorem
1.1 is that it not only proves that error vector function approaches to zero as t
approaches to infinity, but inequality (1.6) also estimates the speed of that approach
to zero.

¿From the estimate (1.6) it follows also that the error vector function ε(t) is
small when

∫∞
t

limm↘µ(s)
log(1+m‖H(s)‖)

m ∆s is small.

Proof of Theorem 1.1. Let a(t) be a solution of (1.1). The substitution a(t) =
Ψ(t)u(t) transforms (1.1) into

u∆ = H(t)u(t), t > T,

where H is defined by (1.4). By integration we get

u(t) = C −
∫ b

t

H(s)u(s)∆s, t < s < b, (1.8)

where the constant vector C is chosen as in (1.3). Estimating u(t)

‖u(t)‖ ≤ ‖C‖+
∫ b

t

‖H(s)‖ · ‖u(s)‖∆s,

and applying Gronwall’s lemma (see [4]) we have

‖u(t)‖ ≤ ‖C‖e‖H‖(b, t). (1.9)

From representation (1.3) and expression (1.7), we have

ε(t) = Ψ−1(t)a(t)− C = u(t)− C = −
∫ b

t

H(s)u(s)∆s.
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Then using (1.9) we obtain

‖ε(t)‖ ≤
∫ b

t

‖H(s)u(s)‖∆s

≤ ‖C‖
∫ b

t

‖H(s)‖ · e‖H‖(b, s)

= ‖C‖
[
−1 + e‖H‖(b, t)

]
≤ ‖C‖

[
−1 + e‖H‖(∞, t)

]
.

Note that from (1.5), it follows that

lim
t→∞

[
−1 + e‖H‖(∞, t)

]
= lim

t→∞

[
− 1 + exp

∫ ∞

t

lim
m↘µ(s)

log(1 +m‖H(s)‖)
m

∆s
]

= 0.

�

Consider the second-order dynamic equation on time scales

L[x(t)] = x∆∆ + p(t)x∆(t) + q(t)x(t) = 0, t > t0 > 0, t ∈ T. (1.10)

¿From the functions ϕ1,2(t) ∈ C2
rd(T,∞) let us construct auxiliary matrix-functions

Φ(t) =
(
ϕ1(t) ϕ2(t)
ϕ∆

1 (t) ϕ∆
2 (t)

)
, H(t) = (1 + µ(t)Φ−1(t)Φ∆(t))−1B(t),

B(t) =
(
B21(t) B22(t)
−B11(t) −B12(t)

)
, Bkj(t) ≡

ϕk(t)L[ϕj(t)]
W (ϕ1, ϕ2)

, j = 1, 2.
(1.11)

Theorem 1.3. Let ϕ1,2(t) ∈ C2
rd(T,∞) be complex-valued functions such that∫ ∞

T

(
lim

m↘µ(s)

log
(
1 +m‖

(
1 +mΦ−1(t)Φ∆(t)

)−1
B(t)‖

)
m

)
∆t <∞, k, j = 1, 2,

(1.12)
where ‖.‖ is Euclidean matrix norm. Then for arbitrary constants C1,C2 there exist
solution of (1.1) that can be written in the form

x(t) = [C1 + ε1(t)]ϕ1(t) + [C2 + ε2(t)]ϕ2(t), (1.13)

x∆(t) = [C1 + ε1(t)]ϕ∆
1 (t) + [C2 + ε2(t)]ϕ∆

2 (t). (1.14)

The error vector-function ε(t) = (ε1(t), ε2(t)) is estimated as

‖ε(t)‖ ≤ ‖C‖
(
− 1 + e‖H(t)‖(∞, t)

)
, (1.15)

where C = (C1, C2) is an arbitrary constant vector, and the matrix function H(t)
is defined in (1.11).

Proof. Rewrite equation (1.10) in form (1.1):

a∆(t) = A(t)a(t), (1.16)

where

a(t) =
(
x(t)
x∆(t)

)
, A(t) =

(
0 1

−q(t) −p(t)

)
.

By substitution
a(t) = Φ(t)w(t), (1.17)
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in (1.16) we get
w∆ = H(t)w(t), (1.18)

where H(t) defined by (1.11). To apply Theorem 1.1 to system (1.16) we choose
A(t) = H(t) and A1 ≡ 0. Then the identity matrix is fundamental solution of (1.2),
so conditions (1.5) turns to (1.12). ¿From Theorem 1.1 we have

w(t) = C + ε(t), or a(t) = Φ(t)w(t) = Φ(t)(C + ε(t)).

Representations (1.13),(1.14) and estimates (1.15) follow from Theorem 1.1. �

Example 1.4. For solutions of the equation

x∆∆(t) +
(
γ2 +

1
t2

)
x(t) = 0, t > t0,

we get representations (1.13), (1.14), where

ϕ1 = cosγ(t, t0), ϕ2 = sinγ(t, t0)

are trigonometric functions on time scales [4]. By direct calculations H = O(t−2)
as t→∞, and

|εj(t)| ≤ ‖C‖
[
− 1 + exp

( ∫ ∞

t

lim
m↘µ(s)

log
(
1 + C1ms

−2
)

m
∆s

)]
, j = 1, 2.
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