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EXISTENCE, MULTIPLICITY, AND BIFURCATION IN
SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

JAMES R. WARD JR.

Dedicated to my friend Klaus Schmitt

Abstract. We prove new non-resonance conditions for boundary value prob-
lems for two dimensional systems of ordinary differential equations. We apply

these results to the existence of solutions to nonlinear problems. We then study

global bifurcation for such systems of ordinary differential equations Rotation
numbers are associated with solutions and are shown to be invariant along

bifurcating continua. This invariance is then used to analyze the global struc-

ture of the bifurcating continua, and to demonstrate the existence of multiple
solutions to some boundary value problems.

1. Introduction

The purpose of this paper is to prove some existence, bifurcation, and multiplic-
ity results for boundary value problems for two dimensional systems of ordinary
differential equations. In this respect the paper is a continuation of [12]. Consider
the parameter dependent family of boundary-value problems

dw

dt
= F (λ, w, t), t ∈ [0, ω] (1.1)

Bw = 0 (1.2)

where F = (F1, F2) ∈ C(RR2 × [0, ω], R2), t ∈ [0, ω], w = (u, v) ∈ R2, and λ ∈ R
is a parameter. We concentrate here on Bw := (u(0), u(ω)), which we will call the
Dirichlet problem. Our methods work just as well with many other boundary con-
ditions, including the periodic problem and Bw = (u(0), v(ω)). The most general
form we allow for the function F will usually be

F (λ, w, t) = B(λ, t)w + g(λ, w, t) (1.3)

with B(λ, t) = λJ + A(t) or B(λ, t) = λA(t), where

J =
(

0 −1
1 0

)
, A(t) =

(
0 −p(t)

q(t) 0

)
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with p, q ∈ L∞(0, ω) and g(λ, w, t) = o(|w|) as |w| → 0 (or ∞), uniformly with
respect to λ and t in compact sets.

If w = w(t) = (u(t), v(t)) is an ω-periodic solution of (1.1) with w(t) 6= 0 for all
t, then the mapping t 7→ w(t)

|w(t)| defines a mapping from the circle S1 into itself. If
ϕ denotes this mapping then the Brouwer degree deg(ϕ) is defined. It is the same
as the rotation number of w(t) (with respect to the origin). If θ = tan−1( v

u ) then

dθ

dt
=

v′u− vu′

u2 + v2

and the rotation number of such an ω-periodic solution is

rot(w) =
1
2π

∫ ω

0

uv′ − vu′

u2 + v2
dt =

1
2π

∫ ω

0

F2u− vF1

u2 + v2
dt.

For most of our results we will use the rotation number to distinguish solutions and
branches of solutions. This idea was used in [12] to study global bifurcation from
zero and solution multiplicity. In [12] only problems with B(λ, t) = λJ in (1.3) were
considered, and bifurcation from infinity was not studied, as it is here. Rotation
numbers can be assigned to solutions of non-periodic boundary value problems,
such as the two already mentioned, by appropriately extending the solutions to a
larger interval on which the extension is periodic and the rotation number is an
integer. In the non-systems case of second order scalar Sturm-Liouville boundary
value problems on an interval [0, ω], bifurcating branches can be distinguished by
the number of solution nodal points in [0, ω[ [8]. Our methods are based upon
Leray-Schauder degree and change of degree as the parameter λ ∈ R varies. Kras-
nosel’skii [6] first used Leray-Schauder degree to prove the existence of bifurcation
at eigenvalues of odd multiplicity and Rabinowitz [8] later showed global bifurca-
tion from these eigenvalues and proved fundamental results on global structure of
bifurcating continua. These ideas and results have been applied and extended by
subsequent researchers in deep and ingenious ways to understand bifurcations and
solution structure for nonlinear boundary value problems. The reader is referred to
the fundamental paper [8] or the expositions in [10] or [2] for the fundamental ideas.
The rotation numbers of solutions have been used before to analyze global solution
structure for boundary value problems, see [3], [4]. The paper [1] improves some
results of [12] for superlinear systems, and makes interesting use of rotation number
in connection with the Capietto-Mawhin-Zanolin continuation theorem (see [4]).

In §2 we study linear systems. In §3 we apply the ideas of §2 to study existence
under nonresonance conditions. In §4 we study bifurcation from a line of trivial
solutions, making use of rotation number to characterize branches. In §5 we prove
results on bifurcation from infinity. In §6 we obtain conditions for bifurcating
branches to bend to the left or to the right. In §7 we apply the earlier results to
prove a theorem on multiplicity of solutions.

In the sequel, for x = (x1, x2, . . . , xn)T ∈ Rn we let |x| := (
∑n

i=1 x2
i )

1/2; with
T indicating the transpose. We will sometimes omit the T , so by w = (u, v) we
usually mean the column vector. For w ∈ C([A,B], Rn), ‖w‖ := max[A,B] |w(t)|,
and for w ∈ Lp((A,B), Rn), 1 ≤ p ≤ ∞, let ‖w‖p := (

∫ B

A
|w(t)|p dt)1/p.
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2. Linear systems

We begin by considering linear systems of the form
du

dt
= −p(t)v

dv

dt
= q(t)u

(2.1)

for t ∈ [0, ω] where p, q ∈ L∞(0, ω), together with boundary conditions

B(u, v) = (0, 0). (2.2)

The boundary operator in (2.2) is linear and could represent T -periodic boundary
conditions, B(u, v) = (u(ω), v(ω))− (u(0), v(0)), the boundary operator B(u, v) =
(u(0), u(ω)), or Bw = (u(0), v(ω)), or possibly others. The admissible boundary
conditions are those that allow a well defined rotation number to be associated with
nontrivial solutions to (2.1), (5), (2.2). If w = (u, v)T is a nontrivial solution with
w(ω)− w(0) = 0 then there is an integer rotation number defined by

rot(w) =
1
2π

∫ ω

0

q(t)u2 + p(t)v2

u2 + v2
dt.

In the case of non periodic boundary conditions such as Bw = (u(0), u(ω)) =
(0, 0), more care must be taken to obtain an integer rotation number. In the latter
case, extend p(t) and q(t) respectively to functions p̃(t), q̃(t), on [−ω, ω], so that
both are even and extend u(t) to ũ(t), odd on [−ω, ω] and v(t) to ṽ(t), even on
[−ω, ω]. Then w̃ = (ũ, ṽ)T satisfies

dũ

dt
= −p̃(t)ṽ

dṽ

dt
= q̃(t)ũ

on [−ω, ω]. Moreover w̃ satisfies the periodic conditions w̃(ω) − w̃(−ω) = 0. We
will henceforth refer to w̃ as the odd/even extension of w. We define the rotation
number of w to be the rotation number of w̃:

rot(w) := rot(w̃) =
1
2π

∫ ω

−ω

q̃(t)ũ2 + p̃(t)ṽ2

ũ2 + ṽ2
dt (2.3)

is a well defined integer. Notice that the rotation number has the properties of
Brouwer degree. Indeed, in the periodic case it is the same as the degree of the
map from S1(= [0, ω]/{0, ω]) → S1 defined by t 7−→ w(t)/|w(t)|, with a similar
identification in the second boundary condition considered above. One may also
associate a rotation number with nontrivial solutions satisfying the boundary con-
dition u(0) = 0, v(ω) = 0, and others.

We wish to compare the rotation numbers associated with solutions of two differ-
ent systems. Let pj , qj ∈ L∞([0, T ], R) for j = 1, 2 and let wj = (uj , vj) (j = 1, 2)
be non-trivial solutions of the jth problem, so

duj

dt
= −pj(t)vj ,

dvj

dt
= qj(t)uj , (uj(T ), vj(T )) = (uj(0), vj(0)). (2.4)

Lemma 2.1. Let pj , qj ∈ L∞([0, T ], R), wj = (uj , vj) (j = 1, 2) be a non trivial
solution of (2.4) for j = 1, 2 respectively. Suppose that we have

a(t) := max(p1(t), q1(t)) ≤ b(t) := min(p2(t), q2(t)) a.e. (2.5)
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Then rot(w1) ≤ rot(w2). If there is a set E ⊂ [0, T ] of positive Lebesgue measure
such that strict inequality holds in either inequality (2.5) for t ∈ E, then rot(w1) <
rot(w2).

Proof. We have

rot(w1) =
1
2π

∫ 2π

0

q1(t)u2
1 + p1(t)v2

1

u2
1 + v2

1

dt

≤ 1
2π

∫ 2π

0

a(t) dt

≤ 1
2π

∫ 2π

0

b(t) dt

≤ 1
2π

∫ 2π

0

q2(t)u2
2 + p2(t)v2

2

u2
2 + v2

2

dt = rot(w2)

which proves the first part of the claim. If there were a set of positive measure E
on which a(t) < b(t) for t ∈ E, then the second integral inequality would be strict
also, and this would imply that rot(w1) < rot(w2). �

The same conclusion holds if we impose the boundary conditions u(0) = 0, u(π) =
0 or u(0) = 0, v(π) = 0. In those cases we consider the appropriate periodic
extensions of the nontrivial solutions w to define rot(w). For instance, in the
u(0) = 0, u(π) = 0 case, we extend u to be odd on [−π, π], and v to be even on
[−π, π], and then both to be 2π−periodic; we extend p and q to be even on [−π, π]
and then also 2π-periodic. Then the rotation number of w is well-defined. Using
this and similar arguments one may establish the conclusion of the lemma if these
other boundary conditions are imposed on (2.1).

In this paper we will, for the sake of concreteness, in the main consider the
boundary conditions B(u, v) := (u(π), u(0)) = (0, 0).

We now consider nonresonance conditions. Let µ ∈ R and consider the problem
du

dt
= −µv

dv

dt
= µu

(2.6)

with boundary conditions
(u(π), u(0)) = (0, 0). (2.7)

It is easy to check that the eigenvalues of the above system consists of the set of
integers Z, and for n = 0 an eigenfunction is w0 = (0, 1), while for each n ∈ Z\{0},
and eigenfunction is wn(t) = (sin(nt),− cos(nt)). The associated rotation numbers
(as defined above) are rot(wn) = n.

We introduce a notation useful here. Suppose F and G are real valued Lebesgue
measurable functions on an interval I. The notation F (t) . G(t) on I (or just
F . G on I) will mean that F (t) ≤ G(t) a.e. on I and there is a set of positive
measure in I on which the inequality is strict. We can now state and prove the
lemma

Lemma 2.2. Consider the problem (2.1) with ω = π and p, q ∈ L∞(0, π) and
boundary conditions (u(π), u(0)) = (0, 0). Suppose that there is n ∈ Z such that
n . p(t) . (n + 1) and n . q(t) . (n + 1) on [0, π]. Then the problem has no
non-trivial solutions.
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Proof. Suppose there is a nontrivial solution w = (u, v)T . Let w̃ be the odd/even
extension of w. Then rot(w) := rot(w̃) is well defined and is an integer. However the
rotation numbers of (odd/even extended) solutions to the system (2.6), (2.7) with
µ = n and µ = n+1 are n and n+1, respectively, and this implies n < rot(w) < n+1,
which is impossible. This proves the lemma. �

It should be clear that analogous results are true with other boundary conditions,
or on other intervals, with similar proofs.

We have an immediate corollary regarding the problem

du

dt
+ p(t)v = f(t)

dv

dt
− q(t)u = g(t)

(2.8)

u(0) = 0, u(π) = 0. (2.9)

Corollary 2.3. Let p, q ∈ L∞(0, π) satisfy the conditions of the lemma, and let
f, g ∈ L1(0, π). Then there is a unique solution to (2.8), (2.9).

Remark 2.4. By a solution to (2.8), (2.9) we mean a pair of functions (u, v), each
absolutely continuous on [0, π], satisfying (2.9) and also satisfying (2.8) a.e.

Remark 2.5. The lemmas and corollary hold with appropriate modifications for
many other boundary value problems, such as the periodic one.

Now suppose p, q ∈ L∞(0, π) satisfy

−M . p(t), q(t) . M a.e. (2.10)

for some M > 0. Let

J =
(

0 1
−1 0

)
, A(t) =

(
0 p(t)

−q(t) 0.

)
We will now study parameter dependent linear systems of the forms

dw

dt
+ λJw + A(t)w = 0 (2.11)

and
dw

dt
+ λA(t)w = 0. (2.12)

with the boundary conditions (2.9), i.e.,

u(0) = 0, u(π) = 0, where w(t) = (u(t), v(t)). (2.13)

We first analyze the problem (2.11) with boundary conditions (2.13). Extend p and
q to P and Q, respectively, even on [−π, π], and then to be 2π-periodic. This is
equivalent to letting P (t + π) := p(π − t) and Q(t + π) := q(π − t)for 0 ≤ t ≤ π
and then extending P and Q to be 2π periodic on R. If w = (u, v) satisfies the
boundary conditions, we extend u to be even with respect to 0 and 2π periodic on
R, and extend v to be odd with respect to zero and also 2π periodic. As before, we
call this the odd/even extension of w. For each µ ∈ R let Wµ = (Uµ, Vµ) be the
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solution to the initial-value problem

dU

dt
+ µV + P (t)V = 0

dV

dt
− µU −Q(t)U = 0

U(0) = 0, V (0) = 1.

(2.14)

We can still define a real valued function Ψ by the equation

Ψ(µ) :=
1
2π

∫ 2π

0

(µ + P (t))V 2
µ + (µ + Q(t))U2

µ

U2
µ + V 2

µ

dt

= µ +
1
2π

∫ 2π

0

P (t)V 2
µ + Q(t)U2

µ

U2
µ + V 2

µ

dt.

(2.15)

If also Uµ(π) = 0 then Wµ will be 2π-periodic and have an integral rotation number
(this is true because if (U, V ) is any solution on [0, π] satisfying the boundary
conditions, then it has a 2π periodic extension satisfying the differential equations,
as was shown in Section 2. But there is only one solution satisfying the initial
conditions). Conversely, if Ψ(µ) is an integer, then the change in angle of Wµ(t)
with respect to the origin over the interval 0 ≤ t ≤ 2π is an integral multiple of 2π,
and hence Wµ(t) must be 2π-periodic. From this and that P (t) and Q(t) are even
and 2π- periodic one can deduce that U(t) is odd and V (t) even, and hence that
U(π) = 0. Thus we have the following result.

Lemma 2.6. Wµ satisfies the boundary conditions (2.13) if and only if Ψ(µ) ∈ Z.

The solution Wµ to the initial value problem (2.14) varies continuously with
respect to the parameter µ ∈ R and therefore Ψ is a continuous function. It follows
from (2.10) that

−M <

∫ 2π

0

P (t)V 2
µ + Q(t)U2

µ

U2
µ + V 2

µ

< M

and hence
µ−M < Ψ(µ) < µ + M

for all µ ∈ R. Thus Ψ(µ) → ±∞ as µ → ±∞, and there is a doubly infinite
sequence {µn : n ∈ Z} such that Ψ(µn) = n and a nontrivial solution Wn to (2.11),
(2.13) with λ = µn and rot(Wn) = n. Notice also that since Ψ(µn) = n we have
µn −M < n < µn + M . We do not know if there can be more than one solution µ
to the equation Ψ(µ) = n. We will refer to the set of all such solutions µ for n ∈ Z
as the set of eigenvalues for (2.11), (2.13). If P = Q then Ψ(µ) = µ + P where P
denotes the mean value of P . In this special case µn = P − n is unique. In this
case we also note that U2(t) + V 2(t) is constant. It follows from the general theory
of compact linear operators that the set of eigenvalues has no finite limit point.
From this and the structure of Ψ it follows that there can be at most finitely many
eigenvalues associated with any given rotation number.

Each eigenvalue has a one dimensional eigenspace since if it were two dimensional
the eigenspace would be a basis for all solutions to (2.11), and then all solutions
would have to satisfy u(0) = 0.

We have proven the following result.
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Theorem 2.7. Let p, q ∈ L∞(0, π) satisfy (4.1). Then the problem (2.11), (2.13)
has a doubly infinite sequence of eigenvalues {µn : n ∈ Z}. Moreover the eigenspace
associated with each eigenvalue is one dimensional and if w 6= 0 is a function in
the eigenspace for some eigenvalue µ then there is an nZ such that Ψ(µ) = n
and rot(w) = n, where the latter denotes the rotation number associated with w as
defined earlier in (2.3). There are at most finitely many eigenvalues associated with
the same rotation number.

We now consider parameter dependent linear systems of the form (2.12) with
boundary conditions (2.13). We again assume p, q ∈ L∞(0, π) and make the addi-
tional assumption that there is a β ∈ L∞(0, π) and M > 0 such that

0 . β(t) ≤ min(p(t), q(t)) ≤ M for a.a. t ∈ [0, π]. (2.16)

We again extend p and q to P and Q, respectively, even on [−π, π], and then
2π-periodic on the real line. If w = (u, v) satisfies (2.13), we make the odd/even
2π-periodic extension of w. Let Wµ be the solution to the initial-value problem

dU

dt
+ µP (t)V = 0

dV

dt
− µQ(t)U = 0

U(0) = 0, V (0) = 1.

We can as before define a real valued function Ψ by the equation

Ψ(µ) :=
1
2π

∫ 2π

0

µP (t)V 2
µ + µQ(t)U2

µ

U2
µ + V 2

µ

dt

=
µ

2π

∫ 2π

0

P (t)V 2
µ + Q(t)U2

µ

U2
µ + V 2

µ

dt.

The Lemma is valid here, so Ψ(µ) ∈ Z if and only if Wµ satisfies the boundary
conditions. Clearly Ψ is a continuous real valued function. Let β be the mean
value of β over [0, 2π}. For µ > 0 we have Ψ(µ) ≥ µβ and for µ < 0 we have
Ψ(µ) < µβ. Thus the range of Ψ is the set of real numbers and for each n ∈ Z
there is at least one µ ∈ R with Ψ(µ) = n. We will refer to the set of all such
solutions µ for n ∈ Z as the set of eigenvalues for (2.12), (2.13). If P = Q then
Ψ(µ) = µP where P denotes the mean value of P . In this special case µn = n/P
is unique. Note that in this case U2(t) + V 2(t) is constant. As in the previous
theorem, there can be at most finitely many eigenvalues associated with any given
rotation number.

Each eigenvalue has a one dimensional eigenspace since if it were two dimensional
the eigenspace would be a basis for all solutions to (2.12), and then all solutions
would have to satisfy u(0) = 0.

We have proven the following result.

Theorem 2.8. Let p, q ∈ L∞(0, π) satisfy (2.16). Then the problem (2.12), (2.13)
has a doubly infinite sequence of eigenvalues {µn : n ∈ Z}. Moreover the eigenspace
associated with each eigenvalue is one dimensional and if w 6= 0 is a function in
the eigenspace for some eigenvalue µ then there is an n ∈ Z such that Ψ(µ) = n
and rot(w) = n, where the latter denotes the rotation number associated with w as
defined earlier in (2.3). There are at most finitely many eigenvalues associated with
the same rotation number.
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3. Nonresonance and existence

We now consider nonlinear problems of the form
du

dt
+ p(t, u, v)v = f(t, u, v)

dv

dt
− q(t, u, v)u = g(t, u, v)

(3.1)

with the boundary conditions (2.9); that is, the conditions are:

u(0) = 0, u(π) = 0.

We will assume in this section that p, q, f, g satisfy Carathéodory conditions. That
is, we assume that for almost all t ∈ [0, π] the maps p(t, ., .), q(t, ., .), f(t, ., .),
g(t, ., .) are continuous on R2, and for each (u, v) ∈ R2, the maps p(., u, v), q(., u, v),
f(., u, v), g(., u, v) are Lebesgue measurable on [0, π]. We also assume there is a
function S1 ∈ L∞(0, π) such that |p(t, u, v)|+ |q(t, u, v)| ≤ S1(t) for all (u, v) ∈ R2

and a.a. t ∈ [0, π], and for each R ≥ 0 there is a function MR ∈ L1(0, π) such that
|f(t, u, v)|+ |g(t, u, v)| ≤ MR(t) for all |(u, v)| ≤ R and a.a. t ∈ [0, π].

We now can state an existence theorem.

Theorem 3.1. Let p, q, f, g be as described above. In addition assume:
(1) There are functions α1, α2, β1, β2 ∈ L∞(0, π) and N ∈ Z such that for all

(u, v) ∈ R2,

N . α1(t) ≤ p(t, u, v) ≤ β1(t) . N + 1,

N . α2(t) ≤ q(t, u, v) ≤ β2(t) . N + 1

hold on [0, π].
(2) There is a function m ∈ L1(0, π) such that for each ε > 0 there is an

R(ε) ≥ 0 for which the following hold a.e.:

|f(t, u, v)| ≤ εm(t)|(u, v)|,
|g(t, u, v)| ≤ εm(t)|(u, v)|.

Then there is at least one solution to (3.1), (2.9).

Proof. The proof uses degree theory. We sketch the argument. Define functions
Ai, i = 1, 2 by Ai := 1

2 (αi + βi). Then n . Ai . n + 1 so that for each pair
k1, k2 ∈ L1 = L1(0, π) there is a unique solution w = (u, v) ∈ C = C([0, π], R2) to
the boundary problem

du

dt
+ A1(t)v = k1(t)

dv

dt
−A2(t)u = k2(t)

with boundary conditions (2.9). Let Γ denote the linear mapping (k1, k2) 7→ w =
(u, v) from L1 × L1 into C × C. The mapping Γ is compact.

Let C0 denote the Banach space of all pairs of continuous functions w = (u, v)
on [0, π] satisfying u(0) = 0 = u(π), with norm ‖w‖ := max[0,π] |w(t)|. Define a
mapping N : C0 → L1 × L1 by

N(w)(t) :=
(
−A1(t)v(t) + p(t, u(t), v(t))v(t)− f(t, u(t), v(t))
A2(t)u(t)− q(t, u(t), v(t))u(t)− g(t, u(t), v(t))

)
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for t ∈ [0, π]. The mapping N is continuous and maps bounded sets into bounded
sets. The boundary value problem (3.1), (2.9) is equivalent to the equation

w + ΓN(w) = 0 (3.2)

in C0. We now apply a homotopy to (3.2) and use Leray-Schauder degree.
The mapping ΓN : C0 → C0 is completely continuous: it is continuous, and

maps bounded sets into relatively compact ones. We consider the parameterized
family of equations:

w + λΓN(w) = 0. (3.3)
We shall show that there is a number R∗ > 0 such that if w is a solution to (3.3)
for any λ ∈ [0, 1] then ‖w‖ < R∗. It will then follow that the degree degLS(I +
λΓN,B(0, R∗), 0) is independent of λ ∈ [0, 1], and from this we will be able to
deduce that a solution to (3.2) exists. We proceed. .

Suppose that there is no such number R∗. It then follows that there is a sequence
{(λn, wn)} in [0, 1] × C0 such that ‖wn‖ → ∞ and for each n ∈ N we have wn +
λnΓNwn = 0. Then wn = (unvn) satisfies

dun

dt
+ (1− λn)A1(t)vn + λnpn(t)vn = λnf(t, un, vn)

dvn

dt
− (1− λn)A2(t)un − λnqn(t)un = λng(t, un, vn)

(3.4)

and un(π) = 0 = un(0), where pn(t) = p(t, un, vn), and qn(t) = q(t, un, vn).Let
w̃n = wn/‖wn‖. It follows from (3.4) and the properties of the terms in the equation
that there is a constant c1 > 0 such that for all n ∈ N, ‖w̃n‖L1 < c1. From the
latter inequality it follows that there is a subsequence of {(λn, w̃n)} convergent in
[0, 1]×C0 to some (λ̃, W̃ ) = (λ̃, (ũ, ṽ)). We relabel that convergent subsequence as
{(λn, w̃n)}. Now for all n ∈ N,

N . α1(t) ≤ pn(t) ≤ β1(t) . N + 1,

N . α2(t) ≤ qn(t) ≤ β2(t) . N + 1, a.e.

The sequence {(pn, qn)} is bounded in L∞ × L∞ and hence in L2 × L2, so there is
a subsequence weakly convergent in L2 ×L2 to some (p̃, q̃) which must also satisfy
the inequalities

N . α1(t) ≤ p̃(t) ≤ β1(t) . N + 1,

N . α2(t) ≤ q̃(t) ≤ β2(t) . N + 1, a.e.

Integrating the differential equations from 0 to t and taking limits we can conclude
that

dũ

dt
+ (1− λ̃)A1(t)ṽ + λ̃p̃(t)ṽ = 0

dṽ

dt
− (1− λ̃)A2(t)ũ− λ̃q̃(t)ũ = 0

and (ũ(π), ũ(0)) = (0, 0). Moreover we must have

N . α1(t) ≤ (1− λ̃)A1(t) + λ̃p̃(t) ≤ β1(t) . N + 1

N . α2(t) ≤ (1− λ̃)A2(t) + λ̃q̃(t) ≤ β2(t) . N + 1, a. e.
(3.5)

which implies, by Lemma 2.2, that w̃ = (ũ, ṽ) = (0, 0), a contrary to ‖w̃‖ = 1, and
we have reached a contradiction. It follows that there indeed must be a number
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R∗ > 0 such that if (λ, w) is a solution of (3.3) then ‖w‖ < R∗. Therefore by
the homotopy invariance of Leray-Schauder degree degLS(I + λΓN,B(0, R∗), )) is
independent of λ ∈ [0, 1] and

dLS(I + ΓN,B(0, R∗), 0) = degLS(I,B(0, R∗), 0) = 1

and hence there is a w∗ ∈ B(0, R∗) ⊂ C0 satisfying w∗ + ΓNw∗ = 0. This proves
the theorem. �

Remark 3.2. Theorem 3.1 recalls other theorems, some going back as far as [5];
the paper [7] inspired many others to look seriosly at nonresonance conditions for
nonlinear differential equations. Conditions of the form λN . p(t) . λN+1 have
been used mainly in boundary value problems for second order ordinary and partial
differential equations. This kind of condition does not seem to have been earlier
used in the situation of Theorem 3.1, perhaps because the proof of Lemma 2.2
differs from proofs given for analogous lemmas in the second order case.

4. Bifurcation from zero

Suppose p, q ∈ L∞(0, π) satisfy

−M . p(t), q(t) . M a.e. (4.1)

for some M > 0. Let

J =
(

0 1
−1 0

)
, A(t) =

(
0 p(t)

−q(t) 0

)
. (4.2)

Let g ∈ C(R× [0, π]×R2, R2) (more generally, g may be a Carathéodory function)
with g(λ, t, 0) = 0, and g(λ, t, w) = o(w) We will apply the results on (2.11) and
(2.12) to study bifurcation and multiplicity questions for the systems

dw

dt
+ λJw + A(t)w = g(λ, t, w) (4.3)

and
dw

dt
+ λA(t)w = g(λ, t, w) (4.4)

with the boundary conditions (2.9), i.e.,

u(0) = 0, u(π) = 0, where w(t) = (u(t), v(t)). (4.5)

We now consider bifurcation from zero. Let p, q ∈ L∞(0, π) satisfy (4.1) and let
A(t) be as defined in (4.2). Let g : R× [0, π]×R2 → R2 be a Carathéodory function.
That is, for each (λ, w) ∈ R × R2 the map t 7→ g(λ, t, w) is Lebesgue measurable,
and for almost all t ∈ [0, π] the map (λ, w) 7→ g(λ, t, w) is continuous. Moreover, for
each r ≥ 0 there is αr ∈ L1(0, π) such that |g(λ, t, w)| ≤ αr(t) a.e. for |λ|+ |w| ≤ r.
We also assume g(λ, 0, t) = 0 and |g(λ, w, t)| = o(|w|) as |w| → 0, uniformly with
respect to λ and t in compact sets. Let w = (u, v)T and consider the boundary
value problem (4.3), (4.5).

dw

dt
+ λJw + A(t)w = g(λ, t, w)

u(0) = 0, u(π) = 0,

where w = (u, v)T . First we write an abstract version of (4.3), (4.5). Let Y =
L1(0, π) and X the Banach space of R2 valued functions w = (u, v) continuous on
[0, π] with u(0) = 0 = u(π) with norm ‖w‖ = maxt∈[0,π] |w(t)|. Let D = {w ∈
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X : w′ ∈ Y }. That is, functions in D satisfy the boundary conditions and are
absolutely continuous. Now let 0 ≤ c < 1 be a number such that the problem

dw

dt
+ cJw + A(t)w = 0

u(0) = 0, u(π) = 0
(4.6)

has no non-trivial solution. In this case we define L : D → Y be defined by

Lw :=
dw

dt
+ cJw + A(t)w

for w ∈ D. The linear operator L has a compact inverse L−1. Let G : R×X → Y
be defined by G(λ, w) := g(λ, ·, w(·)) for (λ, w) ∈ R×X. The map G is continuous
and take bounded sets to bounded sets. Now our problem is equivalent to the
equation in X given by.

w + (λ− c)L−1Jw = L−1G(λ, w)

or
w + µL−1Jw = L−1G̃(µ,w) (4.7)

where µ = λ − c and G̃(µ, w) = G(µ + c, w). Now λ∗ is an eigenvalue of (2.11),
(4.5) (equivalently, Ψ(λ∗) /∈ Z) if and only if µ∗ = λ∗ − c is a characteristic value
of L−1J . If µ is not a characteristic value of L−1J then the Leray-Schauder degree
degLS(I + µL−1J,B(r), 0) is defined for r > 0 (where B(r) = {w ∈ X : ‖w‖ < r}).
Now if µ∗ is a characteristic value of L−1J then the null space of I + µ∗L−1J is
one dimensional, and thus the Leray-Schauder degree degLS(I + µL−1J,B(r), 0)
changes sign as µ crosses µ∗.

We now consider the global bifurcation question for the problem (4.3), (4.5),
which is equivalent to (4.7). Let σ denote the characteristic values of L−1J , so that
µ ∈ σ if and only if λ = µ + c is an eigenvalue of the problem (2.11), (2.9). Let
S0 denote the set of all non-trivial solutions (µ,w) of (4.7) and let S denote the
closure of S0 in R×X. A point (µ∗, 0) is a bifurcation point from the line of trivial
solutions if every neighborhood of (µ∗, 0) contains a member of S0.

Theorem 4.1. Assume p, q ∈ L∞(0, π) satisfy (4.1) with A as in (4.2). Let g :
R×[0, π]×R2 → R2 be a Carathéodory function as described above with g(λ, t, 0) = 0
and g(λ, t, w) = o(w) as |w| → 0 uniformly with respect to λ, t in bounded sets.
Then:

(c1) Each µ∗ ∈ σ is a bifurcation point of (4.7), and thus λ∗ = µ∗ + c is a
bifurcation point of (4.3), (4.5).

(c2) For µ∗ ∈ σ let C(µ∗) denote the component of S which contains (µ∗, 0).
Then C(µ∗) is either unbounded in R × X or C(µ∗) meets another point
(µ̂, 0) with µ̂ ∈ σ\{µ∗}. Moreover rot(w) is defined and constant for all
(µ, w) ∈ C(µ∗) for w 6= 0, and is the same as the rotation number associated
with the eigenfunctions of (2.11), (2.9) at λ∗ = µ∗ + c. Thus C(µ∗) can
only meet another bifurcation point (µ̂, 0) if λ̂ = µ̂ + c is associated with
same same rotation number as is λ∗.

Proof. The proof of this theorem is based upon the Rabinowitz global bifurcation
theorem and the properties of Leray-Schauder degree. The details are similar to
the proof in [12, Theorem 3] and will not be repeated here. �
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We now consider the global bifurcation question for the problem (4.4), (2.13).
We assume (2.16) holds. From this and Theorem 2.8 it follows that there is a
number c > 0 such that (2.12) has no eigenvalues in the half-open interval (0, c].
Let X = C([0, π], R2), Y = L1(0, π), and

D = {w ∈ X : w = (u, v) is absolutely continuous and u(0) = u(π) = 0}.

Define L : D → Y by Lw := w′ + cAw. The operator L has a compact inverse.
Assume g satisfies the conditions of the preceding theorem and let the nonlinear
operator G also be as defined earlier. The problem (4.4), (2.13) is equivalent to

w + µL−1Aw = L−1G̃(µ,w) (4.8)

where µ = λ− c and G̃(µ,w) = G(µ + c, w). Let σ denote the characteristic values
of L−1A, so that µ ∈ σ if and only if λ = µ + c is an eigenvalue of the problem
(2.12), (2.9). Let S0 denote the set of all non-trivial solutions (µ, w) of (4.8) and
let S denote the closure of S0 in R×X. A point (µ∗, 0) is a bifurcation point from
the line of trivial solutions if every neighborhood of (µ∗, 0) contains a member of
S0.

Theorem 4.2. Assume p, q ∈ L∞(0, π) satisfy (2.16) with A as in (4.2). Let g :
R×[0, π]×R2 → R2 be a Carathéodory function as described above with g(λ, t, 0) = 0
and g(λ, t, w) = o(w) as |w| → 0 uniformly with respect to λ, t in bounded sets.
Then:

(c1) Each µ∗ ∈ σ is a bifurcation point of (4.8), and hence λ∗ = µ∗ + c is a
bifurcation point for (4.4), (2.13).

(c2) For µ∗ ∈ σ let C(µ∗) denote the component of S which contains (µ∗, 0).
Then C(µ∗) is either unbounded in R × X or C(µ∗) meets another point
(µ̂, 0) with µ̂ ∈ σ\{µ∗}. Moreover rot(w) is defined and constant for all
(µ, w) ∈ C(µ∗) for w 6= 0, and is the same as the rotation number associated
with the eigenfunctions of (2.12), (2.9) at λ∗ = µ∗ + c. Thus C(µ∗) can
only meet another bifurcation point (µ̂, 0) if λ̂ = µ̂ + c is associated with
same same rotation number as is λ∗.

Proof. The proof is based upon the Rabinowitz global bifurcation theory, making
use of the properties established for (2.12) and properties of Leray-Schauder degree.
See [12, Theorem 3] for a related result and proof. �

5. Bifurcation from infinity

We shall study bifurcation from infinity in systems of the form

dw

dt
+ λA(t)w = g(λ, w, t), t ∈ [0, π], (5.1)

where w = (u, v)T satisfies the boundary conditions (2.9):

u(0) = 0 = u(π),

We assume that A(t) has the form (4.2) and satisfies (2.16), and that g : R ×
[0, π]×R2 → R2 is a Carathéodory function. That is, for each (λ, w) ∈ R×R2 the
map t 7→ g(λ, t, w) is Lebesgue measurable, and for almost all t ∈ [0, π] the map



EJDE-2006/CONF/15 EXISTENCE, MULTIPLICITY, AND BIFURCATION 411

(λ, w) 7→ g(λ, t, w) is continuous. Moreover, for each r ≥ 0 there is αr ∈ L1(0, π)
such that |g(λ, t, w)| ≤ αr(t) a.e. for |λ|+ |w| ≤ r. In addition we assume

lim
|w|→∞

|g(λ, t, w)|
|w|

= 0 (5.2)

uniformly with respect to λ and t in bounded sets.
We will say that (λ∗,∞) (or λ∗) is a bifurcation point at infinity if there is

a sequence {(λn, wn) of solutions to (5.1), (2.9) with λn → λ∗ and ‖wn‖ → ∞
as n → ∞. We apply Leray-Schauder degree to prove the existence of continua
bifurcating from infinity.

Let X = C([0, π], R2), Y = L1([0, π], R2) and let D be the set of all absolutely
continuous w = (u, v)T ∈ X satisfying u(0) = u(π) = 0. Let 0 < c ≤ 1 be such that
(2.12) has no eigenvalues in the interval , c]. L : D ⊂ X → Y by

Lw :=
dw

dt
+ cA(t)w

for w ∈ D. It is not difficult to verify that L is a bijection from D(L) onto Y ,
and its inverse L−1 : Y → X is compact. Let G̃(µ,w)(t) := g(µ + c, t, w(t)) for
µ ∈ R, t ∈ [0, π], and w ∈ X. Then G̃ is a continuous mapping from X into Y , and
takes bounded sets to bounded sets. The problem (5.1), (2.9) is equivalent to the
abstract equation

w + µL−1Aw = L−1G̃(µ,w) (5.3)
where µ = λ− c.

Let S denote the set of solutions (µ,w) to (5.3) and adjoin to S the set of (µ∗,∞)
such that (µ∗,∞) is a bifurcation point at infinity. Denote this set by S∗. By the
component C(µ∗) of S∗ containing (µ∗,∞), we mean the union of all components
of S which contain sequences {(µn, wn)} with µn → µ∗ and ||wn|| → ∞. We now
show that each (λ∗+ c,∞), λ∗ ∈ σ (the eigenvalues of (2.12)) is a bifurcation point
at infinity for (5.3). Thus each (λ∗,∞) is a bifurcation point at infinity for (5.1),
(2.9), with associated component Cλ∗ = {(λ∗, w) : (λ∗ + c, w) ∈ C(λ∗ + c)}.

Theorem 5.1. Let g satisfy (5.2). Then each µ∗ ∈ σ + c is a point of bifurcation
at infinity for (5.3), and thus each λ∗ ∈ σ is a point of bifurcation at infinity
for (5.1), (2.9). Let C(µ∗) denote the component of S∗ containing (k,∞); then
C(µ∗)− {(µ∗,∞)} is unbounded. Moreover at least one of the following holds:

(C1) The projection of C(µ∗) on R is unbounded, or
(C2) C(µ∗) meets another bifurcation point at infinity (µ̂,∞), µ̂ 6= µ∗.

Remark: It may happen that there is a line of trivial solutions, say L = {(λ, 0) :
λ ∈ R}. If so, and C(µ∗) meets L at some point (λ∗, 0), then L ⊂ C(µ∗) and the
projection of C(µ∗) on R is unbounded.

Proof of Theorem 5.1. Bifurcation from infinity in this case may be proven by con-
verting the problem to one of bifurcation from zero by means of the inversion
y = w/‖w‖2 as in [9]. For y ∈ X let

H(µ, y) := ‖y‖2G̃(µ, y/‖y‖2) for y 6= 0, H(µ, 0) := 0.

One can show that H is continuous and takes bounded sets to bounded sets. Ad-
ditionally,

lim
‖y‖→0

H(µ, y)
‖y‖

= 0
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with the limit uniform w.r.t µ in bounded sets. Letting y = w/‖w‖2 in (5.3)
converts that equation to

y + µL−1Ay = L−1H(µ, y). (5.4)

The Rabinowitz global theory for bifurcation from the line of trivial solutions
{(µ, 0) : µ ∈ R} applies to (5.4). Meeting each point (µ∗, 0) with µ∗ a charac-
teristic value of L−1A there is a continuum C̃(µ∗) of nontrivial solutions, and C̃(µ∗)
is either unbounded in R × X or meets another bifurcation point (µ̂, 0), µ̂ 6= µ∗.
The inversion mapping (µ, y) 7→ (µ, y/‖y‖2) maps each C̃(µ∗) to a continuum C(µ∗)
of solutions to (5.3) meeting (µ∗,∞). The points (µ,w) in C(µ∗) produce solu-
tions (µ − c, w) = (λ, w) to (5.1), (2.9); these solutions form a continuum C1(λ∗),
λ∗ = µ∗− c. By examination of the solutions close to the bifurcation point (λ∗,∞)
one can show that the rotation of such solutions is that associated with the eigen-
functions of (2.12), (2.9) at λ = λ∗. This may not be continued on the entire con-
tinuum, since solutions may pass through the origin. The properties of the continua
and the global bifurcation theorem implies the conclusions of the theorem. �

Remark 5.2. One could prove a similar bifurcation from infinity result for equation
(4.3) but that will be omitted. Besides the paper [9] of Rabinowitz on bifurcation
from infinity, the reader is referred to the paper [11] of Schmitt and Wang.

6. Global behavior of continua

In this section we give conditions which imply stronger conclusions regarding
the global behavior of the continua C bifurcating from (λ∗, 0) or (λ∗,∞) found in
the preceding sections. We show that under some conditions on the signs of the
nonlinearities the C bend to the left or to the right of λ∗. Consider again systems
of the form

dw

dt
+ λA(t)w = g(λ, t, w) (6.1)

with boundary conditions (2.9) as before, and w = (u, v)T . We will assume that
p = q, i.e.,

A(t) =
(

0 p(t)
−p(t) 0

)
.

Assume g satisfies the Carathéodory conditions. We place some additional struc-
tural conditions on g:

g(λ, t, u, v) =
(
−vg1(λ, t, u, v)
ug2(λ, t, u, v)

)
.

Thus our system takes the form

du

dt
= −λp(t)v − vg1(λ, u, v, t)

dv

dt
= λp(t)u + ug2(λ, u, v, t).

(6.2)

Theorem 6.1. Assume that p and g = (−vg1, ug2) satisfy the conditions of The-
orem 4.1. Also suppose that p ≥ 0, and g1(µ, u, v, t), g2(µ, u, v, t) ≤ 0 (≥ 0) for all
(µ, u, v, t) ∈ R×R2 × [0, π]. Let C ⊂ R×X denote the continuum bifurcating from
a point (λ∗, 0). Then C ⊂ [λ∗,∞)×X ((−∞, λ∗]×X).
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Proof. Suppose g1(µ, u, v, t), g2(µ, u, v, t) ≤ 0 for all (µ, u, v, t) ∈ R×R2× [0, π]. Let
(λ, w) = (λ, (u, v)) ∈ C, with (u, v) 6= (0, 0), and let P (t) = λp(t)+g1(µ, u(t), v(t), t)
and Q(t) = λp(t) + g2(µ, u(t), v(t), t). Then u, v satisfy

du

dt
= −P (t)v

dv

dt
= Q(t)u.

Suppose λ < λ∗. Then P (t) ≤ λp(t) . λ∗p(t) and, Q(t) ≤ λp(t) . λ∗p(t). Thus if
rot(w) is the is the rotation number of w, by Lemma 2.1 we must have rot(w) < d1,
where d1 is the rotation associated with solutions to

du

dt
= −λ∗p(t)v

dv

dt
= λ∗p(t)u.

satisfying (2.9). But by Theorem 4.1 d1 must be the the rotation number of all
solutions w with (λ, w) ∈ C. This is a contradiction and implies that µ ≥ λ∗, and
thus C ⊂ [λ∗,∞)×X.

If g1(µ, u, v, t), g2(µ, u, v, t) ≥ 0 for all (µ, u, v, t) ∈ R × R2 × [0, π] then very
similar arguments show that C ⊂ (−∞, λ∗]×X. �

Remark 6.2. If we assume that p = q, and g = (g1, g2)T satisfy the conditions
for bifurcation from infinity given in Theorem 5.1 and p, g1, g2 satisfy the sign
conditions of the preceding theorem, then we can show that the continua bifurcating
from infinity have the same containment properties. Similar results hold for the
systems (4.3).

7. Multiple solutions

In [12] the author applied results on bifurcation from the line of trivial solutions
together with bending directions of the bifurcating continua to prove multiplicity
of solutions under appropriate conditions. In this section we apply our results on
bifurcation from infinity to obtain related results. We prove the existence multiple
structurally distinct solutions to boundary value problems of the form

du

dt
= −f(λ, t, u, v)v

dv

dt
= g(λ, t, u, v)u

(7.1)

u(0) = 0 = u(π) (7.2)

where w = (u, v). To obtain the existence of infinitely many solutions we apply our
earlier bifurcation from infinity results to the family of problems

du

dt
= −λp(t)− g1(λ, t, u, v)v

dv

dt
= λp(t) + g2(λ, t, u, v)u

(7.3)

for λ ∈ R with boundary conditions (7.2). Let p ∈ L∞(0, π),p & 0 on [0, π] Let

A(t) :=
(

0 p(t)
−p(t) 0

)
.
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Suppose g := (g1, g2)T satisfy the Carathéodory conditions and

lim
|w|→∞

|g(λ, t, w)|
|w|

= 0) (7.4)

uniformly with respect to λ, t in compact sets. Recall that we call w̃ the odd/even
extension of w provided w = (u, v) ∈ C([0, π], R2), u(0) = 0 = v(0) and w̃ = (ũ, ṽ)
where ũ, ṽ are, respectively, the odd extension of u and the even extension of v to
[−π, π].

Theorem 7.1. In addition to the above, suppose solutions to initial value problems
are unique, g(λ, t, 0) = 0, gi(λ, t, w) ≤ 0, for λ ≥ 0 and gi(λ, t, w) ≥ 0, for λ ≤ 0
(i = 1, 2), and

lim
|w|→0

|λA(t)w − g(λ, t, w)|
|w|

= 0

uniformly with respect to (λ, t) in bounded sets. Let λn, n ∈ Z denote the nth
eigenvalue of (2.12), (7.2), N be a positive integer. Then (7.1), (7.2) with λ = λ∗

has at least N topologically distinct solutions if λ∗ > λN or λ∗ < λ−N . Indeed,
in this case there is for each k ∈ N there is a solution wk = (uk, vk) such that the
odd/even 2π periodic extension w̃k of wk has rotation number k.

Proof. The eigenvalues of the problem linearized at infinity are the λn, n ∈ Z.
By Theorem 5.1 problem (7.3), (7.2) has at each λn a continuum Cn of solutions
bifurcating from (λn,∞), and Cn is either unbounded in R × X, or else meets
another, distinct, bifurcation point (k,∞) (k 6= n). Now solutions to initial value
problems are unique and g(λ, t, 0) = 0. Therefore the rotation number of solutions
near the bifurcation point must be continued to all nontrivial solutions in Cn Note
that in this case, since p = q, there is exactly one eigenvalue associated with rotation
number n ∈ Z, and it is λn. Thus Cn cannot meet any other bifurcation point at
infinity. The sign conditions on the gi imply that for n ≥ 1, Cn ⊂ [λn,∞) and for
n ≤ −1, Cn ⊂ (−∞, λn] (this follows from noticing the sign conditions of Theorem
6.1 can be used discriminately, based in this case on the sign of λ). Now the only
bifurcation point from the line of trivial solutions is (λ, 0) = (0, 0). It follows that
no Cn with n 6= 0 can meet the line of trivial solutions. On the other hand the
projection of these Cn (with n 6= 0) on R must be unbounded. Thus for n ≥ 1, Cn

contains a nontrivial solution (µ,w) for each µ > λn, and for n ≤ −1, Cn contains a
nontrivial solution (µ,w) for each µ < λn. These nontrivial solutions have rotation
number n. It follows now that problem (7.3), (7.2) with λ = λ∗ has at least N
solutions if λ∗ > λN or λ∗ < λ−N . �

example 7.2. The following system, with p = q = 1,

du

dt
= −λv +

λv

1 + u2 + v2
+

λ sin2(t)u2v

1 + u4 + v4

dv

dt
= λu− λu

1 + u2 + v2
− λ cos2(t)v4u

2 + u6 + v6

satisfies the conditions of the preceding theorem.
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