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PERSISTENCE IN RATIO-DEPENDENT MODELS OF
CONSUMER-RESOURCE DYNAMICS

CLAUDE LOBRY, FRÉDÉRIC MAZENC, ALAIN RAPAPORT

Abstract. In a recent work Cantrell, Cosner and Ruan show that intraspecific

interference is responsible for coexistence of many consumers for one resource
with a logistic like growth rate. Recently, we have established a similar result

for the case of a chemostat using a rather different technique. In the present
note, we complement these two works to the case of an unknown nonlinear

growth rate for the resource satisfying mild assumptions.

1. Introduction

The classical model of a mixed culture in competition for a single substrate in a
chemostat is given by the following equations (see [21, 20, 9]).

ṡ = −
n∑

j=1

µj(s)
kj

xj + D(sin − s) ,

ẋi = (µi(s)−D)xi . (i = 1, . . . , n)

(1.1)

The variables s and xi are, respectively, the substrate and the i-th micro-organism
concentrations. D is the dilution rate of the input flow of feed concentration sin.
The activity of the i-th micro-organism on the substrate is characterized by the
growth function µi(·) and the yield factor ki. A typical instance of functions µi(·)
is given by the Monod law µi(s) = µi

s
s+Ki

. In absence of competition, i.e. for a
pure culture of species i, the condition of persistence is given by the inequality

µi(sin) > D . (1.2)

The concentration of micro-organism βi at equilibrium is then given by µi(βi) = D.
For a mixed culture when condition (1.2) is fulfilled for any i, the “Competitive Ex-
clusion Principle” states the following property: If there exists i∗ such that βi∗ < βj

for all j 6= i∗, then xj(t) → 0 as t → +∞, for any j 6= i∗, and xi∗(t) → βi∗ , as
soon as xi∗(0) > 0. This principle, originally proposed by Hardin in 1960 [12], has
been proved mathematically under different kinds of hypotheses [16, 13, 2, 4, 18].
Although this principle has been validated on laboratory experiments [10], coex-
istence of several species is observed in complex or real world applications (such
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as continuously stirred bioreactors). Later on, several extensions of this model
have been proposed in the literature, exhibiting the existence of a strictly positive
asymptotically stable equilibrium. Among them, let us mention time-varying nutri-
ent feed [22, 14, 11, 3], multi-resource models [17, 15] turbidity operating conditions
[7] or crowding effects [6]. In [19], it is shown that the single consideration of an
intra-specific dependency of the growth functions is enough to explain a possible
coexistence in a chemostat. In [5], sufficient conditions ensuring coexistence for
species described by systems of the form

ṡ = rs(1− s

K
)−

n∑
j=1

Ajsxj

1 + Bjs + Cjxj
,

ẋi =
(
−D +

Eis

1 + Bis + Cixi

)
xi (i = 1, . . . , n) ,

(1.3)

are given.
In [19], we have replaced in the basic model (1.1) the functions µi(s) by functions

hi(s, xi) which results in the system

ṡ = −
n∑

j=1

hj(s, xj)
kj

xj + D(sin − s) ,

ẋi = (hi(s, xi)−D)xi (i = 1, . . . , n) .

(1.4)

We have imposed the following hypotheses.

(A1) The functions hi(., .) are C1 with ∂hi

∂s (., xi) > 0 and ∂hi

∂xi
(s, .) < 0 for s > 0,

hi(0, .) = 0.
(A2) hi(sin, 0) > D.
(A3) For any s > 0, limxi→+∞ hi(s, xi) = 0.

For instance, hi could be of the form hi(s, xi) = µi(s)gi(xi), where gi is a de-
creasing positive function with gi(0) = 1. These correction terms aim at taking into
account that for a small concentration xi the dynamics of the i-th species is close
to the one in (1.1), while the intra-specific competition for food makes decreasing
the effective growth for large density xi.

In [5], the analytical forms of the growth rates are supposed to be known and in
[19], the analytical form of the growth rate for s is supposed to be known. However,
in practice determining an accurate expression for these growth rates is a difficult
task. This motivates the present work. We replace the linear term D(sin − s)
in (1.4) by a possibly nonlinear function f(s) (possibly zero at zero) for which
only a few data are available and determine two families of systems which describe
ecosystems for which coexistence occur. In the first case we consider, we assume
that the functions xi → hi(s, xi)xi are increasing and in the second case, we assume
that the functions xi → hi(s, xi)xi are decreasing.

The paper is organized as follows. In Section 2, we present the family of systems
we study. In Section 3, two technical lemmas are established. In Section 4, we
analyze persistence in the case when the functions xi → hi(s, xi)xi are increasing.
In Section 5, we analyze persistence in the case when the functions xi → hi(s, xi)xi

are decreasing. Section 6 is devoted to illustrations of the main results. Concluding
remarks are given in Section 7.
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2. The system studied

Throughout the paper, we consider systems with the following structure

ṡ = f(s)−
n∑

j=1

hj(s, xj)xj ,

ẋi = (hi(s, xi)− di)xi (i = 1, . . . , n) .

(2.1)

To simplify, we introduce the notation x = (x1, . . . , xn)>. All the constants di are
positive. Without loss of generality, we have chosen to consider the case where each
yield factor is equal to 1.

At last, we introduce the following assumptions:
(B1) For any i = 1, . . . , n, the functions hi are of class C1 with ∂hi

∂s (., xi) > 0.
(B2) The function f(·) is of class C1 and for some constant κ > 0, f(l) > 0 for

all l ∈]0, κ) and f(l) < 0 for all l > κ.

3. Preliminary lemmas

In this section, we establish technical lemmas which are instrumental in estab-
lishing the main results of our paper.

Lemma 3.1. Assume that the system (2.1) satisfies the assumptions (B1) and
(B2). Consider any solution (s(t), x(t)) of the system (2.1) with initial condition
(s0, x0) satisfying for i = 1, . . . , n, s0 > 0, xi0 > 0. Then, for all t ≥ 0, the solution
(s(t), x(t)) exists and for i = 1, . . . , n, s(t) > 0, xi(t) > 0.

Proof. The properties of the x-subsystem of (2.1) ensure that the real-valued func-
tions xi(t) cannot take nonpositive values. Assumption (B1) ensures that hi(0, ·) =
0. One can deduce from these properties and the existence and uniqueness of the
solutions of an ordinary differential equation with a C1 vector field that s(t) can-
not take nonpositive values. We prove now that the solutions exist for all t ≥ 0.
Consider now the function

Λ = s +
n∑

j=1

xj . (3.1)

Then, for all t ≥ 0, its derivative along the trajectories of (2.1) is

Λ̇(t) = f(s(t))−
n∑

j=1

djxj(t) . (3.2)

Assumption (B2) ensures that maxs≥0{f(s)} is a finite positive real number. More-
over, for all t ≥ 0, the term −

∑n
j=1 djxj(t) is nonpositive. Therefore, for all t ≥ 0,

the inequality
Λ̇(t) ≤ max

s≥0
{f(s)} (3.3)

is satisfied. It follows that Λ(t) is bounded on any finite interval [0, A]. This fact
and the sign property of s(t) and the xi(t)’s imply that the finite escape time
phenomenon does not occur and thereby the solutions are defined on [0,+∞). �

Lemma 3.2. Assume that the system (2.1) satisfies the assumptions (B1) and
(B2). Let ν be a positive real number. Consider any solution (s(t), x(t)) of the
system (2.1) with initial condition (s0, x0) satisfying, for i = 1, . . . , n, s0 > 0, xi0 >
0. Then there exists T1 ≥ 0 such that, for all t ≥ T1, s(t) ≤ κ + ν.
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Proof. For all t ≥ 0, the term −
∑n

j=1 hj(s(t), xj(t))xj(t) is nonpositive. We deduce
that, for all t ≥ 0,

ṡ(t) ≤ f(s(t)) . (3.4)

From Assumption (B2), it follows readily that there exists T1 ≥ 0 such that, for all
t ≥ T1, s(t) ≤ κ + ν. �

4. First case of persistence

This section is devoted to the case when the functions xi → hi(s, xi)xi are
increasing. We introduce extra assumptions

(C1) There exist two real numbers γ > 0 and p ∈ (0, 1] such that, for all s >
0, xj > 0,

hj(s, xj) ≤
γs

(1 + xj)p(1 + s)
, (4.1)

γ > max
i=1,...,n

{di

2
} . (4.2)

(C2) The function f is such that there exist ε > 0 and D > 0 such that

f(s)− γ
n∑

i=1

[(2γ

di

)1/p − 1
]1−p s

1 + s
> εs , ∀s ∈ [0, D] . (4.3)

(C3) For each i = 1, . . . , n, the inequality hi(D, 0) > di is satisfied.
Remark. Observe that if f belongs to the family f(s) = rs(1 − s

K ) (resp. to
the family f(s) = D(sin− s)), one can determine families of parameters K, r (resp.
families of parameters D, sin) such that the corresponding functions f satisfies (4.3).

We are ready to state the main result of this section.

Theorem 4.1. Assume that the system (2.1) satisfies Assumptions (B1), (B2) and
(C1)–(C3). Consider any solution of (2.1) with initial condition (s0, x0) satisfying
for i = 1, . . . , n, s0 > 0, xi0 > 0. Then, for i = 1, . . . , n,

inf
t∈[0,+∞)

xi(t) > 0 . (4.4)

Proof. According to Lemma 3.1, for all t ≥ 0, the solution (s(t), x(t)) exists and
for i = 1, . . . , n, s(t) > 0, xi(t) > 0. These inequalities and Assumption (C1) imply
that, for i = 1, . . . , n, and for all t ≥ 0,

ẋi(t) ≤
[ γs(t)
(1 + xi(t))p(1 + s(t))

− di

]
xi(t) ≤

[ γ

(1 + xi(t))p
− di

]
xi(t) . (4.5)

Observe that the inequality
γ

(1 + xi)p
≤ di

2
(4.6)

is equivalent to

xi ≥
(2γ

di

)1/p

− 1 . (4.7)

Therefore,

ẋi(t) ≤ −1
2
dixi(t) whenever xi(t) ≥

(2γ

di

)1/p

− 1 . (4.8)
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Since Assumption (C1) ensures that, for any i = 1, . . . , n, ( 2γ
di

)1/p − 1 > 0, one can
deduce that there exists T1 ≥ 0 such that, for all t ≥ T1, the inequality

xi(t) <
(2γ

di

)1/p

− 1 (4.9)

is satisfied. On the other hand, Assumption (C1) implies that, for all t ≥ 0,

ṡ(t) ≥ f(s(t))− γ
n∑

j=1

s(t)
(1 + xj(t))p(1 + s(t))

xj(t) ,

≥ f(s(t))− γ
s(t)

1 + s(t)

n∑
j=1

xj(t)1−p .

(4.10)

Combining (4.9) and (4.10), we obtain

ṡ(t) ≥ f(s(t))− γ
s(t)

1 + s(t)

n∑
j=1

[(2γ

di

)1/p

− 1
]1−p

. (4.11)

From Assumption (C2), we deduce that,

ṡ(t) > εs(t) , whenever s(t) ∈ (0, D] . (4.12)

Since s(t) > 0 for all t ≥ 0, we deduce that there exists T2 ≥ T1 such that, for all
t ≥ T2,

s(t) > D (4.13)

According to Assumption (B1), the functions hi are increasing with respect to s.
It follows that for all t ≥ T2,

ẋi(t) ≥ (hi(D,xi(t))− di)xi(t) (i = 1, . . . , n) . (4.14)

Since each function hi is continuous, there exist δ1 > 0 and δ2 > 0 such that, for
all i = 1, . . . , n,

hi(D,xi)− di ≥ δ2 , ∀xi ∈ [0, δ1] . (4.15)

We deduce easily that there exists T3 ≥ T2 such that, for all i = 1, . . . , n, and for
all t ≥ T3,

xi(t) ≥
1
2
δ1 . (4.16)

This concludes the proof. �

5. Second case of persistence

This section is devoted to the case when the functions xi → hi(s, xi)xi are
decreasing. We introduce extra assumptions:

(D1) For each i = 1, . . . , n, the function xi → hi(s, xi)xi is decreasing.
(D2) For any i = 1, . . . , n, the function hi is such that, for any fixed s ≥ 0,

limxi→+∞ hi(s, xi) = 0.
(D3) The function f is such that, f(0) > 0.
We assume that (B2) and (D3) are satisfied by the system (2.1). Then one can

determine a positive real number sin > 0 and two arbitrarily small positive real
numbers ν1 > 0 and ν2 > 0 such that

D(sin − l) < f(l) , ∀l ∈ [0, κ + ν2] (5.1)
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with D = maxi=1,...,n{di}+ ν1. Consider now the system

u̇ = D(sin − u)−
n∑

j=1

hj(u, yj)yj ,

ẏi = (hi(u, yi)−D)yi (i = 1, . . . , n) ,

(5.2)

and introduce the assumption:
(D4) The system (5.2) satisfies the assumptions (A1)–(A3).

We are ready to state the main result of this section.

Theorem 5.1. Assume that the system (2.1) satisfies the assumptions (B1), (B2)
and (D1) to (D4). Let (s0, x0) be initial conditions of (2.1) such that for i =
1, . . . , n, s0 > 0, xi0 > 0. Then, for i = 1, . . . , n,

inf
t∈[0,+∞)

xi(t) > 0 . (5.3)

Proof. Consider a solution (s(t), x(t)) of (2.1) with an initial condition (x0, x0)
satisfying, for all i = 1, . . . , n, x0 > 0, xi0 > 0. From Lemma 3.2, we deduce
that, without loss of generality, we may assume that s0 ≤ κ + ν2 and therefore
s(t) ≤ κ + ν2 for all t ≥ 0. We select the trajectory of (5.2) with initial condition
u0 = s0

2 , yi0 = xi0
2 . Let us prove that, for such a choice, for all t ≥ 0, the inequalities

u(t) < s(t) , yi(t) < xi(t) , (i = 1, . . . , n) , (5.4)
are satisfied. To prove this result, we proceed by contradiction. We distinguish
between the two cases which necessarily occur if (5.4) is not satisfied.
First case. Assume that there exists tα > 0 such that s(tα) = u(tα) and for all
t ∈ [0, tα), s(t) > u(t), xi(t) > yi(t). Then

ṡ(tα) = f(s(tα))−
n∑

j=1

hj(s(tα), xj(tα))xj(tα)

= f(u(tα))−
n∑

j=1

hj(u(tα), xj(tα))xj(tα) .

(5.5)

Thanks to Assumption (D1), we obtain

ṡ(tα) ≥ f(u(tα))−
n∑

j=1

hj(u(tα), yj(tα))yj(tα) . (5.6)

We know that s(t) ≤ κ + ν2 for all t ≥ 0. This property and (5.1) imply that

ṡ(tα) > D(sin − u(tα))−
n∑

j=1

hj(u(tα), yj(tα))yj(tα) = u̇(tα) . (5.7)

It follows that there exists ξ > 0 such that s(t) < u(t) for all t ∈ [tα − ξ, tα). This
yields a contradiction.
Second case. Assume that there exist tα > 0 and j ∈ {1, . . . , n} such that
xj(tα) = yj(tα) and, for all t ∈ [0, tα), s(t) > u(t), xi(t) > yi(t) and s(tα) > u(tα).
Then

ẋj(tα) = (hj(s(tα), xj(tα))− dj)xj(tα)

= (hj(s(tα), yj(tα))− dj)yj(tα) .
(5.8)
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The function s → hj(s, xj) is increasing and s(tα) > u(tα). These properties and
the definition of D imply

ẋj(tα) > (hj(u(tα), yj(tα))− dj)yj(tα)

> (hj(u(tα), yj(tα))−D)yj(tα) = ẏj(tα) .
(5.9)

The reasoning used in the previous case leads again to a contradiction. Therefore
(5.4) is satisfied.

The system (5.2) satisfies the Assumptions (A1)–(A3). Therefore, according to
[19], there exist constants y∗i > 0 such that

lim
t→+∞

yi(t) = y∗i (i = 1, . . . , n) . (5.10)

Combining (5.8) and (5.4), it straightforwardly follows that (5.3) is satisfied. This
concludes the proof. �
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Figure 1. Species w.r.t. substrate concentrations in Example 6.1.

6. Illustration

In this part, we illustrate our main results via two simple systems whose stability
property can be established by applying respectively Theorem 4.1 and Theorem 5.1.

Example 6.1. We first consider a system with three species, where f(·) is a logistic
function and the functions hi(·) are of Mickaelis-Menten form. One can readily
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check that the system with the following characteristics

f(s) = 2s
(
1− s

2
)
,

h1(s, x1) =
7
5

s

(1 + s/2)(1 + x1)
, d1 = 0.3 ,

h2(s, x2) =
6
5

s

(1 + s/2)(1 + x2)
, d2 = 0.3 ,

h3(s, x3) =
s

(1 + s/2)(1 + x3)
, d3 = 0.3 ,

(6.1)

satisfies assumptions (B1), (B2) and (C1) to (C3). Simulations are depicted on
Figure 1. In place of plotting the xi’s against the time, we plotted on the same
plane all the xi’s against s. Notice that this is no longer a “phase portrait” but the
superposition of projections on the (s, xi) planes. Different color is used for each
projection. Simulations show that the solutions converge to a positive limit-cycle,
in accordance with the persistence property proved by Theorem 4.1.

Example 6.2. We consider now a system with two species, where f(·) is no longer
concave and the functions hi(·) have ratio-dependant terms. One can readily check
that the following functions

f(s) =
3
10

+
4
5
s2

(
1− s

5
)
,

h1(s, x1) =
s/x1

1/2 + s + x1
, d1 =

1
2

,

h2(s, x2) =
3
2

s/x2

1 + s + x2/2
, d2 =

1
5

,

(6.2)

satisfy Assumptions (B1), (B2) and (D1) to (D4). Of course, the relevance of such
models from a biological point of view need to be investigated deeper. Simulations
are depicted on Figure 2, using a “multi-phase” representation. It shows that
the solutions converge to one of two positive equilibria, in accordance with the
persistence property proved by Theorem 5.1.

7. Conclusion

We established persistence for broad families of models of a mixed culture in
competition for a single substrate when there is intra-specific competition. We
modelized intra-specific competition by replacing the usual growth functions (also
called uptake functions) by growth functions which depend on the substrate and
the micro-organism concentrations. Our main results are general in the sense that
they apply to systems whose functions do not belong to any specific family of
functions like, for instance, linear, or logistic, or Monod functions and different
from those obtained in [19], [8], where, for more restictive families of systems,
existence and global attractivity of an equilibrium point where all the species are
present is established.

Our work complements the literature devoted to the problem of understand-
ing coexistence of species in situations where the classical “competitive exclusion
principle”, which predicts extinction, does not hold.

In particular, our work owes a great deal to the pioneer paper [2], where Arm-
strong and McGehee made the important observation that, even in the absence
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Figure 2. Species w.r.t. substrate concentrations in Example 6.2.

of a locally stable equilibrium point i.e. of an equilibrium point corresponding to
a case where all the species are present, coexistence may occur, due to sustained
oscillations, and exhibited systems which indeed admit non-trivial limit cycles. It
also owes a great deal (and perhaps even more) to the notion of ratio-dependency
introduced by Arditi and Ginzburg in [1], in a slightly different context. This no-
tion arises from the fact that in the case of a one consumer-one resource relation,
a model with ratio-dependent growth function i.e. where the growth function de-
pends on the ratio of the resource density by the consumer density, is frequently a
better model than the traditional one.
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