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Abstract. Consider the system

−∆pu = λf(u, v) in Ω

−∆qv = λg(u, v) in Ω

u = 0 = v on ∂Ω

where ∆sz = div(|∇z|s−2∇z), s > 1, λ is a non-negative parameter, and Ω is

a bounded domain in R with smooth boundary ∂Ω. We discuss the existence
of a large positive solution for λ large when

lim
x→∞

f(x, M [g(x, x)]1/q−1)

xp−1
= 0

for every M > 0, and limx→∞ g(x, x)/xq−1 = 0. In particular, we do not

assume any sign conditions on f(0, 0) or g(0, 0). We also discuss a multiplicity
results when f(0, 0) = 0 = g(0, 0).

1. Introduction

Consider the boundary-value problem

−∆pu = λf(u, v) in Ω

−∆qv = λg(u, v) in Ω
u = 0 = v on ∂Ω

(1.1)

where ∆sz = div(|∇z|s−2∇z), s > 1, λ is a non-negative parameter, and Ω is a
bounded domain in R with smooth boundary ∂Ω.

We are interested in the study of positive solutions to (1.1) when no conditions
on f(0, 0), g(0, 0) are assumed, in particular, they could be negative (semipositone
systems). Semipositive problems are mathematically challenging area in the study
of positive solutions (see [2] and [5]). For a review on semipositone problems, see
[3]. In this paper we make the following assumptions:

2000 Mathematics Subject Classification. 35J55, 35J70.

Key words and phrases. Positive solutions; p-Laplacian systems; semipositone problems.
c©2007 Texas State University - San Marcos.
Published May 15, 2007.

29



30 J. ALI, R. SHIVAJI EJDE/CONF/16

(H1) f, g ∈ C1((0,∞)× (0,∞))∩C([0,∞)× [0,∞)) be monotone functions such
that fu, fv, gu, gv ≥ 0 and limu,v→∞ f(u, v) = limu,v→∞ g(u, v) = ∞.

(H2) lim
x→∞

f(x,M [g(x, x)]1/q−1)
xp−1

= 0 for every M > 0.

(H3) lim
x→∞

g(x, x)
xq−1

= 0.

We establish the following existence and multiplicity results:

Theorem 1.1. Let (H1)–(H3) hold. Then there exists a positive number λ∗ such
that (1.1) has a large positive solution (u, v) for λ > λ∗.

Theorem 1.2. Let (H1)–(H3) hold. Further let F (s) = f(s, cs) and G(s) = g(c̃s, s)
for any c, c̃ > 0 and assume that f and g be sufficiently smooth functions in
the neighborhood of zero with F (0) = G(0) = 0, F (k)(0) = 0 = G(l)(0) for
k = 1, 2, . . . [p − 1], l = 1, 2, . . . [q − 1] where [s] denotes the integer part of s.
Then (1.1) has at least two positive solutions provided λ is large.

This paper extends the recent work in [1], where the authors study such systems
with weaker coupling, namely systems of the form,

−∆pu = λ1α(v) + µ1δ(u) in Ω

−∆qv = λ2β(u) + µ2γ(v) in Ω
u = 0 = v on ∂Ω

(1.2)

where λ1, λ2, µ1 and µ2 are non-negative parameters, with the following conditions:

(C1) α, β, δ, γ ∈ C1(0,∞) ∩ C[0,∞) be monotone functions such that

lim
x→∞

α(x) = lim
x→∞

β(x) = lim
x→∞

δ(x) = lim
x→∞

γ(x) = ∞.

(C2) lim
x→∞

α(M [β(x)]1/q−1)
xp−1

= 0 for every M > 0.

(C3) lim
x→∞

δ(x)
xp−1

= lim
x→∞

γ(x)
xq−1

= 0.

In [1], authors establish an existence result for the system (1.2) when λ1+µ1 and
λ2 + µ2 are large. In addition, for the case when f(0) = h(0) = g(0) = γ(0) = 0,
authors discuss a multiplicity result for λ1 + µ1 and λ2 + µ2 large. Here we extend
this study to classes of systems with much stronger coupling. Our approach is based
on the method of sub-and supersolutions (see e.g. [4]). In Section 2, we will prove
Theorem 1.1, in Section 3, we will prove Theorem 1.2 and in Section 4, we discuss
some examples with strong coupling.

2. Proof of Theorem 1.1

We extend f(u, v) and g(u, v) for all (u, v) ∈ R2 smoothly such that there ex-
ists a constant k0 > 0 such that f(u, v), g(u, v) ≥ −k0 for all (u, v) ∈ R2. We
shall establish Theorem 1.1 by constructing a positive weak subsolution (ψ1, ψ2) ∈
W 1,p(Ω)∩C(Ω)×W 1,q(Ω)∩C(Ω) and a supersolution (z1, z2) ∈W 1,p(Ω)∩C(Ω)×
W 1,q(Ω) ∩ C(Ω) of (1.1) such that ψi ≤ zi for i = 1, 2. That is, ψi, zi satisfies
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(ψ1, ψ2) = (0, 0) = (z1, z2) on ∂Ω,∫
Ω

|∇ψ1|p−2∇ψ1 · ∇ξ dx ≤ λ

∫
Ω

f(ψ1, ψ2)ξ dx,∫
Ω

|∇ψ2|p−2∇ψ2 · ∇ξ dx ≤ λ

∫
Ω

g(ψ1, ψ2)ξ dx,∫
Ω

|∇z1|p−2∇z1 · ∇ξ dx ≥ λ

∫
Ω

f(z1, z2)ξ dx,∫
Ω

|∇z2|p−2∇z2 · ∇ξ dx ≥ λ

∫
Ω

g(z1, z2)ξ dx

for all ξ ∈W :=
{
η ∈ C∞0 (Ω) : η ≥ 0 in Ω

}
.

Let λ(r)
1 the first eigenvalue of −∆r with Dirichlet boundary conditions and φr

the corresponding eigenfunction with φr > 0;Ω and ‖φr‖∞ = 1 for r = p, q. Let
m, δ > 0 be such that |∇φr|r − λ

(r)
1 φr

r ≥ m on Ωδ = {x ∈ Ω|d(x, ∂Ω) ≤ δ} for
r = p, q. (This is possible since |∇φr| 6= 0 on ∂Ω while φr = 0 on ∂Ω for r = p, q).
We shall verify that

(ψ1, ψ2) :=
([λk0

m

]1/p−1(p− 1
p

)
φp/p−1

p ,
[λk0

m

]1/q−1(q − 1
q

)
φq/q−1

q

)
,

is a subsolution of (1.1) for λ large. Let ξ ∈W . Then∫
Ω

|∇ψ1|p−2∇ψ1 · ∇ξ dx =
(λk0

m

) ∫
Ω

φp|∇φp|p−2∇φp · ∇ξ dx

=
(λk0

m

){∫
Ω

|∇φp|p−2∇φp · ∇(φpξ) dx−
∫

Ω

|∇φp|pξ dx
}

=
(λk0

m

){∫
Ω

[λ(p)
1 φp

p − |∇φp|p]ξ dx
}
.

Similarly ∫
Ω

|∇ψ2|q−2∇ψ2 · ∇ξ dx =
(λk0

m

){∫
Ω

[λ(q)
1 φq

q − |∇φq|q]ξ dx
}
.

Now on Ωδ we have |∇φr|r − λ
(s)
1 φr

r ≥ m for r = p, q. Which implies that
k0

m

(
λ

(p)
1 φp

p − |∇φp|p
)
− f(ψ1, ψ2) ≤ 0,

k0

m

(
λ

(q)
1 φq

q − |∇φq|q
)
− g(ψ1, ψ2) ≤ 0.

Next on Ω − Ωδ we have φp ≥ µ, φq ≥ µ for some µ > 0, and therefore for λ
large

f(ψ1, ψ2) ≥
k0

m
λ

(p)
1 ≥ k0

m
λ

(p)
1 φp

p − |∇φp|p,

g(ψ1, ψ2) ≥
k0

m
λ

(q)
1 ≥ k0

m
λ

(q)
1 φq

q − |∇φq|q.

Hence ∫
Ω

|∇ψ1|p−2∇ψ1 · ∇ξ dx ≤ λ

∫
Ω

f(ψ1, ψ2)ξ dx,∫
Ω

|∇ψ2|q−2∇ψ2 · ∇ξ dx ≤ λ

∫
Ω

g(ψ1, ψ2)ξ dx;
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i.e., (ψ1, ψ2) is a subsolution of (1.1) for λ large.
Next let er be the solution of −∆rer = 1 in Ω, er = 0 on ∂Ω for r = p, q. Let

(z1, z2) :=
(

c
µp
λ1/p−1ep, [g(cλ1/p−1, cλ1/p−1)]1/q−1λ1/q−1eq

)
where µr = ‖er‖∞;

r = p, q. Then∫
Ω

|∇z1|p−2∇z1 · ∇ξ dx = λ
( c
µp

)p−1
∫

Ω

|∇ep|p−2∇ep · ∇ξ dx

=
1

(µp)p−1
(cλ1/p−1)p−1

∫
Ω

ξ dx.

By (H2) we can choose c large enough so that

1
(µp)p−1

(cλ1/p−1)p−1

∫
Ω

ξ dx

≥ λ

∫
Ω

f(cλ1/p−1, [g(cλ1/p−1, cλ1/p−1)]1/q−1λ1/q−1µq)ξ dx

≥ λ

∫
Ω

f(cλ1/p−1 ep

µp
, [g(cλ1/p−1, cλ1/p−1)]1/q−1λ1/q−1eq)ξ dx

= λ

∫
Ω

f(z1, z2)ξ dx.

Next ∫
Ω

|∇z2|q−2∇z2 · ∇ξ dx = λ[g(cλ1/p−1, cλ1/p−1)]
∫

Ω

|∇eq|q−2∇eq · ∇ξ dx

= λ[g(cλ1/p−1, cλ1/p−1)]
∫

Ω

ξ dx

By (H3) choose c large so that
1

λ1/q−1
µq ≥

[g(cλ1/p−1, cλ1/p−1)]1/q−1

cλ1/p−1
, then

λ[g(cλ1/p−1, cλ1/p−1)]
∫

Ω

ξ dx

≥ λ

∫
Ω

g
(
cλ1/p−1, [g(cλ1/p−1, cλ1/p−1)]1/q−1λ1/q−1µq

)
ξ dx

≥ λ

∫
Ω

g
(
cλ1/p−1 ep

µp
, [g(cλ1/p−1, cλ1/p−1)]1/q−1λ1/q−1eq

)
ξ dx

= λ

∫
Ω

g(z1, z2)ξ dx;

i.e., (z1, z2) is a supersolution of (1.1) with zi ≥ ψi for c large, i = 1, 2. (Note
|∇er| 6= 0; ∂Ω for r = p, q).

Thus, there exists a solution (u, v) of (1.1) with ψ1 ≤ u ≤ z1, ψ2 ≤ v ≤ z2. This
completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we will construct a subsolution (ψ1, ψ2), a strict su-
persolution (ζ1, ζ2), a strict subsolution (w1, w2), and a supersolution (z1, z2) for
(1.1) such that (ψ1, ψ2) ≤ (ζ1, ζ2) ≤ (z1, z2), (ψ1, ψ2) ≤ (w1, w2) ≤ (z1, z2), and
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(w1, w2) � (ζ1, ζ2). Then (1.1) has at least three distinct solutions (ui, vi), i =
1, 2, 3, such that (u1, v1) ∈ [(ψ1, ψ2), (ζ1, ζ2)], (u2, v2) ∈ [(w1, w2), (z1, z2)], and

(u3, v3) ∈ [(ψ1, ψ2), (z1, z2)] \
(
[(ψ1, ψ2), (ζ1, ζ2)] ∪ [(w1, w2), (z1, z2)]

)
.

We first note that (ψ1, ψ2) = (0, 0) is a solution (hence a subsolution). As in
Section 2, we can always construct a large supersolution (z1, z2). We next consider

−∆pw1 = λf̃(w1, w2) in Ω

−∆qw2 = λg̃(w1, w2) in Ω
w1 = 0 = w2 on ∂Ω

(3.1)

where f̃(u, v) = f(u, v) − 1 and g̃(u, v) = g(u, v) − 1. Then by Theorem 1.1, (3.1)
has a positive solution (w1, w2) when λ is large. Clearly this (w1, w2) is a strict
subsolution of (1.1). Finally we construct the strict supersolution (ζ1, ζ2).

To do so, we let φp, φq as described in Section 2. We note that there exists
positive constants c1 and c2 such that

φp ≤ c1φq and φq ≤ c2φp. (3.2)

Let (ζ1, ζ2) = (εφp, εφq) where ε > 0. Let Hp(s) := λ
(p)
1 sp−1 − λf(s, c2s) and

Hq(s) := λ
(q)
1 sq−1 − λg(c1s, s). Observe that Hp(0) = Hq(0) = 0, H(k)

p (0) =
0 = H

(l)
q (0) for k = 1, 2, . . . [p − 2] and l = 1, 2, . . . [q − 2]. H

(p−1)
p (0) > 0 and

H
(q−1)
q (0) > 0 if p, q are integers, while limr→0H

([p])(r) = +∞ = limr→0H
([q])(r)

if p, q are not integers. Thus there exists θ such that Hp(s) > 0 and Hq(s) > 0 for
s ∈ (0, θ]. Hence for 0 < ε ≤ θ we have

λ
(p)
1 (ζ1)p−1 = λ

(p)
1 (εφp)p−1 > λf(εφp, c2εφp)

≥ λf(εφp, εφq)

= λf(ζ1, ζ2) x ∈ Ω,

(3.3)

and similarly we get

λ
(q)
1 (ζ2)q−1 = λ

(q)
1 (εφq)q−1 > λg(c1εφq, εφq)

≥ λg(εφp, εφq)

= λg(ζ1, ζ2), x ∈ Ω.

(3.4)

Using the inequalities (3.3) and (3.4) we have,∫
Ω

|∇ζ1|p−2∇ζ1 · ∇ξ dx = εp−1

∫
Ω

|∇φp|p−2∇φp · ∇ξ

=
∫

Ω

λ
(p)
1 (εφp)p−1ξ dx

> λ

∫
Ω

f(ζ1, ζ2)ξ dx.

Similarly we have ∫
Ω

|∇ζ2|q−2∇ζ2 · ∇ξ dx > λ

∫
Ω

g(ζ1, ζ2)ξ dx

Thus (ζ1, ζ2) is a strict supersolution. Here we can choose ε small so that (w1, w2) �
(ζ1, ζ2).
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Hence there exists solutions (u1, v1) ∈ [(ψ1, ψ2), (ζ1, ζ2)], (u2, v2) ∈ [(w1, w2), (z1, z2)],
and (u3, v3) ∈ [(ψ1, ψ2), (z1, z2)] \

(
[(ψ1, ψ2), (ζ1, ζ2)] ∪ [(w1, w2), (z1, z2)]

)
. Since

(ψ1, ψ2) ≡ (0, 0) is a solution it may turn out that (u1, v1) ≡ (ψ1, ψ2) ≡ (0, 0). In
any case we have two positive solutions (u2, v2) and (u3, v3). Hence Theorem 1.2
holds.

Remark 3.1. Note that in the construction of the supersolution (ζ1, ζ2) we require
the conditions at zero on F and G only for the constants c = c2 and c̃ = c1.

4. Examples

Example 4.1. Consider the problem

−∆pu = λ[vα + (uv)β − 1] in Ω

−∆qv = λ[uσ + (uv)γ/2 − 1] in Ω
u = 0 = v on ∂Ω

(4.1)

where α, β, σ, γ are positive parameters. Then it is easy to see that (4.1) satisfies the
hypotheses of Theorem 1.1 if max{σ, γ} α

q−1 < p− 1, (max{σ, γ} 1
q−1 + 1)β < p− 1

and max{σ, γ} < q − 1.

Example 4.2. Let

h(x) =

{
xα; x ≤ 1
α
σx

σ + (1− α
σ ); x > 1,

and γ(x) =

{
xµ; x ≤ 1
µ
δ x

δ + (1− µ
δ ); x > 1,

where α, σ, µ, δ are positive parameters. Here we assume α > p−1 if p is an integer,
α > [p] if p is not an integer, µ > q − 1 if q is an integer and µ > [q] if q is not an
integer.

Consider the problem

−∆u = λ[1 + uβ ]h(v) in Ω

−∆v = λγ(u) in Ω
u = 0 = v on ∂Ω

(4.2)

where 0 ≤ β < p − 1. Then it is easy to see that (4.2) satisfies the hypotheses of
Theorem 1.2 if δσ < [p− 1− β](q − 1) and δ < q − 1.
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