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Dedicated to Jacqueline Fleckinger on the occasion of
an international conference in her honor

Abstract. We discuss some nonlinear problems associated with an infinite
dimensional operator L defined on a real separable Hilbert space H. As the

operator L we choose the Ornstein-Uhlenbeck operator induced by a centered

Gaussian measure µ with covariance operator Q.

1. Introduction

The goal of this note is to present some results for nonlinear problems associated
with an infinite dimensional operator L defined on a real separable Hilbert space
H. As the operator L we choose the Ornstein-Uhlenbeck operator induced by a
centered Gaussian measure µ with covariance operator Q (see [8]).

In the first part we consider existence and uniqueness of solutions for a problem
of the form

−Lu+ β(u) = f, (1.1)
where β satisfies

(H1) β is a strictly increasing homeomorphism of R onto R, β(0) = 0,
and f ∈ L2(H,µ) is given. As a consequence of the existence part we can show that
the operator L(β−1), with an appropriate domain, has an m-dissipative closure in
L1(H,µ). Thus, in view of the Crandall-Liggett Theorem, see [7] (and also [6]),
it generates a nonlinear contraction semigroup on the closure of its domain in
L1(H,µ).

In the second part we make the additional assumption that β is odd and we
consider the nonlinear eigenvalue problem

−Lu+ β(u) = λu, λ ≥ 0, (1.2)
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where u ∈ L2(H,µ), ‖u‖L2(H,µ) = R, with R > 0 given.
By using results in [4] and [9], we obtain the existence of an infinite sequence

{(λn, un)}n∈N of solutions to (1.2) with λn → ∞ as n → ∞. This implies the
existence of infinitely many solution pairs (λ, u) with non constant u. Moreover,
we discuss the existence of solutions with nonnegative and non constant u.

2. Preliminaries

In this section we establish the notation that we will use throughout this work.
Most of it is taken from [8] and we refer the reader to this book. H will denote a
finite or infinite dimensional real separable Hilbert space with inner product 〈·, ·〉
and norm | · |. Throughout the paper µ = NQ will denote the centered Gaussian
measure on H with covariance Q, (see [8, page 12]), where Q denotes a positive
symmetric operator of trace class in H with Ker(Q) = {0}. Also, {ek}k∈N will
denote a complete orthonormal system of eigenvectors of Q with corresponding
eigenvalues {γk}k∈N satisfying

0 < γk+1 ≤ γk. (2.1)

We recall here that the Ornstein-Uhlenbeck semigroup “associated with µ” is given
by

Rtϕ(x) =
∫

H

ϕ(etAx+ y)NQt
(dy), x ∈ H, t > 0,

and ϕ ∈ Bb(H) (Borel bounded functions on H). Here A = − 1
2Q

−1 and

Qtx =
∫ t

0

e2sAxds = Q(I − e2tA)x, x ∈ H, t > 0.

As a consequence of [8, Proposition 10.22], Rt can be uniquely extended to a
strongly continuous contraction semigroup in L2(H,µ), which we still denote by
Rt, and µ is the unique invariant measure of Rt and for x ∈ H,

lim
t→∞

Rtϕ(x) =
∫

H

ϕ(y)dµ(y) = ϕ.

Moreover, from [8, Th5.8], Rt can be uniquely extended to a strongly continuous
positive contraction semigroup in Lp(H,µ) for all 1 ≤ p <∞.

We shall denote by Lp the infinitesimal generator ofRt in Lp(H,µ). In particular,
L1 is m-dissipative in L1(H,µ) hence it satisfies∫

H

(L1u)(x) sgn(u(x))dµ ≤ 0, for every u ∈ D(L1), (2.2)

see e.g. [3, Lemma 2], where we have used the notation

sgn(t) =


1 t > 0,
0 t = 0,
−1 t < 0.

Moreover, −L2 is a nonnegative self adjoint operator in L2(H,µ) with domain

D(L2) = {u ∈W 2,2(H,µ) :
∫

H

|(−A)1/2Du|2dµ <∞}, (2.3)
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see [8, Propositions 10.22 and 10.34] and

L2ϕ(x) =
1
2
Tr[D2ϕ](x) + 〈x,ADϕ(x)〉, (2.4)

where ϕ ∈ EA(H), which is defined to be the linear span in Cb(H) (continuous
bounded functions in H) of real and imaginary parts of ϕh, where ϕh(x) = ei〈h,x〉,
h ∈ D(A), and D, D2 are the differential operators introduced in [8, Proposition
10.3 and 10.32]. We also introduce E(H) as the linear span in Cb(H) of real and
imaginary parts of ϕh, where ϕh(x) = ei〈h,x〉, and now h ∈ H. Finally we note also
that the null space N(Lp) = {const.}, 1 ≤ p <∞.

We also consider the Dirichlet form a : W 1,2(H,µ)×W 1,2(H,µ) → R defined by

a(ϕ,ψ) =
1
2

∫
H

〈Dϕ,Dψ〉dµ.

The linear space W 1,2(H,µ) endowed with the inner product

〈ϕ,ψ〉W 1,2(H,µ) = 〈ϕ,ψ〉L2(H,µ) + 2a(ϕ,ψ)

is a real separable Hilbert space with

W 1,2(H,µ) ↪→ L2(H,µ) compact, (2.5)

see [8, Theorem 10.16]. Finally, we recall that

a(ϕ,ψ) = −
∫

H

〈L2ϕ,ψ〉dµ (2.6)

for all ϕ ∈ D(L2), and all ψ ∈W 1,2(H,µ), see [8, Section 10.4].

Remark 2.1. We want to note that in this work the operator L2 is defined as the
generator of the semigroup Rt in L2(H,µ), while in [8] the operator L2 is defined
on page 151 via the Lax-Milgram Theorem. In view of [8, Proposition 10.22 (iv)],
they are the same.

3. An infinite dimensional porous media type operator

The aim of this section is to construct an infinite dimensional nonlinear second
order elliptic operator which is of porous media type ∆(β−1), following the approach
of [5]

Let β satisfy (H1) and consider problem (1.1).

Proposition 3.1. (a) For every f ∈ L2(H,µ) there exists a unique u ∈ D(L2)
such that β(u) ∈ L2(H,µ) and u satisfies (1.1) with L = L2.
(b) If

(H2) β(u) = εu+γ(u) for some ε > 0 and some continuous monotone increasing
function γ : R → R, γ(0) = 0,

then for any f ∈ L1(H,µ) there exists a unique u ∈ D(L1) with β(u) ∈ L1(H,µ)
satisfying (1.1) with L = L1.

Proof. We start by proving (a). Set A := −L2, Bu(x) := β(u(x)), where

D(B) = {u ∈ L2(H,µ) : β(u) ∈ L2(H,µ)}

and write (1.1) as
Au+Bu = f, f ∈ L2(H,µ).
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We claim that A is maximal monotone and that it is the subdifferential of the
convex l.s.c functional Ja : L2(H,µ) 7→ [0,∞] defined by

Ja(ϕ) =

{
a(ϕ,ϕ), ϕ ∈W 1,2(H,µ),
+∞ otherwise.

(3.1)

Indeed, for u ∈ D(L2) and h ∈W 1,2(H,µ), by (2.6), we have that

Ja(u+ h) = Ja(u) +
∫

H

〈Du,Dh〉dµ+ Ja(h)

≥ Ja(u)−
∫

H

〈L2u, h〉dµ,

which implies that u ∈ D(∂Ja) and −L2u ∈ ∂Ja(u). Note that since Ja is convex,
it follows that ∂Ja is monotone, moreover, since −L2 is nonnegative and selfadjoint
in L2(H,µ), it follows that it is maximal monotone. Hence −L2 = ∂Ja by the
maximal monotonicity of −L2. Also, B is the subdifferential of

Jb(u) =

{∫
H
b(u)dµ, if

∫
H
b(u)dµ <∞

∞ otherwise,

where

b(t) :=
∫ t

0

β(s)ds. (3.2)

Therefore A and B satisfy all the assumptions in [2, Example 1] implying that

Int(R(A+B)) = Int(R(A) +R(B)).

Since R(B) = L2(H,µ), we conclude that R(A + B) = L2(H,µ). Finally, the
uniqueness assertion follows from the strict monotonicity of β.

Next we prove (b). In order to achieve this we write (1.1) as

(ε− L1)u+ γ(u) = f, f ∈ L1(H,µ). (3.3)

Hence in view of Theorem 1 in [3] it is sufficient to see that the operator A :=
ε−L1 satisfies (I), (II), and (III) in [3]. Since by definition L1 generates a linear
contraction C0 semigroup in L1(H,µ), so does L1−ε = −A, which yields (I). Also,
from the dissipativity of L1 we have that

ε‖u‖L1(H,µ) ≤ ‖εu− L1‖L1(H,µ) = ‖A‖L1(H,µ),

implying that (III) is also satisfied. Finally we prove (II). Let λ > 0 and f ∈
L1(H,µ). Since the semigroup generated by L1 is positive, we have that

(I + λA)−1f ≤ (I + λA)−1f+

and hence

ess sup(I + λA)−1f ≤ ess sup(I + λA)−1f+. (3.4)

Since Lp generates a linear contraction C0 semigroup in Lp(H,µ) for all 1 ≤ p <∞,
so does Lp − ε, hence

‖(I + λA)−1f+‖Lp(H,µ) ≤ ‖f+‖Lp(H,µ), (3.5)
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provided that f+ ∈ Lp(H,µ). Assuming f+ ∈ L∞(H,µ), by letting p→∞ in (3.5)
we obtain

ess sup(I + λA)−1f+ = ‖(I + λA)−1f+‖L∞(H,µ)

≤ ‖f+‖L∞(H,µ) = ess sup f+

= max{0, ess sup f}.

Therefore, using (3.4) we conclude that

ess sup(I + λA)−1f ≤ max{0, ess sup f},

which is exactly assumption (II) in [3]. �

We are now in a position to define a “porous media type” operator, which we
denote by Lφ, where φ = β−1 in L1(H,µ):

D(LΦ) := {u ∈ L1(H,µ) : φ(u) ∈ D(L1)},

and for u ∈ D(LΦ) we set
Lφu := L1(φ(u)).

We have the following result.

Theorem 3.2. (i) The closure of Lφ is a nonlinear (possibly multivalued) m-
dissipative operator in L1(H,µ).

(ii) If β satisfies assumption (H2), then Lφ is itself a nonlinear m-dissipative
operator in L1(H,µ).

(iii) If φ ∈ C2(R), then D(Lφ) = L1(H,µ).

Remark 3.3. We do not claim that the last two assertions in Theorem 3.2 are
optimal.

Proof of Theorem 3.2. (i) We will first prove the dissipativity of Lφ in L1(H,µ).
Let u, v ∈ D(Lφ) and let ū = φ(u), v̄ = φ(v). By assumption, ū and v̄ belong to
D(L1). In view of the dissipativity of L1 in L1(H,µ) we have∫

H

L1(ū− v̄) sgn(ū− v̄)dµ ≤ 0, (3.6)

and in view of (H1),
sgn(u− v) = sgn(ū− v̄). (3.7)

Hence, replacing (3.7) into (3.6), and using the definition of ū, v̄ we get∫
H

(L1(φ(u)− φ(v)) sgn(u− v)dµ ≤ 0,

which implies the dissipativity of Lφ. We prove now that R(I − Lφ) is dense in
L1(H,µ). Let f ∈ L2(H,µ). Then by Proposition 3.1 (a), there exists v ∈ D(L2),
with β(v) ∈ L2(H,µ), such that

−L2v + β(v) = f,

hence setting u = β(v) we obtain v = φ(u) and

u− L2φ(u) = f,

hence f ∈ R(I − Lφ) (since L2 ⊂ L1). We conclude that L2(H,µ) ⊆ R(I − λLφ)
and the claim follows from the density of L2(H,µ) in L1(H,µ).
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It is a well known fact that if Lφ denotes the closure of Lφ, then Lφ is dissipative
(possibly multivalued) and R(I−Lφ) is closed, hence equal to L1(H,µ). Therefore
Lφ is m-dissipative in L1(H,µ).
(ii) It follows from Proposition 3.1 that if β is of the form (H2) then the range

R(I − Lφ) = L1(H,µ),

hence in this case Lφ is m-dissipative.
(iii) It is sufficient to show that EA(H) ⊆ D(Lφ), since EA(H) is dense in L2(H,µ).
If v ∈ EA(H), then there exists N ≥ 1, h1, h2, . . . , hN , k1, k2, . . . , kN ∈ D(A)
α1, α2, . . . , αN , β1, β2, . . . , βN ∈ R such that

v(x) =
N∑

i=1

(
αi cos〈hi, x〉+ βi sin〈ki, x〉

)
, x ∈ H. (3.8)

We will prove that φ(v) ∈ D(L2). In view of (2.3), with first verify that φ(v) ∈
W 2,2(H,µ). Since v ∈ Cb(H), we have that φ(v), φ′(v) and φ′′(v) are in Cb(H). In
particular, φ(v) ∈ L2(H,µ).

From the definition of W 2,2(H,µ) in [8, Section 10.6, page 161], we need to
compute DjD`φ(v), j, ` ∈ N. Since Djv and D`v are bounded and continuous,
from

D`φ(v) = φ′(v)D`v,

and
DjD`φ(v)(x) = φ′(v)DjD`v(x) + φ′′(v)Djv(x)D`v(x), (3.9)

we obtain that DjD`φ(v) ∈ Cb(H) ⊆ L2(H,µ).
Next we show that

∞∑
j,`=1

∫
H

|DjD`φ(v)|2dµ <∞. (3.10)

From (3.9) it is sufficient to show that
∞∑

j,`=1

∫
H

|DjD`v|2dµ <∞ and
∞∑

j,`=1

∫
H

|Djv(x)D`v(x)|2dµ <∞. (3.11)

Indeed, the first assertion in (3.11) follows from the fact that v ∈ EA(H) ⊆ E(H) ⊆
W 2,2(H,µ). For the second one we note that

|Djv(x)| ≤ C
N∑

i=1

(|〈hi, ej〉|+ |〈ki, ej〉|) (3.12)

where C is a positive constant depending only on α1, . . . , αN , β1, . . . , βN , hence
∞∑

j,`=1

|Djv(x)D`v(x)|2 ≤ 4N2C4
( N∑

i=1

|hi|2 + |ki|2
)2

, (3.13)

implying that the second assertion in (3.11) holds and therefore φ(v) ∈W 2,2(H,µ).
Finally we will prove that ∫

H

|(−A)1/2Dφ(v)|2dµ <∞. (3.14)



EJDE/CONF/16 INFINITE-DIMENSIONAL NONLINEAR ELLIPTIC PROBLEMS 87

First we prove that Dφ(v)(x) ∈ D((−A)1/2). Since A = − 1
2Q

−1, w ∈ H belongs
to D((−A)1/2) if and only if

∞∑
j=1

γ−1
j 〈w, ej〉2 <∞. (3.15)

Now, Dφ(v)(x) = φ′(v)Djv(x) and |φ′(v)| ≤ C0 for some positive constant C0,
hence from (3.12) we find that

|Djφ(v)(x)|2 ≤ C2
0 |Djv(x)|2 ≤ 2NC2

0C
2

N∑
i=1

(|〈hi, ej〉|2 + |〈ki, ej〉|2)

where hi, ki ∈ D(A), i = 1, . . . , N , that is,
∞∑

j=1

γ−2
j |〈hi, ej〉|2 <∞ and

∞∑
j=1

γ−2
j |〈ki, ej〉|2 <∞. (3.16)

Hence from (3.16),
∞∑

j=1

γ−1
j |Djφ(v)(x)|2 ≤ 2NC2

0C
2

N∑
i=1

∞∑
j=1

γ−1
j (|〈hi, ej〉|2 + |〈ki, ej〉|2) <∞,

since by (2.1) γ−1
j ≤ γ−2

j for large j. This implies that Dφ(v)(x) ∈ D((−A)1/2) for
any x ∈ H and

|(−A)1/2Dφ(v)|2(x) =
∞∑

j=1

〈Dφ(v)(x), (−A)1/2ej〉2

=
1
2

∞∑
j=1

〈Dφ(v)(x), γ−1/2
j ej〉2

=
1
2

∞∑
j=1

γ−1
j 〈Dφ(v)(x), ej〉2,

implying that the integrand in (3.14) is Borel measurable and bounded and thus
(3.14) holds. This completes the proof of part (3). �

We end this section by giving some properties of the nonlinear semigroup gen-
erated by Lφ.

Proposition 3.4. Let β satisfy (H1) and St : D(Lφ) → D(Lφ) be the nonlinear
semigroup generated by Lφ. Then the following hold.

(i) For any c ∈ R, c ∈ D(Lφ), and St(c) = c.
(ii) Let f, g ∈ D(Lφ) such that f ≤ g. Then St(f) ≤ St(g) for all t > 0.
(iii) For any f ∈ D(Lφ),∫

H

Stfdµ =
∫

H

fdµ for all t > 0.

Proof. From Proposition 3.1, for any h > 0 there is a unique u ∈ L2(H,µ) such
that

−L2u+
1
h
β(u) =

1
h
f, (3.17)
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hence
(I − hLφ))−1f = β(u). (3.18)

Proof of (i). If f = c, we have β(u) = c and thus by induction it follows that

(I − hLφ)−mc = c for all m ∈ N, (3.19)

therefore, for any t > 0 we have

St(c) = lim
m→∞

(I − t

m
Lφ)−mc = c

Proof of (ii). Let now f1, f2 ∈ L2(H,µ), with f1 ≤ f2, and for h > 0 and ε > 0,
and i = 1, 2, let uε

i satisfy

εuε
i − L2u

ε
i +

1
h
β(uε

i ) =
1
h
f1.

From [1, Proposition 4.7 (iv) implies (i)] with

ϕ(u) =

{
0 u ≥ 0
+∞ otherwise,

we obtain uε
1 ≤ uε

2. By letting ε→ 0 we obtain u1 ≤ u2 where ui satisfy

−L2ui +
1
h
β(ui) = fi, i = 1, 2.

Hence, β(u1) ≤ β(u2) and thus

(I − hLφ))−1f1 ≤ (I − hLφ))−1f2.

Therefore, by induction,

(I − hLφ))−mf1 ≤ (I − hLφ))−mf2. (3.20)

Since L2(H,µ) is dense in L1(H,µ), (3.20) holds also for f1, f2 ∈ L1(H,µ). By
taking f1, f2 ∈ D(Lφ), we obtain as before that St(f1) ≤ St(f2).
Proof of (iii). Arguing as before, it is sufficient to prove that∫

H

(I − hLφ)−1fdµ =
∫

H

fdµ

for all h > 0 and f ∈ L2(H,µ). This follows by integrating (3.17) over H to obtain∫
H

β(u)dµ =
∫

H

fdµ,

hence our claim follows by integrating now (3.18) over H. �

4. A nonlinear eigenvalue problem associated with the
Ornstein-Uhlenbeck operator

In this section we consider the nonlinear eigenvalue problem

−L2u+ β(u) = λu, (4.1)

where β satisfies (H1) and is odd. By a solution to this equation we mean a pair
(λ, u) ∈ R× L2(H,µ) satisfying u ∈ W 2,2(H,µ), β(u) ∈ L2(H,µ). Clearly, for any
λ ∈ R, (λ, 0) is a solution to (4.1). Set

λ∗ := sup{λ ∈ R : s 7→ β(s)− λs is strictly increasing in R}
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We have that 0 ≤ λ∗ <∞. If λ < λ∗, then s 7→ β(s)− λs is strictly increasing and
hence, from Proposition 3.1 (a) we have that (λ, 0) is the only solution to (4.1).
For λ ∈ R let us consider the functional Jλ : L2(H,µ) → [−∞,∞] defined by

Jλ(u) =

{
Ja(u) + Jb(u)− λ

2 ‖u‖
2
L2(H,µ), u ∈W 1,2(H,µ),

∫
H
b(u)dµ <∞

+∞ otherwise.
(4.2)

We observe that for λ < λ∗, Jλ is strictly convex, l.s.c. and nonnegative, and 0 is
its global minimizer.

Next we investigate the positive constant solutions to (4.1) u(x) ≡ c. Then
β(c) = λc. We have the following result.

Proposition 4.1. Assume that

t 7→ β(t)/t is strictly increasing on (0,∞). (4.3)

Then for all c > 0 the pair (β(c)/c, c) is a solution to (4.1) and u = c minimizes
the functional J0 on the set

Sc := {u ∈W 1,2(H,µ) : ‖u‖L2(H,µ) = c}.
Furthermore, u = c is the unique nonnegative minimizer of J0 on Sc.

Proof. From (4.3) we obtain that the mapping t 7→ b(
√
t), t > 0, is strictly convex,

hence for any u ∈ D(J0) we have by Jensen’s inequality ([10, Theorem 2.2(a)]) that

J0(u) ≥
∫

H

b(
√
|u|2)dµ ≥ b

(√∫
H

|u|2dµ
)

= b(c) = J0(c), (4.4)

implying that u = c is a minimizer for J0. On the other hand, if u is a minimizer,
then from (4.4) and the fact that J0(c) ≥ J0(u), we obtain that∫

H

b(
√
|u|2)dµ = b

(√∫
H

|u|2dµ
)
,

hence by [10, Theorem 2.2(b)] we deduce that u2 must be a constant, hence u = c
since u is nonnegative. �

We will now state and prove our existence results.

Theorem 4.2. (i) For any R > 0 there exists a solution (λ, u) to (4.1) satis-
fying u ≥ 0 and u minimizes J0 on SR.

(ii) For any R > 0 there exists a sequence of solutions {(λn, un)}n∈N to (4.1)
such that un ∈ SR and

λn > 0 for n ∈ N, and sup
n∈N

λn = ∞. (4.5)

Proof. (ii) We will apply Theorem 1 in [4], see also [9]. As the real infinite dimen-
sional separable Hilbert space we choose E = L2(H,µ). Let ϕ : E → [0,∞] be
defined by ϕ(u) := J−1, u ∈ E. Then clearly ϕ is convex, even, and ϕ(0) = 0.
Moreover, in view of the compactness of the imbedding (2.5), the convex set

{u ∈ E : ϕ(u) ≤ ρ}
is compact in E for all ρ ≥ 0. Moreover, since E(H) ⊆ Cb(H)∩W 1,2(H,µ) we have
that E(H) ⊆ D(ϕ). The density of E(H) in E implies the density of D(ϕ) in E.
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Hence, all the assumptions of [4, Theorem 1] are satisfied and therefore there exists
a sequence (νk, uk) ∈ R × E, k ∈ N such that ‖uk‖E = R, ∂J−1(uk) 3 νkuk and
supk≥1 ϕ(uk) = ∞. We claim that

D(∂J−1) = D(L2) ∩D(B),

and
∂J−1(u) = −L2u+Bu+ u, u ∈ D(∂J−1).

Indeed,
J−1 = Ja + Jb̃,

where b̃(t) = b(t) + 1
2 t

2 and we have

∂Ja = −L2, and ∂Jb̃ = B + I.

In view of Proposition 3.1 (a), we have

R(−L2 +B + 2I) = E,

which implies that −L2 +(B+ I) is maximal monotone. From [1, page 41] we have

∂J−1 = ∂Ja + ∂Jb̃,

which proves the claim. Therefore

−L2uk + β(uk) = (νk − 1)uk, k ∈ N.
Set λk = νk − 1, k ∈ N. By taking inner product with uk and taking into account
that ‖uk‖E = R > 0 we have that λk > 0. Finally, since

ϕ(uk) ≤ 〈∂ϕ(uk), uk〉 = νkR
2,

we have supk∈N λk = ∞. and thus (4.5) holds.
(i) In this part we shall use that u ∈ W 1,2(H,µ) implies that |u| ∈ W 1,2(H,µ),
Ja(|u|) = Ja(u), and moreover, since β is odd, we also have Jb(|u|) = Jb(u). We
will apply Theorem 3 in [4]. To this end we set

P := {v ∈ L2(H,µ) : v ≥ 0}, IP (u) =

{
0 u ∈ P
+∞ otherwise,

and define ϕ+ : E → [0,∞] by ϕ+(u) = ϕ(u) + IP (u), u ∈ E. We have that ϕ+

is convex, l.s.c., the set {u ∈ E : ϕ+(u) ≤ ρ} is compact for every ρ ≥ 0, and
ϕ+(0) = 0. We claim that D(ϕ+) = P . Indeed, let u ∈ P . By the density of D(ϕ)
in E, there exists {un} ⊆ D(ϕ) such that un → u in E. Hence, |un| ∈ D(ϕ+) and
|un| → |u| = u in E.

Let R > 0. From [4, Theorem 3] there exists (ν, u) ∈ R+ × P , with ‖u‖E = R,
νu ∈ D(∂ϕ+), νu ∈ ∂ϕ+(u) and

ϕ+(u) = inf
v∈SR

ϕ+(v).

It follows that

ϕ+(v) ≥ ϕ+(u) + 〈νu, v − u〉 for all v ∈ D(ϕ).

Since u ∈ P , we have ϕ+(u) = ϕ(u), hence

ϕ+(v) ≥ ϕ(u) + 〈νu, v − u〉 for all v ∈ D(ϕ).

Moreover, for all v ∈ P ∩D(ϕ) we have

ϕ(v) ≥ ϕ(u) + 〈νu, v − u〉,
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hence for all v ∈ D(ϕ) we have

ϕ(|v|) ≥ ϕ(u) + 〈νu, |v| − u〉.
Since ϕ(|v|) = ϕ(v), we obtain

ϕ(v) ≥ ϕ(u) + 〈νu, v − u〉+ 〈νu, |v| − v〉 ≥ ϕ(u) + 〈νu, v − u〉,
hence νu ∈ D(∂ϕ(u) and νu = −L2 +Bu+ u. Setting now λ = ν − 1 we get

−L2u+Bu = λu.

Finally, we have

J0(u) = ϕ(u)− 1
2
R2 = ϕ+(u)− 1

2
R2

= inf
v∈SR

ϕ+(v)− 1
2
R2 = inf

v∈SR

ϕ(|v|)− 1
2
R2

= inf
v∈SR

ϕ(v)− 1
2
R2

= inf
v∈SR

J0(v).

�

We complete this note by exhibiting a class of functions β for which the minimum
of J0 on SR is not attained at the constants for R small.

Proposition 4.3. Assume that β satisfies the extra conditions

lim
s→0

b(s)
s2

= ∞, and lim
s→∞

b(s)
s2

= 0; (4.6)

there exists C > 0 such that b(st) ≤ Cb(s)b(t) for all s, t > 0. (4.7)

Then, there exists R0 > 0 such that for any R ∈ (0, R0) J0 does not achieve its
minimum on SR at the constants.

Proof. For n ∈ N, we set

ũn(t) =

{
−nαn(|t| − 1

n ) |t| ≤ 1
n

0 |t| > 1
n

where αn will be chosen later. We define un : H → R by un(x) := ũn(〈x, e1〉) and
we choose αn so that ‖un‖L2(H,µ) = R. We observe also that un ∈ W 1,2(H,µ).
One verifies that

C1R
√
n ≤ αn ≤ C2R

√
n, (4.8)

for some positive constants C1, C2. We will show now that if n is chosen large
enough and R > 0 is small enough, then

J0(un) < J0(R) = b(R).

Indeed, it follows from the definition of µ that

1
2

∫
H

|Dun|2dµ ≤ K0

∫ 1/n

0

|ũ′n|2dt,
∫

H

b(un)dµ ≤ K0

∫ 1/n

0

b(ũn)dt (4.9)

for some positive constant K0. Now, from (4.8) we have∫ 1/n

0

|ũ′n|2dt = nα2
n ≤ C2

2n
2R2, (4.10)
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and from (4.8) and (4.7) we get∫ 1/n

0

b(ũn)dt =
1
nαn

∫ αn

0

b(s)ds ≤ b(αn)
n

≤ b(C2R
√
n)

n
≤ Cb(R)

b(C2
√
n)

n
.

Using now the second condition in (4.6) to find n0 ∈ N so that

CK0
b(C2

√
n0)

n0
<

1
4
,

from the second inequality in (4.9) we obtain∫
H

b(un)dµ ≤
∫

H

b(un0)dµ <
1
4
b(R). (4.11)

Finally, in view of the first assumption in (4.6) we can find R0 > 0 such that for
any R ∈ (0, R0)

K0C
2
2n

2
0

R2

b(R)
≤ 1

4
,

therefore from the first inequality in (4.9) and (4.10), we have

1
2

∫
H

|Dun|2dµ ≤ K0C
2
2n

2
0

R2

b(R)
b(R) ≤ 1

4
b(R). (4.12)

Hence, from (4.11) and (4.12) we conclude that for any R ∈ (0, R0),

inf
v∈SR

J0(v) ≤ J0(un0) ≤
1
2
b(R) =

1
2
J0(R).

This completes the proof of the proposition. �

Remark 4.4. We note that β(s) = |s|p−1s, 0 < p < 1, satisfies all the assumptions
of Proposition 4.3.

As a last comment, we mention that as a consequence of Theorem 4.2 and Propo-
sition 4.3 we have shown the existence of a nonnegative nonconstant solution to
(4.1). It is worth observing that a function u of the form

u(x) = ũ(〈x, e1〉, 〈x, e2〉, . . . , 〈x, eN 〉),

where ũ : RN → R is a solution to (4.1) with H = RN with the usual inner product
and

L2 =
1
2
∆ + 〈b(x),∇〉,

where bi(x) = − xi

2γi
, 1 ≤ i ≤ N , is also a solution to the infinite dimensional

problem. It is an open problem to know whether (4.1) possesses solutions depending
on infinitely many variables.
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