2006 International Conference in Honor of Jacqueline Fleckinger.

Electronic Journal of Differential Equations, Conference 16, 2007, pp. 29-34.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

ON POSITIVE SOLUTIONS FOR A CLASS OF STRONGLY
COUPLED P-LAPLACIAN SYSTEMS

JAFFAR ALI, R. SHIVAJI

Dedicated to Jacqueline Fleckinger on the occasion of
an international conference in her honor

ABSTRACT. Consider the system
—Apu=Af(u,v) nQ
—Aqv = Ag(u,v) inQ
u=0=v on Jf2
where Asz = div(|V2|*72V2), s > 1, X is a non-negative parameter, and € is

a bounded domain in R with smooth boundary 0€2. We discuss the existence
of a large positive solution for A\ large when
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T — 00 xp—1

for every M > 0, and limz— o0 g(z,2)/x9~1 = 0. In particular, we do not
assume any sign conditions on f(0,0) or g(0,0). We also discuss a multiplicity
results when f(0,0) = 0 = g(0,0).

1. INTRODUCTION

Consider the boundary-value problem
—Apu = Af(u,v) inQ
—Agv = Ag(u,v) in Q (1.1)
u=0=v on 0N

where Az = div(|V2]|*72V2), s > 1, is a non-negative parameter, and ) is a
bounded domain in R with smooth boundary 0f.

We are interested in the study of positive solutions to when no conditions
on f(0,0),¢(0,0) are assumed, in particular, they could be negative (semipositone
systems). Semipositive problems are mathematically challenging area in the study
of positive solutions (see [2] and [B]). For a review on semipositone problems, see
[3]. In this paper we make the following assumptions:
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(H1) f,g € C*((0,00) x (0,00))NC([0,00) x [0,00)) be monotone functions such
that fu, fv, gu, 9o > 0 and limy, y—00 f(u, v) = limy, y—oo g(u, v) = 0.
f(a, M[g(z, x)]/971)

(H2) lim | = 0 for every M > 0.
T—00 xT
(H3) lim % =0.

We establish the following existence and multiplicity results:

Theorem 1.1. Let (H1)-(H3) hold. Then there exists a positive number \* such
that (1.1) has a large positive solution (u,v) for X > \*.

Theorem 1.2. Let (H1)-(H3) hold. Furtherlet F(s) = f(s,cs) and G(s) = g(¢s, s)
for any c,é > 0 and assume that f and g be sufficiently smooth functions in
the neighborhood of zero with F(0) = G(0) = 0, F®(0) = 0 = GU(0) for
E=1,2...[p—1], 1 = 1,2,...[qg — 1] where [s] denotes the integer part of s.
Then has at least two positive solutions provided X is large.

This paper extends the recent work in [I], where the authors study such systems
with weaker coupling, namely systems of the form,

—Apu = Aa(v) + p1d(u) in Q
—Agv = Xaf(u) + poy(v) in Q (1.2)
u=0=v on I
where A1, Ao, 1 and uo are non-negative parameters, with the following conditions:

(C1) «,f,8,v € C(0,00) N C[0,0) be monotone functions such that

lim a(x) = lim B(z) = lim §(z) = lim v(x) = co.

€r—00 xr— 00 xr— 00 r—0o0

a(M[B()]'/1)

(C2) lim = 0 for every M > 0.

r—00 xrP—
1)
(©3) tim 28 g 20
z—o0 xP—1 z—o0 pd—1

In [I], authors establish an existence result for the system when A1 +p; and
A2 + g are large. In addition, for the case when f(0) = h(0) = g(0) = v(0) = 0,
authors discuss a multiplicity result for A\; + g1 and Ay 4 po large. Here we extend
this study to classes of systems with much stronger coupling. Our approach is based
on the method of sub-and supersolutions (see e.g. [4]). In Section 2, we will prove
Theorem in Section 3, we will prove Theorem and in Section 4, we discuss
some examples with strong coupling.

2. PROOF OF THEOREM [L.1]

We extend f(u,v) and g(u,v) for all (u,v) € R? smoothly such that there ex-
ists a constant kg > 0 such that f(u,v),g(u,v) > —ko for all (u,v) € R%2. We
shall establish Theorem by constructing a positive weak subsolution (1, 12) €
WP Q)N C(Q) x Whe(Q)NC(Q) and a supersolution (z1, 29) € WP (Q2)NC(Q) x
Wha(Q) N C(Q) of such that ¥; < z; for i = 1,2. That is, 1, z; satisfies
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(1/’14/)2) = (070) = (ZlaZQ) on 897
/ V[P 2V, - Ve da < A / F (1, ) da,
Q Q

/ |Vapa|P~2Vahy - VEdz < /\/ (Y1, 2)€ dx,
Q 0

/ V21 [P72V 2, - VEdz > X [ f(z1,22)¢ du,
Q Q

/ |Vz2|p*2Vz2 . Vfdl‘ > /\/ 9(21,22)§dx
Q Q

forall £ € W :={n € C§°(Q) :n>0in Q}.
Let )\Y) the first eigenvalue of —A, with Dirichlet boundary conditions and ¢,
the corresponding eigenfunction With &r > 0;Q and ||@r|lec = 1 for r = p,q. Let

m,d > 0 be such that |Ve,|" — T " > m on Qs = {x € Qld(z,00) < &} for
r = p,q. (This is possible since |V¢T\ # 0 on Of) while ¢, = 0 on 9 for r=1p,q).
We shall verify that

(b1, o) 1= ([)\ko]l/p 1( )¢p/p 1 [)\ko}l/q 1( )¢q/q 1)

m p m q
is a subsolution of (|1.1) for A large. Let £ € W. Then

L'W‘HV%'VU%: & / $p|Vp|P 2V, - VE da
)\ko /\wp\p 2V, - V(6,¢) dx—/ VopPedr)
B (&H/ﬂp‘?)‘ﬁg - |V¢’p|p]£d:ﬂ}.

m

Similarly
[ 1wt v, - Veds = (S2){ [ 0001~ Vo, 1eda).

Now on Qs we have |V, |" — )\gs)cﬂ > m for r = p,q. Which implies that
ko
E(Aﬁp)cﬁﬁ - |V¢p|p> = f(¥1,¢2) <0
k
"0 (XD — [V6,|7) = glth1,2) <0

Next on  — Qs we have ¢, > u, ¢, > p for some p > 0, and therefore for A
large

ko

F@hr, 1) > A“” A“’%f»p [V ,?,

I \/

V

k
o1,02) 2 220 2 D g1 7,1

Hence

/ V41 [P2V, - Ve dar < A / F (s )€ da,

Q Q

/ |Vpa |92V ehg - VEdx < )\/ (Y1, 92)€ dx;
Q Q
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i.e., (11,19) is a subsolution of (1.1)) for A large.
Next let e, be the solution of —A,e,. =1 in Q, e, = 0 on 9N for r = p,q. Let

(s1,22) = (GENP e, [g(eX V7= NP IN0 e, ) where iy = el
r =p,q. Then

/ |V21|P2Vz, - VEda = )\(i)pfl / |Vep|P~2Ve, - VEda
Q Hp Q
1

_ (Mp)pl(C)\l/p_1>p_1/Q£dx'

By (H2) we can choose ¢ large enough so that

1 1/p—1yp—1
(Mp)p_l(C)\ p=1yp /diw

=A FAYP=L [g(eAV/P=L APy a2\ a=1y, e dy

> A / FENPTLER (g(eXV/P=1 et/p= by ami\Vate e dy
- Q Hp

= )\/Qf(zl,ZQ)édx.

Next
/Q V2|92V 2y - VEda = Ng(eA/P~L eXY/P~1)] /Q |Ve,|9?Ve, - VEdx
= Nglen 7 x4 [ eds
Q

[g(c)\l/p—l’ C)\l/p—l)]l/q—l

1
By (H3) choose c large so that i7a=1Ha > A/ , then

A[g(cAI/P*Rc/\l/P*l)]/gdx
Q
> A /Q g(eAVPTE [g(eAVPm eI )€

> )\/ g(c)\l/p_le—p, [g(c)\l/p_l,c)\l/p_l)]l/q_l)\l/q_leq)fdac
Q

Hp

:)\/99(21722)5(1117;

i.e., (z1,22) is a supersolution of (1.1} with z; > ¢, for ¢ large, i = 1,2. (Note
|Ve,| # 0; 99 for r = p, q).

Thus, there exists a solution (u,v) of (1.1]) with ¥ < u < 21,99 < v < 25. This
completes the proof of Theorem [I.1]

3. PROOF OF THEOREM

To prove Theorem [1.2) we will construct a subsolution (t¢1,1), a strict su-
persolution ((1,(2), a strict subsolution (wi,ws), and a supersolution (z1, 29) for

such that (¢1,12) < (¢1,¢2) < (21,22), (Y1,¢2) < (w1, we) < (21,22), and
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wy,w2) £ (C1,¢2). Then has at least three distinct solutions (u;,v;), i =
1,2,3, such that (uy,v1) € [(¢1,2), (C1, )], (u2,v2) € [(wi,w2), (21, 22)], and
(us, vs3) € [(¥1,92), (21, 22)] \ ([(¥1,%2), (C1,¢2)] U [(wr, w2), (21, 22)]).

We first note that (¢1,%2) = (0,0) is a solution (hence a subsolution). As in
Section 2, we can always construct a large supersolution (z1, z2). We next consider

—Apwy = )\f(wl,wg) in Q
—AqUJQ = )\g(wl,wg) in (31)
wy; =0=wy on IN
where f(u,v) = f(u,v) — 1 and §(u,v) = g(u,v) — 1. Then by Theorem (13-1))
has a positive solution (wy,ws) when A is large. Clearly this (wq,ws) is a strict
subsolution of (L.1). Finally we construct the strict supersolution ({3, (2).

To do so, we let ¢p, ¢, as described in Section 2. We note that there exists
positive constants ¢; and ¢y such that

Op < c19g and  @g < cagy. (3.2)
Let (¢1,¢2) = (epp,epy) where € > 0. Let Hy(s) = )xlp)sp_l — Af(s,ce8) and
Hy(s) == A9s771 — X\g(cys,5). Observe that H,(0) = H,(0) = 0, HY(0) =
0=HP0) for k=1,2,...[p—2 and | = 1,2,...[g — 2. HP V(0) > 0 and
ngqfl)(()) > 0 if p, ¢ are integers, while lim, o H{PD () = 400 = lim,_.o H19) (7
if p, ¢ are not integers. Thus there exists 6 such that H,(s) > 0 and Hy(s) > 0 for
s € (0,6]. Hence for 0 < € < 6 we have

A" = A (€)™ > Af(edp, cacdy)
> M (€pp, €¢q) (3.3)
= )\f(glv <2) UAS Q’

and similarly we get

AP (@)1 = AP (€0g) " > Ag(eredy, edy)
> >\g(6¢p» 6¢q) (3.4)
= )\Q(Ch@)’ z € Q.

Using the inequalities (3.3]) and (3.4) we have,
/|VC1|p_2VC1~V§dx=ep_l/ |V,[P2V e, - VE
Q Q
= / AP ey~ da
Q
> )\/ f((l,CQ)g dx.
Q

Similarly we have

/ V6|72V, - VEdz > A / 9(C1, )€ da
Q Q

Thus ((1, ¢2) is a strict supersolution. Here we can choose € small so that (wq, ws) %

(C1,C2).
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Hence there exists solutions (u1,v1) € [(¢1,¥2), (C1, ()], (ug,v2) € [(w1,ws), (21, 22)],
and (us,vs) € [(¥1,%2), (21,22)] \ ([(¥1,%2), (1, ¢2)] U [(wr,w2), (21,22)]). Since
(11,12) = (0,0) is a solution it may turn out that (u1,v1) = (¢¥1,%2) = (0,0). In
any case we have two positive solutions (ug,vs) and (us,vs3). Hence Theorem [1.2
holds.

Remark 3.1. Note that in the construction of the supersolution ({1, {2) we require
the conditions at zero on F' and G only for the constants ¢ = ¢ and ¢ = ¢;.

4. EXAMPLES

Example 4.1. Consider the problem
—Apu = Av® + (w)? —1] in Q
—Agv = Au + (uwv)"/? = 1] inQ (4.1)
u=0=v on 0N

where «, (3, o, v are positive parameters. Then it is easy to see that (4.1)) satisfies the
hypotheses of Theorem if max{o, 'y}(f%1 < p—1, (max{o, 'y}q_% +1)B<p-1
and max{o,y} < ¢ — 1.

Example 4.2. Let

2o r<1 k- r<l1
h(z) = ’ - and x) = ’ -
@) 2x74+(1-2); =>1, (@) Bxd+(1-4); x>1,

[eg
where «, 0, i1, § are positive parameters. Here we assume o > p—1if p is an integer,
a > [p] if p is not an integer, u > g — 1 if ¢ is an integer and u > [¢] if ¢ is not an
integer.
Consider the problem

—Au = M1+ 4’lh(v) in Q
—Av=X(u) inQ (4.2)
u=0=v on 0N

where 0 < 8 < p — 1. Then it is easy to see that (4.2]) satisfies the hypotheses of
Theorem [1.2]if 0 < [p—1—f](g—1) and § < ¢ — 1.
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