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Abstract. This note is devoted to stick-slip aspects of the motion of a dry
friction damped oscillator under weak irregular forcing. Our main result com-

plements [10, Theorem 3.(a)] and is also related to [1], where a non-Lipschitz
model for Coulomb friction was consider in the unforced case. We provide

sufficient conditions guaranteeing that solutions stabilizing in finite time, but

observe also an infinite succession of “stick-slip” behavior. The last section
discusses an extension to certain systems of such oscillators.

1. Introduction

Its is well known that the abstract Cauchy problem associated with multivalued
monotone (resp. accretive) operators on Hilbert spaces (resp. Banach spaces) may
lead to very peculiar strong convergence asymptotic behaviour for its solutions.
More precisely, if for instance X = H is a Hilbert space, and A : D(A) → P(H)
is a maximal monotone operator multivalued at 0 (with 0 ∈ intD(A)) then the
solution of the

du

dt
(t) + Au(t) 3 f(t) in X,

u(0) = u0,
(1)

possesses the property of extinction in finite time once we assume that f satisfies

B(f(t), ε) ⊂ A0, for a.e. t ≥ tf , for some ε > 0 and tf ≥ 0. (2)

This result, due to H. Brezis ([4]), has been generalized in many different directions
in the last twenty years (see, for instance, the survey [11]). The main goal of
this paper is to investigate some simple cases in which the image of 0 under the
multivalued operator is not so large as to contain a ball.
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In order to get some insight into this type of difficulties we shall first study the
long-term behaviour of solutions of

ẍ + x− p(t) ∈ sgn(−ẋ), (3)

where

sgn(y) :=

{
y/|y| if y 6= 0
[−1, 1] if y = 0

represents the damping force due to dry friction and p ∈ C([0,∞), R) is an external
forcing, which is weak in the sense that sup{|p(t)| : t ∈ [0,∞)} < 1. (3) is one
of a variety of damped oscillator equations modelling dry friction, and our interest
in this particular setting arises from the fact that it describes pure dry friction
damping, mathematically, the more challenging case. We refer to [1], [2] and [13]
for other settings and references, to [10] and [13] for “resonance” under almost
periodic forcing, and to [5] and the references therein for dry friction damped wave
equations. As for our purposes, it was shown in [10] (formally in an almost periodic
setting), that every solution converges to a constant solution as t → ∞ (cf. also
Lemma 2.5 (4) below). We are interested in solutions which either are eventually
constant (the mass comes to rest in finite time) or show an infinite succession of
stick-slip events. We allow temporally irregular forcing and can require without
loss of generality that

p := lim sup
t→∞

p(t) = −p := lim inf
t→∞

p(t).

Definition 1.1. Let a, b ∈ R+, a < b. An interval [a, b]
(
[a,∞)

)
is called a dead

zone of a solution x of (3), if ẋ(t) = 0 for t ∈ [a, b]
(
t ∈ [a,∞)

)
.

Our main result regarding (3) read as follows.

Theorem 1.2. If x is a solution of (3) with x∞ := limt→∞ x(t) < 1 + p. Then
one of the following alternatives occurs.

(1) p − 1 < x∞ < 1 − p, t 7→ x∞ is a constant solution of (3), and x has a
dead zone [t,∞).

(2) |x∞| > 1 − p, x is monotone and has a compact dead zone in each neigh-
borhood of infinity.

(3) If |x∞| = 1− p, there may or may not be a dead zone.

We conclude this paper with some partial result concerning the system

mẍi(t) + k(−xi−1(t) + 2xi(t)− xi+1(t)) + µβ sgn(ẋi(t)) 3 pi(t)

xi(0) = u0,i, ẋi(0) = v0,i
(4)

i = 1, . . . , N, where we are assuming that

x0(t) = 0, xN+1(t) = 1 for t ∈ (0,+∞),

m, µβ are positive constants and the term µβ sgn(ẋi(t)) represents the Coulomb
friction. This system arises in the modeling of the vibration of N -particles of equal
mass m in a non-inertial coordinate system. Indeed, we denote the locations of the
particles, along the interval (0, 1) of the x axis, by xi(t), and we assume that each
particle is connected to its neighbors by two harmonic springs of strength k. We
also assume that the particles are subject to a resultant friction force (the Coulomb
(or solid) friction). Functions pi(t) correspond to fictitious forces due to the change
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of variable with respect to an inertial system. We show that, at least, in some
special cases the first conclusion of Theorem 1.2 remains true.

2. Preliminaries

It is worth noting that the formally more general equation

ẍ + kx− p(t) ∈ µ sgn(−ẋ) (5)

with k, µ ∈ (0,∞), and p ∈ L∞([0,∞), R) can be re-scaled to the simpler form (3).
Replacing x by x

µ and p by p
µ yields µ = 1 without loss of generality. Next, let p̄ :=

lim supt→∞ p(t) and p := lim inft→∞ p(t). The transformation x → x− p̄+p

2k and p →
p − p̄+p

2 allows us to assume p = −p̄. Finally, setting τ = t√
k

and y(τ) = kx( t√
k
),

one obtains ẏ(τ) =
√

kẋ( t√
k
) and ÿ(τ) = ẍ( t√

k
), hence ÿ + y − p(τ) ∈ − sgn(−ẏ),

thus we arrive at (3) under the additional “symmetry hypotheses” p̄ = −p.
For the rest of this article, we consider (3) under the Hypotheses:

p ∈ L∞(R+, R) ∩ C(R+, R), p = −p.

Definition 2.1. One calls x ∈ W 2,1
loc ([0,∞), R) a solution of (3), if there exists

a u ∈ L∞(R+, R) with u(t) ∈ sgn(ẋ(t)) for a.e. t ∈ R+ such that ẍ(t) + x(t) =
p(t)− u(t) for a.e. t ∈ (0,∞).

Note that |u(t)| ≤ 1 for a.e. t ∈ (0,∞). The general theory of “multi-valued”
ordinary differential equations ([7, §5], [13, section 2.2]) yields the following result.

Proposition 2.2. The initial-value problem (3), x(t0) = x0, ẋ(t0) = η0 has for
each (t0, x0, η0) ∈ R3 a (forwardly) unique “global” solution x ∈ W 2,1

loc ([t0,∞), R).

As mentioned, we are interested in whether solutions develop dead zones. The
first example shows that “stronger” forcing limits the length of dead zones.

Example 2.3. Let p(t) = (1+ 1
1+t ) sin(t). Then p̄ = 1, but a solution of (3) cannot

have dead zones of length greater than π, since |p(π
2 + jπ) − p(π

2 + (j − 1)π)| > 2
for j ∈ N.

The next example indicates that the second alternative of Theorem 1.2 can in
fact occur.

Example 2.4. Let p ∈ (0, 1), x0 ∈ (1− p, 1 + p), 0 < t1 < t2 < t3, and

p(t) =


p t ∈ [0, t1),
−p t ∈ [t1, t2),
p t ∈ [t2, t3].

If t2 − t1 < π
4 is sufficiently small, then 2p− (x0 − 1 + p) cos(t2 − t1) > 0 in view of

x0 < 1 + p. Moreover, let

t∗2 = t2 + arctan(
(x0 − 1 + p) sin(t2 − t1)

2p− (x0 − 1 + p) cos(t2 − t1)
)
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satisfy t2 < t∗2 < t3. One verifies that

x(t) :=


x0 t ∈ [0, t1],
(x0 − 1 + p) cos(t− t1) + 1− p t ∈ (t1, t2),(
(x0 − 1 + p) cos(t2 − t1)− 2p

)
cos(t− t2)

+1− P − (x0 − 1 + p) sin(t2 − t1) sin(t− t2) t ∈ (t2, t∗2).

solves (3) on [0, t∗2) and satisfies x(0) = x0, ẋ(0) = 0. In fact, one has ẋ(t) =
−(x0 − 1 + p) sin(t − t1) < 0 for t ∈ [t1, t2], ẋ(t) = −

(
(x0 − 1 + p) cos(t2 − t1) −

2p
)

sin(t− t2)− (x0−1+p) sin(t2− t1) cos(t− t2) < 0 for t ∈ (t2, t∗2), and ẋ(t∗2) = 0.

Finally,
(
(x0− 1+ p) cos(t2− t1)− 2p

)
cos(t∗2 − t2)+ 1−P − (x0− 1+ p) sin(t2−

t1) sin(t∗2 − t2) → x0 as t2 → t1. Therefore, given 0 < ε < x0− 1 + p, we can choose
t2 such that x0 − x(t∗2) < ε/2 and have x(t) = x(t∗2) for t ∈ (t∗2, t3]. We can repeat
this process with ε

2j in the j − th step and obtain a solution of (3) on [0,∞) with
a p that switches between ±1. The solution converges to an x∞ > 1 − p, is not
eventually constant, and has infinitely many dead zones near infinity.

It is easy to see how to modify the example in order to find stick-slip behavior
for a smooth p. One has to guarantee that p takes on the value −1 in each of
the intervals (t2j−1, t2j), which prevents infinitely long dead zones, but that these
intervals are so short that x(t2j−1)− x(t2j+1) < ε

2j for j ∈ N.
Next we collect some folklore results (cf. also [10] or [13]), which we prove for

the reader’s convenience.

Lemma 2.5. Let ‖p‖∞ < 1 and x and y be solutions of (3). Then
(1) t 7→ ẋ(t)2+x(t)2 is nonincreasing on R+ and strictly decreasing on intervals

which do not intersect the interior of any dead zone of x.
(2)

∫∞
0
|ẋ(t)| dt ≤ 1

2(1−‖p‖∞)

[
ẋ(0)2 + x(0)2

]
.

(3) ‖ẍ‖∞ ≤ 1 + ‖p‖∞ +
√

ẋ(0)2 + x(0)2.
(4) x∞ := limt→∞ x(t) exists and belongs to −1 − ‖p‖∞ ≤ x∞ ≤ 1 + ‖p‖∞.

Moreover, ẋ(t) → 0 as t →∞.
(5) (ẋ− ẏ)2 + (x− y)2 is nonincreasing on R+.
(6) The interval [sup p− 1, inf p + 1] forms the set of constant solutions of (3).

Proof. Let u ∈ L∞(R+, R) with u ∈ sgn ◦ẋ a.e. One has
1
2

d

dt

[
ẋ(t)2 +x(t)2

]
= ẋ(t)

[
p(t)−u(t)

]
≤ −|ẋ(t)|+ |p(t)||ẋ(t)| ≤ −|ẋ(t)|

(
1−‖p‖∞

)
.

(6)
This yields the first assertion of 1. Also, if 0 < t1 < t2 < ∞ with ẋ(t1)2 + x(t1)2 =
ẋ(t2)2 + x(t2)2, then −|ẋ(t)| + p(t)ẋ(t) = 0 for t ∈ [t1, t2], hence ẋ(t) = 0 for
t ∈ [t1, t2] in view of ‖p‖∞ < 1.

2. One obtains from (6) that
∫ t

0
|ẋ(s)| ds ≤ 1

2(1−‖p‖∞)

[
ẋ(0)2 + x(0)2

]
.

3. Inequality (6) implies ‖x‖2
∞ ≤ ẋ(0)2 + x(0)2, hence (3) yields the L∞-bound

for ẍ.
4. Statement 2 and |x(t̄) − x(t)| ≤

∫ t̄

t
|ẋ| dt for 0 ≤ t < t̄ < ∞ imply the

convergence of x(t) as t → ∞. Since ẋ(t)2 + x(t)2 also converges as t → ∞,
|ẋ(t)| converges, and its limit is equal to 0 in view of ẋ ∈ L1(R+, R). Finally,
let u ∈ sgn(ẋ) such that ẍ(t) + x(t) = p(t) − u(t) for a.e. t ∈ R+. Assume that



EJDE/CONF/16 ASYMPTOTIC BEHAVIOR OF A DRY FRICTION OSCILLATOR 99

x∞ > 1 + ‖p‖∞. Select ε ∈ (0, 1 − ‖p‖∞) with x∞ > 1 + ‖p‖∞ + 2ε and choose
t ≥ 0 such that x(t) ≥ x∞ − ε and |ẋ| < ε for t ∈ [t,∞). Since p(t)− x(t)− u(t) ≤
p(t)− x∞ + ε + 1 ≤ p(t)− (1 + ‖p‖∞ + 2ε) + ε + 1 ≤ −ε for a.e. t ∈ [t,∞), one has
ẍ < −ε a.e. on [t,∞), hence ẋ ≤ −ε(t − t) a.e. on [t,∞) which is a contradiction.
Likewise, one obtains x∞ ≥ −1− ‖p‖∞.

5. Let v ∈ L∞(R+, R) with v ∈ sgn ◦ẏ, then
1
2

d

dt

[
(ẋ(t)− ẏ(t))2 + (x(t)− y(t))2

]
= −

(
u(t)− v(t)

)(
ẋ(t)− ẏ(t)

)
≤ 0 (7)

for t ∈ (0,∞) a.e.
6. If z ∈ [sup p− 1, inf p +1], then −1 ≤ z− p(t) ≤ 1, hence z− p(t) ∈ sgn(0) for

all t ∈ (0,∞), which shows that z is a constant solution of (3). On the other hand,
if z is a constant solution of (3), then z − p(t) ∈ sgn(0) for all t ∈ (0,∞), hence
−1 ≤ z − p(t) ≤ 1 for all t ∈ (0,∞), thus, −1 ≤ z − sup p and z − inf p ≤ 1. �

As for statement 6, the following example shows that one can have solutions with
dead zones of the form [a,∞) which stay away from the set of constant solutions.
Obviously, the reason is that p̄ < sup p.

Example 2.6. Let

p(t) :=


1
2 − t 0 ≤ t ≤ 1;
t− 3

2 1 < t ≤ 3
2 ;

0 t > 3
2 ,

X(t) := sin(t) cos(1/2)− cos(t) sin(1/2) + 3/2− t,

Y (t) := 2 sin(t)− 4 sin(t) cos(1/2)2 + sin(t) cos(1/2)− cos(t) sin(1/2)

+ 4 cos(t) sin(1/2) cos(1/2)− 1/2 + t,

Z(t) := −2 sin(t) cos(1/2) + 2 sin(t)− 4 sin(t) cos(1/2)2 + 4 sin(t) cos(1/2)3

− 4 cos(t) sin(1/2) cos(1/2)2 + 4 cos(t) sin(1/2) cos(1/2) + 1,

and t̄ be the zero of Ż in [2.5, 2.6]. Then

x(t) :=



1 0 ≤ t ≤ 1
2 ,

X(t) 1
2 < t ≤ 1,

Y (t) 1 < t < 3
2 ,

Z(t) 3
2 < t ≤ t̄,

Z(t̄) t > t̄,

solves (3) for the above p, and Z(t̄) > 3
4 . Note that ‖p‖∞ = 1

2 , whereas p̄ = 0. In
fact, every constant t 7→ ρ for ρ ∈ [−1, 1] solves (3) on [ 32 ,∞).

3. Proof of Theorem 1.2

We proceed in several steps.
Step 1. Let x be a solution of (3), then x cannot have a negative local maximum
or a positive local minimum on an interval which does not intersect dead zones.

In fact, if a ∈ (0,∞) and x(a) is a local minimum of x, then x(a)2 = x(a)2+ẋ(a)2.
If x(a) is positive, then x(t)2 ≥ x(a)2 for t ∈ [a, a + δ) and some δ > 0. But, t 7→
x(t)2 + ẋ(t)2 is nonincreasing by Lemma 2.5(1); hence x(t) = x(a) for t ∈ [a, a+ δ),
i.e. x has a dead zone.
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Step 2. Let x be a solution of (3) and x∞ := limt→∞ x(t), which exists thanks to
Lemma 2.5(4). If |x∞| < 1− p, then there exists an t ∈ [0,∞) with x(t) = x∞ for
t ∈ [t,∞).
Proof. Select ε ∈ (0, 1−p) with |x∞| < 1−p−4ε and t̃ ∈ (0,∞) with |x(t)−x∞| < ε
and |ẋ(t)| < ε for t ∈ [t̃,∞).

1-st case: ẋ(t̃) = 0. Noting that |p(t)−x(t)| ≤ p+ |x∞|+ε ≤ p+[1−p−4ε]+ε =
1− 3ε for t ∈ [t̃,∞), we obtain x(t) = x∞ for t ∈ [t̃,∞).

2-nd case: ẋ(t̃) > 0. Let t := sup{t ∈ [t̃,∞) : ẋ(τ) > 0 for τ ∈ [t̃, t]}. Then
ẍ(t) = p(t)−x(t)− 1 ≤ p + |x∞|+ ε− 1 = p + 1− p− 4ε + ε− 1 = −3ε for t ∈ [t̃, t),
hence |ẋ(t)| < ε for t ∈ [t̃,∞) implies t < ∞. Since ẋ(t) = 0, we arrive at the first
case with t̃ = t.

Likewise, the last case ẋ(t̃) < 0 can be derived.
Step 3. Let x be a solution of (3) with x∞ := limt→∞ x(t) ∈ (1− p, 1 + p). Then
x has a dead zone in every neighborhood of ∞.
Proof. Otherwise, ẋ possesses only isolated zeroes in a neighborhood of ∞. By step
1, x cannot have a positive minimum, thus x has to be monotone. Select ε > 0 and
t > 0 such that the following holds:

• 1− p + ε < x(t) < 1 + p− ε for t ≥ t;
• ẋ has only isolated zeroes in [t,∞);
• |ẋ| < ε on [t,∞).

Assume that x is monotone increasing on [t,∞). Then u(t) in (2) is equal to 1
almost everywhere on [t,∞). Thus, ẍ(t) = p(t)−1−x(t) ≤ p−1− (1−p+ ε) ≤ −ε
for a.e. t ∈ [t,∞) which is a contradiction.

Likewise, ẍ(t) = p(t) − 1 − x(t) ≥ p(t) − 1 − (1 + p − ε) ≥ ε for a.e. t ∈ [t,∞)
shows that x cannot be decreasing near ∞.

Clearly, one obtains a corresponding assertion if limt→∞ x(t) ∈ (−1− p, p− 1).

We remark that by Lemma 2.5(1), t 7→ x(t)2 + ẋ(t)2 is nonincreasing, hence x
cannot increase under the assumptions of step 3., when leaving a dead zone. Thus,
x is nonincreasing near ∞.

4. Some partial result for the case of multivalued systems

In what follows, a · b denotes the Euclidian scalar product of a,b ∈RN and ‖.‖
the Euclidean norm.

A complete extension of Theorem 1.2 to systems of the form (4) appears to be
quite difficult. Here we will merely show that the solution

x(t) := (x1(t), x2(t), . . . , xN (t))T

may develop a final dead zone [t,∞).
We require stronger assumptions than those of the one-dimensional case:

p(t)T∈[−µβ

2k
+ ε,

µβ

2k
− ε]N for a.e. t ≥ Tf , for some Tf and ε > 0, (8)

‖p(t)− p∞‖ → 0 ast → +∞. (9)

Theorem 4.1. We have:
(i) Let (u0, v0) ∈ R2N , p ∈ L2(0,∞ : RN ), and (8) be satisfied. Then problem

(4) admits a unique weak solution x ∈ C1([0,+∞), RN ). If, moreover,
(9) holds, then there exists a unique equilibrium state x∞ ∈ RN , i.e., x∞
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satisfies Ax∞ − p∞ ∈ ([−µβ

2k ,
µβ

2k ]N )T , such that ‖ ·x(t)‖ +‖x(t)− x∞‖ → 0
as t → +∞.

(ii) Assume (8) and (9) hold. Let x∞ be the associate equilibrium state and
assume that

|∆∗
i | < 1 where ∆∗

i := (Ax∞)i − pi.∞, for some i ∈ 1, . . . , N.

Then there exists Ti ≥ 0 such that ẋi(t) = 0 for all t ≥ Ti.

Proof. We shall adapt in our presentation some arguments of [12]. To reformulate
(4) in the framework of nonlinear semi-group operators theory, we introduce the
phase space H = (RN , 〈, 〉A) × (RN , ·), with 〈a,b〉A = Aa · b, where A is the
symmetric positive definite matrix of RN×N given by

A =


2 −1 0 ... 0
−1 2 −1 0 ...
0 −1 2 −1 0
... 0 −1 2 −1
0 ... 0 −1 2


We also introduce B :RN → P(RN ) as the (multivalued) maximal monotone oper-
ator given by B(y1, . . . , yN ) = (β(y1), . . . , β(yN ))T where β(s) = Sgn(s). Finally,
we define the operator L in H by

L(x,y) = {−y} × { k

m
Ax +

µβ

m
B(y)} for (x,y) ∈ H. (10)

It is easy to prove that L is maximal monotone in H and so, by using results
from the theory of maximal monotone operators (see [3]) we get the existence and
uniqueness of a solution of (4). Multiplying the equation by

·
x(t) and integrating

in time we get the energy relation

E(t) +
∫ t

0

[
N∑

i=1

µβ

m
|ẋi(s)| − pi(s)ẋi(s)]ds = E(0) (11)

where

E(t) =
1
2
‖ ·x(t)‖2 +

∫ t

0

k

2m
Ax(s) · x(s)ds. (12)

By (11) and the assumptions on p(t), the trajectory (x(t),
·
x(t))t≥0 is compact in

H, so, we can find α > 0 such that µβ |ẋi(t)| − pi(s)ẋi(t) ≥ α|ẋi(t)| for i = 1, . . . , N
and all t ≥ 0. By (11), we conclude that ẋ ∈ L1(R+) which leads to the existence
of the limit x∞ := limt→+∞ x(t) and to limt→+∞ ẋ(t) = 0. The uniqueness of x∞
is deduced from the strict monotonicity of the operator L̃(x,y) = {−y} × { k

mAx}
for (x,y) ∈ H.

To prove (ii) we recall that, since x∞ is an stationary point, we have (∆∗
i )

N
i=1 ∈

[−1, 1]N . Now, let 0 < δ << 1 be fixed. By (i) we can find t0 ≥ 0 such that

|∆i(t)| ≤ (1− 2δ) ∀t ≥ t0, (13)

If ẋi(t0) = 0, we conclude that xi(t) ≡ xi(t0) = x∞i for all t ≥ t0 since ∆i(t) ∈
[−1, 1] for all t ≥ t0. If not, let T = sup{s ≥ t0, |ẋi(t)| > 0 ∀t ∈ [t0, s)}.
Multiplying the i-component of (4) by ẋi(t) and using (9) we obtain

1
2

d

dt
(|ẋi(t)|2) + δ|ẋi(t)| ≤ 0, for a.e. t ∈ [t0, T ). (14)
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Dividing (14) by |ẋi(t)| we get
d

dt
(|ẋi(t)|) + δ ≤ 0 for a.e. t ∈ [t0, T ). (15)

Integrating, we see that ẋi(t0 + |ẋi(t0)|
δ ) = 0. Thus T < +∞ and we conclude, as

before, that xi(t) ≡ xi(T ) = x∞i for any t ≥ T . �

We remark that the behavior exhibited in the above result is different from the
case in which the amplitude of p(t) becomes large. In that case the dynamics may
generate a wide range of events leading to chaos (see [6]).
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[9] K. Deimling and P. Szilágyi; Periodic solutions of dry friction problems, Z. Angew. Math.

Phys. 45 (1994), 53–60.
[10] K. Deimling, G. Hetzer, and W. Shen; Almost periodicity enforced by Coulomb friction,

Adv. Diff. Eq., 1 (1996), 265–281.

[11] J. I. Dı́az; Special finite time extinction in nonlinear evolution systems: dynamic boundary
conditions and Coulomb friction type problems, Proceedings Nonlinear Elliptic and Parabolic

Problems: A Special Tribute to the Work of Herbert Amann, Zurich, June, 28-30, 2004 (M.
Chipot, J. Escher eds.), Birkhäuser, Basel, 2005, 71-97.

[12] J. I. Dı́az and V. Millot; Coulomb friction and oscillation: stabilization in finite time for
a system of damped oscillators, CD-Rom Actas XVIII CEDYA / VIII CMA, Servicio de
Publicaciones de la Univ. de Tarragona 2003.

[13] K. Kunze, Non-Smooth Dynamical Systems, Lect. Notes Math., vol. 1744, Springer-Verlag,

2000.

J. Ildefonso D́ıaz
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