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ABSTRACT. In this paper, we obtain some results about the existence of solu-
tions to the system

N
o ou;
- Z pk], 3 )+QZU1 *Uzmzuz‘f'gz(x ULy .-y Un),
dac
k,j=1
fori:l,...,ndeﬁnedinRN.

[section]

1. INTRODUCTION

1.1. The problem settings. We study the elliptic system

N
0 .
Z P2 le B )+ quus = i + gi(@ua, . un) i RY, (1.1)
=1 J

for e =1,...,n. We consider the following hypotheses for each i =1,...,n

(H1) ¢; € L (RM)n LIOC(]RN), p > N, such that lim|,_ 1 ¢i(7) = +oo and
q; > const > 0.

(H2) For all j,k = 1,...,N, prji = pjk,; and there exists positive constants
;, B; such that for all £ = (&,...,6y) € RY,

N
€] < Z priiki&n < Bil€]?.

k,j=1
(H3) m; € L (RY), m; > const > 0.

We will specify later the form and the hypotheses on each g; and we denote by pu;
real parameters for i = 1,...,n. The variational space is denoted by V,, (RY) x
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<o x V, (RN) where for i = 1,...,n, V,(RY) is the completion of D(RY), the set
of C'*® functions with compact support, under the norm

N
Oou Ou o7\ 172
||qui,q¢ = (/]RN[ lekj,iajjaimk + q;u ]) . (1.2)

k.j=

Due to hypothesis (H2), V,, (RY) is also the completion of D(R™) under the norm

K3

1/2
o = ([, 190 +0?) " (13)

We recall that the embedding of each V,, (RY) into L#(RY) is compact. We denote

by
1/2
= u’ 1.4
fallo = ([, min) (1)

for all u € L2(RY). According to the hypothesis (H3), || - ||, is a norm in L?(RY),
equivalent to the usual norm so the embedding of V,, (RY) into (L2(RN),| - [lm,)
is still compact. We denote by M; the operator of multiplication by m; in L?(RM)
and by L,, the operator defined by

N9 ou
Lpu:=— zg—:l aixk(pkj’i%j). (1.5)

The operator (L, + )~ *M; ¢ (LX®Y), | - [lm,) — (L2@®Y), |- [lm,) is positive
self-adjoint and compact. So its spectrum is discrete and consists of a positive
sequence tending to 0. We denote by \; the inverse of the first eigenvalue and by
¢; the corresponding eigenfunction which satisfy

(Lp: + )9 = Nimi¢p in RV, (1.6)

Ai > 0 and ||@;|lm, = 1. (We recall that \; is simple and ¢; > 0 (see for example
[1, 2, [, [@, 21} 24] and Proposition below.) By the Courant-Fischer formulas,

N d¢p O
fRN [Zk,jzl Pkﬂﬁﬁ + ¢:¢%]
f]RN mi¢2

The aim of this paper is to study the existence of solutions for the system . This
extends earlier results obtained for the Laplacian operator in a bounded domain
(see [I7, [18]), for an operator of divergence form in a bounded domain (when each
Pkji is independent of j, see [14]), for equations or systems involving Schrédinger
operators —A+gq; in RY (see [3, 11,12, 13, 15]). The methods to get the existence of
solutions are the Lax-Milgram Theorem for linear systems, applications of the sub
and super solutions method, or the bifurcation method. Note that an important
tool to obtain positive solutions is the Maximum Principle. We present in this paper
a classification of different results for the existence of solutions for the system .
Since these results are refinements of results obtained for Schrodinger operators
whose potentials tend to infinity at infinity, we will only express the results for
operators of divergence form studied here with some simple sketches of the proofs.

A = inf { , ¢ € DRM)}. (1.7)
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1.2. Review of results for the scalar case (i = 1). We consider here the
following equation, in a variational sense,

S’
Zaj ’35‘ )+qu:)\mu+g in RY. (1.8)

We assume the following: The potential g satisfies (H1), the coefficients ¢y ; satisfy
(H2), the weight m satisfies (H3), the constant A is a real parameter and finally
g € L>(RY). We let L. be the operator defined by L.u := — Zf:j:l 82k( k. 88;‘ )
and M the multiplication operator given by the function m. Since the operator
(Le + @) M : (L2RY), || - lm) — (L2RY), || - |lm) is positive self-adjoint and
compact, then its spectrum is discrete and consists of a positive sequence tending
to 0. We denote by \. 4 the inverse of the first (largest) eigenvalue of the operator
(Le +q)~ M.
Asin [1l 2, [ O] 20], we have the following result.

Proposition 1.1. The eigenvalue A4 is simple and there ewists an associated
eigenfunction ¢. 4 which is a strictly positive and continuous function in RV,

We recall that the above result is well known for the case of bounded domains
or the case where L. + ¢ = —A + ¢ is a Schrédinger operator in RY.

Proof. First, we conclude from [25, Theorem 7.1] that every solution ¢ € L*(RY)
of the equation (L. + ¢ — A gm)y = 0 in L2(RY) is a continuous function in RY.

Next, we will show that A;, is simple and it has an eigenfunction which is
strictly positive. To do this, we follow [I]. Note that A4 is of finite multiplicity.
If in contrast .4 is not simple, then there exists an eigenfunction, say, v, which
changes sign. It follows that ¢+ := max (¢,0) is also an eigenfunction associated
with M. . Let Q4 = {z € RY, ¢(2) > 0}; we denote by A, the inverse of the first
eigenvalue of (L. + ¢)~'M defined on 0, with the Dirichlet boundary condition.
Then Aoy = Ay. Since Qi # RY, 9 and ¢T are linearly independent. Hence, by
considering all domains . such that Q; C €, € RY, we can construct an infinite
number of linearly independent eigenfunctions associated with A. 4, contradicting
the fact that A. 4 is of finite multiplicity. Therefore, we have shown that A.4 is
simple and every eigenfunction of it does not change sign.

To complete the proof, we consider a non-negative eigenfunction ¢ of A., and
need to showing that ¢ > 0. Assuming that there exists y € RY such that ¢(y) =
Let R > 0 and r > 0 be such that B(y,r) C B(0, R). Using the Harnack Inequality
for the operator L. + ¢ — A qm (see [20, Theorem 8.20], [25, Theorem 8.1]), we
have suppy 4,y ¢ < Cinfp(, ) ¢ = 0, and we deduce that ¢ =0 in B(y,r) (for any
r > 0). Therefore ¢ = 0, which is impossible, since ¢ is an eigenfunction. (I

We have the following weak Maximum Principle for (|1.8)).

Theorem 1.1 (The weak Maximum Principle). Assume that A < A¢4, ¢ > 0 and
u is a solution of the equation (1.8). Then u > 0.

Proof. The idea is to multiply the equation (1.8) by v~ = M am( u), then to use
the characterisation of A. 4 (see (L.7)) in order to obtain ( fR N 2<0.
Therefore, under the conditions A\; ; —A > 0 and m > 0 we obtaln that u=™ = 0 O

By using the Lax-Milgram Theorem we obtain the existence of a solution for the

equation (1.8]).
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Theorem 1.2. Assume A < A.,. Then there exists a unique solution u € V,(RY)
for the equation (1.8). Moreover, by the Mazimum Principle, if g > 0, then this
solution u satisfies u > 0.

Proof. Let [ : (V,(RM))? — R be the quadratic form given by

N

ou 0
l(u,v) = /R [ E ck’j5‘7u-87ka + quv — dmuw] Y(u,v) € (Vi(RV))2.
Y k=1 J

Let a be a real number such that A + « > 0. Consider the norm

al Ju Ou o7\ 1/2 N
o = ( | L3 e g o)) T U

It follows from the characterisation (L.7) of A. 4 that I(u,u) > /’\\CZIQ [ullZ 4 ram- SO

the continuous bilinear form [ is coercive. By the Lax-Milgram theorem, we get the
existence of a unique weak solution u for the equation (|1.8]). Moreover, if g > 0, by
Theorem we have u > 0. O

1.3. Properties of M-matrices. We say that a matrix is positive if all its entries
are nonnegative and we say that a matrix is positive definite if this matrix is
symmetric and if all its principal minors are strictly positive. We recall some
results about the M-matrices (see [5, Theorem 2.3, p.134]). Let I be the identity
matrix. A matrix M = sI — B is called a non singular M-matrix, if B is a positive
matrix and s is a real number such that s > p(B), where p(B) denotes the spectral
radius of B.

Proposition 1.2. If M is a matriz with nonpositive off-diagonal entries, then the
following five conditions are equivalent.

(PO) M is a non singular M-matriz.

(P1) All the principal minors of M are strictly positive.

(P2) M is semi-positive, i.e., there exists X >> 0 such that MX >> 0. Here
X >> 0 means that the entries of X are strictly positive.

(P3) M has a positive inverse.

(P4) There exists a diagonal matriz D, D > 0 such that *M D + DM s positive
definite.

2. RESULTS FOR LINEAR SYSTEMS
In this section, we consider the system (1.1)) in the form
N n
0 Ou, .
- g(ﬂkm‘ﬁ) +giu; = imau; + > aguy+ fi in RY, (2.1)
k=1 F 7 =L
i=1,...,n. We consider the hypotheses:

(H4) For alli,j =1,...,n, a;; € L®(RY).
(H5) Foralli=1,...,n, f; € L2RY).
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2.1. Case of a cooperative system: a;; > 0 (Vi # j). We obtain here results
for the Maximum Principle and the existence of solutions for a linear cooperative
system. We use classical methods as in [1} 3, 12 14}, 17, [18]. For a cooperative
system we suppose also the following hypothesis

(H6) For all ¢,j, i # j = a;; > 0.
For each i # j, since each weight m; is bounded below by a positive constant, we
deduce the existence of positive constants K;; such that a;; < K;;,/m;,/m;. Note

that in the particular case where m; = 1 for each i, we can take Kij = ||ai;|| foo mv)-
We denote by L = (I;;) the n x n-matrix given as follows
lii = >\i — s and lij = —Kij (Z 75 ]) (2.2)

For such a system, we have the following maximum principle.

Theorem 2.1. Assume (H1)-(H6) are satisfied. If the matriz L is a non singular
M-matriz, then the cooperative system (2.1|) satisfies the Mazimum Principle.

Proof. Assume that foralli =1,...,n, f; > 0. Let u = (uy, ..., u,) be asolution of
the system (2.1 and define u; = max(0, —u;). Multiplying by w; and integrating
over RV, we obtain

0 18
/ Z pkjl U ’LL —HJ@UU / m;u;u; S+ Z / Qi U;U; +/ fz

J=15#d

Due to the characterisation of \; (see 11.7)), we obtain

Ai m(u / m(u Kij / mi(u 1/2( mJ(uj) )1/2

N N
R Jj= 1J7ﬁl R

Thus, if we denote by 'X = (x1,...,2,) where z; = ([pn mi(u;)? )1/2, we have

LX <0. Since L is a non singular M-matrix, we can deduce that X <0,s0 X =0
and therefore u; > 0 for each i. Il

Existence and uniqueness of a solution is stated as follows.

Theorem 2.2. Assume (H1)-(H6) are satisfied. If the matriz L (given by (2.2))
is a non singular M-matriz, then the cooperative system has a unique solution
u = (ur,...,un) € Voy (RN) x -+ x V (RN). Moreover, due to the Mazimum
Principle, if f; > 0 for all i, then this solution u satisfies u; >0 fori=1,...,n

Proof. We suppose that L is a non singular M-matrix. Using (P4) (see Proposition
, we introduce D a diagonal positive matrix such that *LD + DL is positive
definite. We denote by di,...,d, the diagonal entries of the diagonal matrix D.
As for one equation, the method is based on the Lax-Milgram theorem.

Let a be a positive number such that for all 1 < ¢ < n, u; + a > 0. Let
L: (Vi (RY) x -+ x V,, (RY))? — R be defined by

" Au; O
“):;di/ [Z"””’ ag agk

+ (¢ + amy)uv; — (p; + @)miuv; — Z az]uﬂh},
J=Li#i
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if u=(ug,...,up) € Vyy(RY) x --- x V (RN), and v = (v1,...,0,) € Vy, (RY) x
- x V, (RN). We denote by

8u1 8u1 1/2
pirqitam; = (/ Z Pkj, z + (CIz + aml)uf]) . (23)

By the characterisation of \; (see ) and the Cauchy-Schwartz inequality, we
get:

[|wi

n

Ai — i
l(u,u) > E di/\4+a [l
2

i=1

2
vilpsi,qitam;

pi gitam; || Uj HPj»‘]j +am; -

- lu
Ny Vi Fay/A+a

Setting 'X = (z1,...,2,) wWith z; = W\ﬁ, we get:

1
l(u,u) > XDLX = S 'X['LD + DLIX.

Since *LD + DL is positive definite, we deduce that [ is coercive. Therefore, by the
Lax-Milgram Theorem, we get the existence and the uniqueness of a weak solution

for the system ([2.1)). O

2.2. Case of a non necessarily cooperative system. We give a very similar
result for the existence and uniqueness of a solution for the system as the
one obtained for a cooperative system. We do not give the proof which is exactly
the same as for Theorem [2.2l We note that for all i, j, i # j there exists positive
constants Kj; such that |aw| < Ki;y/mi/m;j. We denote by L' = (l};) the n x n-

matrix given by:
=X —pi and [ :=—K; (i#j). (2.4)
Existence and uniqueness of a solution is stated as follows.

Theorem 2.3. Assume (H1)—(H5) are satisfied. If the matriz L' (given by (2.4)) is
a non singular M-matriz, then the system ([2.1)) has a unique solution in Vg, (RY) x
- x Vg, (RY).

3. RESULTS FOR SEMILINEAR SYSTEMS

In this section, we consider system ([L.1]) in the form:

- Z 63: pkgz )+q1Uz Himu; + Z aiju; + fi(z,ur, ... uy) in RY,
k,j=1 J=157#0
(3.1)

1=1,...,n

We consider also the following hypotheses which hold for each i =1,...,n

(H7) f; is Lipschitz respect to w; uniformly in z.

(H8) There exists §; € L*(RY) such that 0 < fi(z,u1,...,u,) < 6; for all

ur > 0,...,u, > 0.

(H9) There exists §; € L%(RY) such that | f;(z,u1, ..., u,)| < 0; foralluy, ..., u,.
We obtain two results for the existence of a solution for the system , which is
either cooperative or non cooperative.
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3.1. Case of a cooperative system: a;; > 0 (Vi # j). As in [3| [14] 1], we use
a sub and super solutions method with a Schauder Fixed Point Theorem to obtain
the existence of a positive solution if system (3.1 is cooperative.

Theorem 3.1. Assume (H1)—(H4), (H6)—(HS8) are satisfied. If the matriz L (given
by (2.2)) is a non singular M-matriz, then the system (3.1)) has at least one positive
solution in Vi, (RN) x -+ x V, (RN).

Proof. We consider the system

- Z B.T pk] z ) + QiU = KM U; + Z azgu] + 9 in RN (32)

k,j=1 J=Lg#i
i1=1,...,n. Applying Theorem we deduce that the system (3.2) has a unique
solution (which is positive by the Maximum Principle) u° = (u{, ..., n) Moreover,

by (HS8), u° is a super solution of the system . Note also that ug = (0,...,0)
is a sub solution of the system (3.1). We denote by o = [ug, u’].

To show the existence of positive solutions to system , we choose a positive
real number a to be such that p; +a > 0 for all i. Let T : (L*(RY))"* — (L*(RM))"
be defined as follows: If u = (uq,...,u,), then T(u) := v = (v1,...,v,), v satisfies
the equations

7] 0v;

- Z 63: ka Zazj)+(%+amz)vz = (M1+a)mlul+ Z al]u]+fl(x ULy ...y Un )
k,j=1 J=Lj#i

(3.3)

in RY for each i = 1,...,n. Note that, by the scalar case, T is well defined and

T(0) C 0. As in [3], using the compact embedding of each V,,(R") into L2(RY),

we can prove that T is continuous and that T'(o) is compact. By the Schauder

Fixed Point Theorem, we deduce the existence of v = (uy,...,u,) € o such that
T(u) = u. Equivalently, u is a positive solution of the system (3.1). O

3.2. Case of a non cooperative semilinear system. For a non cooperative
system, we obtain the following result.

Theorem 3.2. Assume (H1)-(H4), (H7), (H9) are satisfied. If the matriz L' (given
by (2.4) ) is a non singular M-matriz, then the system (3.1)) has at least one solution
in Vs (RY) x -+ x Vy, (RV).

Proof. We proceed exactly as for Theorem by considering a sub and a super
solution of the system (3.1) and using the Schauder Fixed Point Theorem. To do
so, we consider the following system

- Z ax pk“ )Jrqmz pimai + Y aglu;+6; RN, (3.4)

k.j=1 J=1j#i
for i = 1,...,n. Applying Theorem we deduce that the system (3.4) has a
unique solution (which is positive by the Maximum Principle) u® = (u?,...,u%).

Moreover, by (H8), u is a super solution of the system . Note also that —u°
is a sub solution of the system (3.1)). We denote by o = [—u",u°].

Let o be a positive real number such that pu; + « > 0 for all ¢. Let T :
(L2(RV))™ — (L2(RN))™ be defined as follows: If u = (uy,...,uy), then T(u) :=
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v = (v1,...,v,), where v is determined by the equations:
N5 ‘
Z Tﬂﬁk pk]l l{)+(%+amz) i (Mz"‘a)mzuz"" Z azguj+fz(x Uty ooy U )
Jj=1 i J=1j#i

in RN for i = 1,...,n. Note that, by the scalar case, T is well defined and such
that T'(o) C 0. As in Theorem we can prove that 7' is continuous and that
T(o) is compact. By the Schauder Fixed Point Theorem, we deduce the existence

of u = (u1,...,uy) € o such that T'(u) = u. Clearly, u is also a solution of the
system ((3.1)). O

If we relax the hypothesis about each weight m; i.e. if we do not suppose
that each weight m; is bounded, then for the case where the system is non
necessarily cooperative we cannot apply the method developed for the Theorem
Indeed, the operator 7" would no longer be continuous from (L?(R™))" to
(L2(RN))™ ; moreover, even if we define T from (L (RN))™ to (L (RN))", we
would lose the compact embedding of each V, (RY) into L2 (RY). So we use, as in
[11l [12], an approximation method due to Boccardo, Fleckinger and de Thélin (see
[6]). For the following result, we assume that

N>3 0<m;eL>RN), m;#0.

We recall that A(m;) has been defined by (1.7). We denote by L” = () the
n X n-matrix given by:

Uy im Amo) s and I = ~KY (i £9),
where K, is a positive constant such that |a;;| < Kj;\/mi\/m;.

Theorem 3.3. Assume (H1), (H2), (H4), (H7), (H9) are satisfied. Assume that
N >3, 0<m; € L%(RN), m; # 0. Assume also that for all i = 1,...,n,
m; € Lﬁfc(RN) N LY RN). If the matriz L" is a non singular M-matriz, then the

system (3.1) has at least one solution in Vg, (RN) x -+ x V, (RN).

Proof. Let € €]0,1] and B, = B(0,1/¢) = {x € RN, |z| < 1/e}. Let 1p, be the
indicator function of B, and let o be a positive real such that for 7, pu; + « > 0.
Define A = 1p..

Let T, : (L?(RM))" — (L?*(RM))" be defined as follows: If u = (uy,...,u,) €
(L2(RM))™, then T, (u) :== v = (vy,...,v,) where v is determined by the equations:

miu;
Lﬂz‘vi (‘h"‘amZ) Vi (NH‘O‘) A+ Z al]

A+ fi(z,ur, ... up)
Lo+ emilu J=1,7#

l+e \ u;
(3.5)
in RV, for i = 1,...,n. By the scalar case, T, is well defined and if we denote by
hi = max; j2i((1i + @), |ai;|)) LA € L*(RY), the equation (L,, + ¢; + am;)é; =
nh; +6; in RY admits a positive solution & ; in Va (RN). So & = (€cnyen vy ben) is
a super solution for and (e = (Ce,1,- -+, Cen) = —&e is a sub solution for .
Let o := [(c,&]. Then Tc(o¢) C 0.
We prove easily that T, is a continuous function (by the hypotheses (H4), (H7)
and using the function [ : R — R defined by I(z) = %M, which is Lipschitz and

which satisfies: for all z,y € R, |i(z) — I(y)| < |z —y)).
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We prove also easily that T¢(o.) is compact (due to the hypotheses (H4) and
(H9)). So by the Schauder Fixed Point Theorem, we can deduce the existence of
Ue = (Ul,ey- -, Un,e) € 0 such that Te(u.) = u.

Note that for i, (eu; ) is a bounded sequence in V, (RY).

Indeed, by and (H9) we get

12 Hi +
||€’U/176| pirqitam; = m” €U; €||p1,qL+am1

+ 30 K m) el + 10l e e,

j=1,j#i

and so we can deduce the existence of a positive constant K, (independent of €)
such that [|ew; c||p,,qi+am; < K.

Since the embedding of V,, (RY) into L2(RY) is compact, we deduce that (for
a subsequence) there exists u} such that eu; . — u} as € — 0 strongly in L2(RY)
and weakly in V,, (RY). Using the Dominated Convergence Theorem, due to (H9),
we can pass to the limit (see ) and we can conclude that v« is a weak solution

of

(Lp, + ¢i + ami)u; = (i + o) ———— Z iy T *| in RN, (3.6)

1+ l|u| j=1,j7#i

Moreover, if we set 'X = (z1,...,2,) With z; = ([pnv miul?)'/2, using we
obtain L”X < 0. Since L” is a non singular M-matrix, we deduce that X = 0 i.e.
for i, u; = 0.

We prove now by contradiction that for 4, (u;.). is bounded in V,,(RY), We
suppose that (for a subsequence) there exists ig such that ||u;,
as € — 0. Let

Pig digFamiy 7 +0oo

le = m?,X ||Ui,e||p,;,qi+am1; and Rie = ?uiaf'
€
Since (2i)e is a bounded sequence in V, (RY), there exists 2; such that z; . — z;
as € — 0 strongly in L2(RY) and weakly in V,,(RY). We can pass to the limit (see
(3.5)) and conclude that z; is a weak solution of

(Lp, + g; + amy)z; = (p + )m;z; + Z a;;z; inR
J=1j#i

Then, we can prove that for all 7, z; = 0. However, there exists a sequence (€,,) such
that there exists i1, [|2i, .o, .qi, +am;, = 1. But z;, ¢, — 25, =0 asn — +00. So
we get a contradiction.

Finally, there exists u? such that u; . — u? strongly in L? (RM) and weakly in
Vg (RY). We can pass to the limit (see (3.5)) and to obtain

(Lpy + i + am)uf = (p; + a)ymu; + Z al]“j + fi(u}, .. upy) in RY
J=1.j#i

for all 4. This completes the proof. O
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3.3. A bifurcation result. In this section, we obtain a result for the existence
of solutions for the system by considering bifurcating solutions from the zero
solution. We proceed here as in [10, 13| [15]. In this section, we suppose that the
hypotheses (H1)—(H3) as well as (H10) are satisfied, where (H10) reads as follows:
(i) fori=1,...,n, g : RN xR" — R, defined by g;(z,y1,...,yn) with z € RV
and (y1,...,yn) € R, satisfies For all z € RV, g;(x,0,...,0) = 0.
(ii) Fori=1,...,n, g; is Frechet differentiable with respect to each variable y;
and each derivative ggi (z,.) is continuous and bounded, uniformly in x.

(iii) For all i,j =1,..., ,ggl(x 0,...,0) =0.

Note that g; is Lipschitz in (yi1,...,¥y,) uniformly in . We denote by V =
7, V,,(RY) and by (.,.)y the inner product in V (i.e. for v = (vy,...,v,) € V

and all w = (w1,...,wy) €V, (v,w)yy = Y0 (v, wi)p,q (see (1.2]))). We define
the operator T': R™ x V -V, T= (T, ..., T") by:

N
<T (ﬂau)vvi>l)mq@' = /N[ Z pkj,iiik + QiU v — Himiuv; — gi(xau)vi]~ (37)
RY p =1
for i = 1,...,n, T" : R" x V. — Vo, (RN), if u = (1,...,p0n) € R", u =
(u1,...,up) € V, for all v; € V,,(RY). We proceed in this section exactly as
in [I5] and so we give only the steps on each proofs.

Proposition 3.1. The operator T is well defined. Furthermore, for each i, the
operator T is continuous, Frechet differentiable with continuous derivatives given
by: For all ¢ € V,,(RN) and for all ¢ € V,, (RY),

7’f.] 7é iv T/i] = 07 < ( )¢ w Piyqi = / 892 z u)¢¢a

ifj =1, <T (1, u), ) pyqi = / miu; ¢ and

al ) a
< u,(,ufv )¢ 1/) Pirqi :/ Z pkjl ¢ w +Qz¢¢ Himpp — ( 7“)@57/}]7
Zf] # 4, le =0= TL ;)
ifi=i, (T, . (u)d, Yo q =— | migp and Ty, =0 if k#i.

RN
Proposition 3.2. The operator T,,(),0) is a continuous self-adjoint operator with
A= (A1,...,A\n). The kernel of T,,(A,0), denoted by N(Ty(A,0)) is generated by
{®y,...,P,} where fori=1,...,n, ®; =(0,...,0,¢;,0,...,0).
Moreover, if we denote by R(T,(\,0)) the range of the operator T,(\,0), we
have:

(1) codim(R(Ty(A,0))) =n

(2) fori=1,...,n, Ty, w(A,0)®; & R(Tw(X,0))

(3) dim(Span{T},, (A, 0)®;, 1 <i <n})=mn.
Proof. Since T, (\,0) = (T1(,0),...,T(X,0)), using (H10)(iii), we get that for
i=1,...,n, T()\,0) is a continuous self-adjoint operator. Therefore, T,(},0) is a
continuous self-adjoint operator too.
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We have: for all v = (vq,...,v,) €V,
v e N(T,(\0))
if and only if for all w € V, (T, (A, 0)v,w)y =0
if and only if fori=1,...,n, v; € Span{¢;}
if and only if v € Span{®y,...,®,} where &; = (0,...,0,¢;,0,...,0).

Therefore codim R(Ty,(A,0)) = n.

Now we prove that T),,, (A, 0)®; ¢ R(T,(A,0)) for all i. Note that we have
identified T},,,,(X,0).(1, ®;) with T,,,(X,0)®;. We have: (T),,.(\, 0)®;,®;)y =
— Jan mi¢? # 0. Therefore, T}, (X, 0)®; is not orthogonal to ®;. Now since
N(T,(\,0)) = Span{®,...,®,} and R(T,(\,0)) = N(T,(\,0))*v, we deduce
that 7),,, (X, 0)®; ¢ R(T,(X,0)). Moreover, let (ai,...,0,) € R™ be such that:
Z?:l ;T u(N,0)®; =0. Fix 4, 1 <4 <n. So that <Z?:1 Ty ,u(N,0)0;, @iy =
0 and

> (T (N 0)®;, 6i)p, g, = 0.

j=1
This implies that —a; fRN m;¢? = 0 and thus o; = 0. Consequently, we have that
dim(Span{T},,,(A,0)®;, 1 < i < n}) =n, completing the proof. O

Although we cannot apply directly the results obtained in [16], as in [I5] we
follow the proof of [I6, Theorem 1.7] to obtain the following result.

Theorem 3.4. Assume that the hypotheses (H1), (H2), (H10) are satisfied. Then
there exist a constant eg > 0, a neighbourhood U of (A, 0) (with A = (A1,...,A\n)
and 0 = (0,...,0) € V) and a continuous function H : (—€p,e0) — U such that
T(H(e)) =0 for all € € (—e€g, €0).-

Note that T(H(e)) = 0 with H(e) = (p,u) € U for p = (p1,...,4n) in a
neighbourhood of A = (A1,...,A,) and v = (uy,...,u,) in a neighbourhood of
0=1(0,...,0) signifies that (u,u) is a non trivial solution of the system ([1.1)).

Proof. As in [16], we introduce the following function A : R x R” x V' — V be
defined as follows: For all (a, p,w) € R x R* x V|

l DRI .
h(a, p,w) = aT(/L; a®y + -+ ad, + aw) ?f a0
Tu(p,0)(®1 + -+ O +w)  fa=0

Since for i =1,...,n, ®; € N(T,(A,0)), we deduce that h(0,,0) =0.

Let g : R® x V — V be given by g(u, w) := Ty (1, 0)(P1 + - - - + @, + w) for all
(p,w) € R™ x V. For all £ = (&,...,&,) € R® and v = (vq,...,v,) € V we have
that

(3.8)

i=1
where Dg is the Frechet derivative of g. It follows that

Dg(X,0)(&,0) =Y &Tp,u(X,0)®; + Ty(X,0)0 since Ty, (X, 0); =0 (j # i)

i=1

forall ¢ e R" andv e V.
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By Proposition we deduce that Dg(),0) is a linear homeomorphism from
R™ x V onto V. Hence, the implicit function theorem implies the existence of a
neighbourhood U’ of (A, 0), of a constant ey > 0 and of a function K : (—¢g,€9) —
U’ such that h(e, p,w) = 0 (see (3.8)) with € € (—€o,€) and K(e) = (p,w) =
(K€, Kqe) € U'. Therefore for € € (—e€g,€p), T(K1€,6(P1 4+ -+ + D, + Kae)) =0
and if we set H(¢) := (K¢, e(®1+-- -+ @, + Ka¢)), then we have that T(H(¢)) =0
for all € € (—eq, €). O

Finally, we study the global nature of the continuum of solutions obtained by
bifurcation from the (), 0) solution in a particular case. As in [I3] [I5], we follow a
method developed in [I0] and using the [23, Theorems 1.3 and 1.40], we obtain the
following result.

Theorem 3.5. Assume (H1), (H2), (H10) are satisfied. Assume also that for all
i,7, \i = Aj. We denote by Ao := A; for alli = 1,...,n. Then, there exists a
continuum C' of non trivial solutions for the system obtained by bifurcation
from the (Ao, 0) solution, which is either unbounded or contains a point (u,0) where
W # Ao is the inverse of an eigenvalue of the operator A = (Lq,...,L,) (where L; is
defined by for u = (u1,...,up) € V and ¢ € Vo, (RN), (Liu,d)p, g0 = [pn Miti®.)
Since \g is simple, the continuum C has two connected subsets CT and C~ which
satisfy also the above alternatives.

Proof. First, we define an operator S by setting S(p,u) = v — T(u,u), S =
(S*,...,8™) ie. for all p € R, for all u = (uy,...,u,) € V, for all v; € V,, (RY),

<Sl (/1'7 u)v v’i>Pi7Qi = /]RN [Mmiuivi + g; (LL', U)Uz]

So u = (u1,...,uy,) is a solution of the system (1.1)) if and only if u = S(u,u). We
write S®(p, u) = pL;u + H;u where for all v; € V,, (RY),

(Liu,vi>pi,qi=/ miu;v; and <Hiuvvz‘>pi,qi=/ gi(z, u)v;.
RN RN

So S(u,u) = pAu+ Hu with Au = (Lu,...,Lyu) and Hu = (Hyu,..., Hyu).

To apply the results in [23], we must prove that S* : R x V. — V,, (RY) is
continuous and compact, that L; : V — V,,(RY) is linear and compact, that
Hiu = O(|lul]ly) for u = (u1,...,uy) near 0 = (0,...,0) uniformly on bounded
intervals of p and that )\io is a simple eigenvalue of A (which is true because it is a
simple eigenvalue of (L,, + ¢;)~"M;.)

Let ((pp, up))p be a bounded sequence in R x V', with u, = (u1p, ..., Unp). Since
the embedding of each V,, (RY) into L?(RY) is compact, there exists a convergent
subsequence, denoted also by ((tip, up)), in R x (L2(RY))™. We have:

1S (s 1) = S* (s ) |12, 4,

B (,Up ~ Hm) /]RN miuip[‘gi(:um up) - Si(.uma Unm)]
ot [ ity = ) St 1) = 5o 0

[ I 0) = oIS g ) = S 0]
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We deduce that (S*(pp,up)), is a Cauchy sequence and therefore a convergent
sequence. So S¢ is compact for all i = 1,...,n and S = (S%,...,9™) is also
compact. Moreover we have for each ¢ that

2o = [ i~ i) Bty — Lt
RN

HLzup — Lium

and thus
||Lzup — Llum

pivai < const.||uiy — Uim || L2(0)-

Therefore (L;u,)p is a Cauchy sequence, so L; is compact and A is compact too.
Finally we have:

a0l = [ i) < constfulvl ol .
So H;u = O(|lullv) and therefore Hu = O(||ullv). O

4. EXISTENCE OF POSITIVE SOLUTIONS IN RY FOR A PARTICULAR CASE

In this section, we follow a method developed in [22] for the p-Laplacian in a
bounded domain of RY | then in [13] for an equation defined in RY and involving a
Schrodinger operator with a potential satisfying the hypothesis (H1) and a weight
satisfying the hypothesis (H3) and in [I5] for a system defined in RV and involving
Schrodinger operators with potentials satisfying the hypothesis (H1) and weights
satisfying the hypothesis (H3). We redefine the system for this section.

We write in the form

n n
(Lp; +qi)ui = pimiu; + Z ajuiud + Z fiul ™ in RN i =1,...,n (4.1)

j=L3j#i j=Lij#i
where N = 3,4; v = 2% = ﬁ = 6,4 and p and ¢ are positive integers be such

that p+¢ < 7.
We define for sufficiently large numbers C > 0 the sets

X0 =1{¢ €V, (RY): there exists a positive constant s such that

(4.2)
b <sp<Ca. e }

(the sets are non-empty by the properties of ¢;). We impose the following assump-
tions:

(H11) Fori,j =1,...,n, a;; € L°(RY) and fi;; € L>®(RY).

(H12) Fori,j=1,...,n, fi; >0 a.e.

(H13) For i = 1,...,n, there exists j; € {1,...,n} — {i} such that the following

items hold:

(1) Denote ; 1 := {z € RN a;;, > 0} and Q; _ := {z € RV, q;;, < 0}.
Then meas(§; +) # 0, meas(£2; _) # 0.

(2) Foreach k € {1,...,n} —{i,4;}, aix is a nonnegative function, a;; =0

in D; where D; is a measurable subset of Q; _ with positive measure.
(3) For each k € {1,...,n}, fir =0in D,.
(H14) There exists € > 0 and ! > 1 such that for i = 1,...,n, a;;, > —em; and
€ < pacirrT
(H15) For each i = 1,...,n, there exists a positive constant k;;, such that k;;, <

(p+aq) p+q—1
qacyrra=T and aij; > —kij, fij, &5, a.e.
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We denote by

Filur, ... un / S et o) 3 fyeltt]  (43)

J=1,j#1 Jj=1,j#i
fori=1,...,n and all (uy,...,u,) € Vo, (RY) x --- x V, (RY) and by

i i ii2 4.4
/RNZ%@I(% +qiv® — pm’?] (4.4)

k=1
foralli=1,...,n and all v € V,, (RY). Let

N 0 oo
fRN Zk,j:l Pkj,i 8;3 G + qivid

A= su inf 4.5
' u,ievqi(RJI:V)),vizo { $ED,, Jpn miviop by (4.5)
and N )
f]RN Zk j=1 pkjiav. Dz + qiv z¢
AT = f = Lo 1’“ 4.6
e { i o e B as
where

P, ={g¢€ D(RY), ¢ > 0, such that for j # i, there exists

F;
v; € qu(RN), v; > 0 and gu (v1,...,vn)(¢) = 0}

(4.7)

Note that the existences of Af and Af* are due to the hypotheses (H4), (H11),
(H12) and that Af* < A¥. Assume the following hypotheses for i = 1,...,n:

(H16) \I* < 4o00.

(H17) A\f < +o0.
We proceed exactly as in [15] in this section; so that we will give only the steps of
the proofs.

Lemma 4.1. (1) Fori=1,...,n, and all ¢ € D(RY),

OF;
o g0 = (4 1) Y / asubul + [l ),
J=1,j#i
Hflh( / Z Pkj, lax JF qive — /leﬂ)d)]
5A_ 7
(2) (u1,...,upn) € Vg (RN) <o x Vg (RN) s a supersolution (resp. subso-
lution) of the system ) if and only if for all ¢ € D(RYN), ¢ > 0, for
i=1,...,n,
2 F;
H@(ui)(@ > S e un)(0) (e ).

(3) Fori=1,...,n, all € DRY), for allt >0,

8Fi an ! !
o, (tug, ... tuy) (o) = t”+qa—m(u1, sy tp) (@) and H,, (tu;) (o) = tH,, (u;) ().

As in [13] [15] 22], we obtain the following lemma.

Lemma 4.2. Fori=1,...,n, we have \; < AJ*.
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Proof. Suppose (for example) that A\; > A\7*. Because of the characterisation of \;

(see (1.6), (1.7) and (4.4), we have Hy, (¢1) = 0. By the definition of A\j* (see (4.6))),

there exists ¢ € D(RY), ¢ > 0, there exists (va,...,v,) € Vo, (RY) x -+ x V, (RY),
v; > 0, such that g—i(qﬁl,vg, ..., 0,) (@) > 0 and
N 1
Jan ki ij,1g%j% + 110
Jon m1d10)
So H} (¢1)(¢) < 0. Moreover, we have for all n > 0,

Hy, (¢1+n¢) = Hx, (é1) +nH}, (61)(¢) + [[n6]|h(ng) with h(n¢) — 0

as 7 — 0. Therefore, for n small enough, we have H, (¢1 + n¢) < 0 contradicting
the definition of ;. [l

<A <A

‘We obtain now the main result of this section.

Theorem 4.3. Assume (H1)-(H4), (H11)-(H16) are satisfied. If fori=1,...,n,
i +€(lC)PT971 < p; < N3*, then the system (4.1)) has at least one positive solution
m qu,c X oo X quc.

Proof. Since for all 4, p; < Af*, due to the definition of A\!* (see (4.6)), we can
deduce the existence of v; € X, ¢ such that for all ¢ € .-, H), (v})(¢) > 0.

i
We proceed exactly as in [15] to prove that there exists a real ¢ € (0,1) for which

(tvf,...,tvs) is a supersolution of the system (4.1). Suppose that for all ¢ € (0,1),
(tvf, ..., tv}) is not a supersolution of the system (4.1)). Then for all ¢ € (0,1), there
exist i; € {1,...,n} and 1;, > 0 such that

2 9F,

Hy, (t])(¥i,) < p+10u,

(tv], ... tvp ) (34, )-

Consider the sets
N; = {z € {1,...,n}, there exists 1y € D(R™), 1) > 0, such that

Hﬂi(tvi )(w) < P + 1 8ui (tvlv' . 7tvn)(w)}
and for i; € Ny,

(4.8)

2 OF;
_ N / * e it * *
Kit - {w € D(R )5 ¢ Z 0; H/‘“it (tvzt)(w) p+ 1 8“@ (tvla e atvn)(w)} (49)
We prove that there exists t > 0, iy € Ny, ¢ € K;,, and ¢ € K;, which satisfy
aFit * * aFlt * *
Ju, (tv},...,tv;)(¢) <0 and dun, (tvg,. .., tun) () > 0.
So we have
2 JF;
H!, (v} A ¢ T S P 0 4.10
Hiy (U“)((b) < P 4 1 3% (v1> 7vn)(¢) < ’ ( )
* 2 —1 8F'Lf * *
0 < H, (7)) < =gt G (), (4.11)

(Note that ¢ € Dy (see (4.7)).) Since gf’f* (vy,...,u%) is a continuous function,
W i
there exists o € (0,1) such that

oF;, , .
0, (v, ..., v ) (ad+ (1 —a)y) =0.
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Thus we deduce that aqﬁ + (1-a)ye ®,: and so Hj, (v;)(a¢ + (1 —a)p) > 0.

But using and ( we have

0< aHL,it (v7,)(@) + (1 = ) Hy, (v;,)(¥)

1t

2 _ ant * * aFZt * *
< mtpﬂ l[am(vl,...,vn)(@ +(1-aq) D, (V155 0)(¥)] =0
and we get a contradiction. Therefore there exists ¢t € (0,1), for which (tvf, ..., tv})

is a supersolution of the system . Note that for ¢ = 1,...,n, tv] > s¢, if
0<s<t.

Using (H11)—(H13), we can prove that (s¢1,...,s¢y) is a subsolution of system
with s > 0 be such that s <t <[ and % < gpta—l (which is possible with
I >1). Let 0 = [s¢1,tv}] X --+ X [spn,tv)] and the operator T be defined by

T(uyy...,un) = (v1,...,0,) with (v1,...,v,) solution of
(Lp, + ¢i)vi = pamgu; + Z a;jul'u —I— Z fiju; u?T? in RV, (4.12)
J=Lj70 J=Lj7i

fori=1,...,n. We want to prove that T'(¢) C 0.
Let (u1,...,un) € o and T'(uy,...,up) = (v1,...,v,). By ({.12) we can write
fori=1,...,n,

n

(Lpi + Qi)(vi - 5¢z) pimit; + Z az]“ + Z fzy ALY i Q5.

J=1#i J=Lg#i
Since for all k, uy > s¢y, using (H14) a;;, > —em,;, we can deduce that
(Lo, + @) (vi = 56:) > [1i — Xi — esP T 0 0 Jmsgh;. (4.13)

But ¢P 1¢q < opta—1 grta—l < pta=1 and \; + €(IC)PT971 <y, so we deduce
from ) that (L,, —|— qz)(vl — s¢;) > 0. By the Maximum Prln(:lple we obtain

that v; 2 scﬁl for all i=1,...,n. Moreover we have: For alli=1,...,n,
n
(L, +a5) (00} — v3) = (o} — )+ > aggl(t0})?(t]) — ulul]
J=L#i
n
+
+ D Syl -,
J=15#1

So we can rewrite this equation in form

(Lp: + qi) (tv; — vi)

n p—1
> pma(tof —w) + Y agi(to] —uud]D> () Ful T M
j=1;57i k=0
q—1 p+q—1

+ Z a”(tv ) ( (tv;f)ku?—l—k)+fij( Z (tv )k §+q 1— k)].

j=1;5#1 k=0 k=0
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Since (u1,...,u,) € o, we get
(Lp, + ¢i)(tv] —vs)

I
—_

p

> (1o = i) o+ ag i, (3 ()~

(]

k=0
q—1 pHq—1
+ (b5, = wj) @, (0] PO ()Pl 8 fig (D (b ) Ful TR,
k=0 k=0
(4.14)
Since u (35— C(tvE )P TRy < p(1C)PTa1 using (H14) we deduce that
-1
i + agj,u ] Z ub™ 1= k ) > 0. (4.15)
=0
Similarly, using (H15) and sPT471 > 1, we get
+q—1 +q—1—k _
fm (Zp o ( )kui a ) > (p“r(])fiji(3¢ji)p+q !
1 1k = -
(tvy)P( Z:o(tvji)kugi 5 qlC)pra—t
and so
q—1 p+q—1
* * —1—-k 1—k
aij, ()P (o) Ful 0 + £ (YD oyl > 0, (4.16)
k=0 k=0
Therefore, by (4.14), (4.15), (4.16), we obtain (L,, + ¢;)(tv} —v;) > 0 and so by
the Maximum Principle we deduce that v; < tv} for all ¢ = 1,...,n. We conclude
that (vq,...,v,) € o. Finally, note that T is a continuous and compact operator

(by the compact embedding of each V;, (RY) into L*(RY)).
Therefore the Schauder Fixed Point Theorem, implies the existence of at least
one positive solution for the system (4.1). O

To complete this section, we give some conditions which assure the validity of
the hypothesis (H17). First, we recall the following lemma (see [22]).

Lemma 4.4. Fori=1,...,n, for allu € Vi,(RN), u > 0, for all ¢ € V,,(RY),
¢ >0, and all u; € R, H), (u)((£)*¢) — H,, (4)((£)*u) < 0 with a € N, > 0.

So we get the last theorem of this section.

Theorem 4.5. (i) Assume (H1)—-(H4), (H11)-(H13) are satisfied. For i =
L...,n, if Yy = {x € RN a;;,(x) > 0} is a nonempty, bounded domain
of RN with a smooth boundary 0S2; 4, then N} < +oo.

(ii) Assume (H1)-(H4), (H11) are satisfied.
(1) We assume here that for alli,j, fi; = 0. If there exists i € {1,...,n}
such that for j # i, there exists u; > 0 which satisfies
Fi(u17 ceey, Ui—1, ¢i7 Uit-1y - 7un) 2 07
then AY < \; and since X} > \; is always satisfied, then A} = \; < +o00.
(2) If there exists uy > 0,...,u, > 0, such that
Fi(ur, ... uim1, iy Uig1, -+, up) <0,
then \; < A7.
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Note that the condition in Theorem [4.5[ii)(2) is verified if we assume also that
the hypothesis (H13) is satisfied and if we take u; > 0 such that suppu; C D;.

Proof. (i) Fori=1,...,n consider the equation (L,, +¢;)u = A;m;u defined in Q; |
with Dirichlet condition on 0€; +. We denote by A+ the first eigenvalue (which is
simple and positive) and by ¢+ the first eigenfunction associated i.e:
(Lp, + ¢i) it = Nigmidi  in Qi 4,
¢ir >0 in Qi (4.17)
¢i+ =0 on 09 .
Since supp ¢;+ C 2,4, by the above lemma, we have

for all u; € D(RY), HY,, (Ui)((¢z+

) ¢z+)

i.e. for all u; € D(RY), u; >0,

Pit
N ou,; OU(=7)"¢it) i
fRN [Zk,j:l Pkj,i (91;1 Oy + Qzuz(qsujr )a¢i+]

< it < Ho0. (4.18)
fRN mzuz( s L)
Moreover, for all uy,. .., u;—1,Ujt1,..., Uy >0,
8Fi ¢z
6u‘(UI’ <oy Un )(( +) ¢z+)
4.19)
o ; (
=(p+1) Z / @iy (S =) " Gie + fiju p+q(¢+> Dir] >

J=15#i

since supp ¢4+ C ;4 and by the hypotheses (H11)—-(H13). So by (4.18) and (4.19),
for all u; € V, (RN), u; >0,

inf , ¢ >0 such that for j=1,...,n,j #1,

$ED(RN)

N Ou; O0¢
{fRN 2ok j=1 Phivi g By T G
Jan miuid

F;
there exists v; € Vg, (RY), v; > 0 and g (V1,5 Uiy 0R) (@) = 0}
Uj

() gi4) e
fRN Zkg 1/’kﬂ8 T—ﬁ—qiui(i’j) ¢7,+]

< Ay < Fo0.
fRNm ul( u; ) (szr
Therefore, A7 < A4 < 4o00.
(ii) For the first claim, we assume that for ¢,j, f;; = 0. So we have: for all
ULy« -y Un,
Fi(ui, ... uy) = Z / azjul " ul (4.20)

and for all ¢,

OF;
aui

(U1, un) (@) = (p+1 Z / ajjulule. (4.21)

We suppose that: for j # i there exists u; > 0 such that
Fi(uy, ... wim1, ¢sy Uig1, ..y Un) > 0. (4.22)
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We want to prove that A7 < A;. We use again the above lemma with oo = p. We
have H} (gzbl)((% )Pu;) = 0 for all w; > 0. So for all u; > 0, Hy, (ul)((%)p@) <0
ie.,

N A((H)Pui)
fRN [Zk,j:l Pkj,i gg; alT + qlul( )p¢z]
fRN mzuz( )pqu
Moreover, using 7, for all u; > 0, for all j # i, there exists u; > 0,
OF; oy

<A < Ho0. (4.23)

6UA(ul,...,ui_l,ui,ui_,_l,..., )(( )p(,bz)
—(p+1) Z / asyubul( ¢z o, (4.24)
J=1j#1
= (p —|— l)Fz(ul, ey Uj—1, ¢i,ui+1, e ,un) Z 0
Since
N Ou; O
. Jan Zk,j:l Pkji oz, aj; + qiui @
inf { , ¢ > 0 such that
¢peD(RN) fRN MU P

OF;
for j # i, there exists u; € Vg, (RY), u; > 0 and 3 (Ut, ... un)(P) > 0}

Uy
u, 0((50)P )

f]RN Zk] 1ijza 1317%"‘%%( )P
S miui (25)P¢;

by (4.23) and , we get that A¥ < \; and therefore A} = A,.
For the second claim, we assume that there exists uq; > 0,...,u, > 0 such that

Fi(ul,...,ui,l,@,ui“,...,un) < 0. (425)

<< +00,

We denote by

N 96 9
Jan Dok ij,i%afi + qil[?]
Jn milo)? ’ (4.26)
¢ such that Fy(uy, ..., ui—1,0,Uit1,...,Up) > 0}.

A = inf {
#ED(RN), $>0

Let
W; = {¢ € ‘/qz(RN)v(é > Oa Fi(ula'"aui—17¢7ui+1a"'7un) > O}

Since W; C V,,(RY), we have \; < A; . Since ¢; & W;, by the continuity of the
function F;, we deduce that \; < \; (see and ([4.26)).
We prove now that A, < Af. Asin [15] we prove that there exists u; € W,

Jex Zk,] 1pk~7"8m azk =+ gilu; |?)
fRN milu; 2

After that, we prove that A\;; < A7. Suppose that A, > AY. Then there exists
¢ € ® - such that

AT =

K3

(4.27)

N ou-
Jan 2k j=1 Prji 31;; Far T @iu; 9
fRN miuj (b

<A <A (4.28)
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Therefore H;_,(ui_)(qb) < 0. Since Fj(u1,...,Ui—1,U; ,Uit1,-..,Un) > 0, by conti-

nuity we have Fj(u1,...,u—1,u; + N, Uit1,...,Uy) > 0 for n > 0 small enough.
Moreover, by (4.27) and (4.28) we have H| _ (u; )(¢) < 0 and H,- (u; ) = 0, we can
choose 1 > 0 small enough such that H,-(u; +7¢) < 0. So we obtain that:

N A(uy +n¢) (u; +n¢ _
f]RN [Zk,jzl Pkjii ( amjn ) & 8:1:;:’ ) + qi(u; +n9)?] <)\
fRN ml(u; + 77¢)2 ’

and this contradicts the definition of A; . Therefore A;” < AY. O

5. REMARKS

We give several remarks to our conditions and results.

First, note that all the results presented in this paper are true even in a bounded
domain  with Dirichlet boundary conditions. Indeed, if we assume that for all
i, ¢; € L™() and ¢; > 0, if we still define the set V() as the completion of
D() under the norm ||ullg, = ([,,[|Vul® + qiu2])1/2, we have V,(Q) = H}(Q).
Therefore, we can define the eigenpair (A, ;) by the Courant-Fischer formulas as
above.

Second, the case where for all i, ¢; = 0 in RN is quite different. Indeed, if
we define the set V,,(RY) as the completion of D(RY) under the norm ||ul,,
(Jan |Vu|2)1/2 then V,, (RY) = D2 and we lose the compactness of the embedding
of V,,(RY) into L2(RY). So this case requires the introduction of other weight-
spaces depending on the weights m; and therefore requires other hypotheses upon
the weights m;. For example, we recall from [10] that the equation

—Au=Im;u in RV

u(z) -0 as|z| = +oo

admits a positive principle eigenvalue \(m;), associated with a positive eigenfunc-
tion ¢,y,, such that

/\(mi)/ miu® < / |Vu? (for all u € D*?)
RN RN

under the hypotheses that N >3, 0 <m,; € L% (RM), m; # 0. In [8], for example,
there are results on the existence of a positive principle eigenvalue associated with
a positive eigenfunction for the equation

—Au = m;u inRY
u(z) - 0 as|z| — o0

It is proved that such an eigenvalue exists if m; is negative and bounded away from
0 at infinity, or if N > 3 and |m;| is sufficiently small at infinity (i.e. |m;(z)] <

7(1i0\2\85)a with o > 1) but does not exist if N =1 or N =2 and [px m; > 0. When

N > 3 and the weight m; satisfies |m;(z)] < %, the variational space is
defined by V = {u: RN — R, [+ [|Vul* + ﬁ] < +00o}. In this last case, under

the hypotheses that N > 3 and |m;(z)| < %, our results are still valid with



EJDE/CONF/16 ELLIPTIC SYSTEMS 79

the additional conditions that all the parameters p; have to be positive (since the
equation)

—Au = Am;u in RV

u(z) =0 as|z|] —» +oo

(can admit negative eigenvalues).
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