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Abstract. This paper concerns the equation ∆mu = |u|p, where m ∈ N,

p ∈ (1,∞), and ∆ denotes the Laplace operator in RN, for some N ∈ N.

Specifically, we are interested in the structure of the set L of all large radial
solutions on the open unit ball B in RN . In the well-understood second-order

case, the set L consists of exactly two solutions if the equation is subcritical,

of exactly one solution if it is critical or supercritical. In the fourth-order
case, we show that L is homeomorphic to the unit circle S1 if the equation

is subcritical, to S1 minus a single point if it is critical or supercritical. For

arbitrary m ∈ N, the set L is a full (m − 1)-sphere whenever the equation is
subcritical. We conjecture, but have not been able to prove in general, that L
is a punctured (m − 1)-sphere whenever the equation is critical or supercriti-

cal. These results and the conjecture are closely related to the existence and
uniqueness (up to scaling) of entire radial solutions. Understanding the geo-

metric and topological structure of the set L allows precise statements about
the existence and multiplicity of large radial solutions with prescribed center

values u(0), ∆u(0), . . . , ∆m−1u(0).

1. Introduction

This paper is a contribution to the study of polyharmonic equations with super-
linear reaction terms. A prototype problem is the equation

∆mu = |u|p, (1.1)

where m ∈ N, p ∈ (1,∞), and ∆ denotes the Laplace operator in RN, for some
N ∈ N. Equations of this type arise in many contexts, from differential geometry
to quantum mechanics. While the second-order case is by now well understood,
numerous open problems remain in the fourth and higher-order cases. We refer to
[2, 9, 11, 12, 15, 17, 20, 25, 29] and the references therein for background and recent
contributions.
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Here we consider radial solutions of Equation (1.1), by which we mean classical
noncontinuable solutions that depend only on the distance from the origin and are
defined either on open balls centered at the origin or on all of RN. Given such
a solution u, the numbers u(0),∆u(0), . . . ,∆m−1u(0) are called the center values
of u; when there is no danger of confusion, we also refer to the single number u(0)
as the solution’s center value. Every radial solution of (1.1) except for the trivial
one is either an entire solution, that is, a nontrivial solution on RN, or a large
solution, that is, an unbounded solution on an open ball. Our main interest is in
the structure of the set of all large radial solutions and their blow-up behavior;
nonetheless, we need to study entire radial solutions as well.

Due to the homogeneity of its right-hand side, the equation (1.1) enjoys a scaling-
property that allows us to confine attention to entire solutions with center values ±1
and large solutions on the unit ball. In fact, define q := 2m/(p− 1) and suppose
that u is a solution of (1.1). Then, for every λ ∈ (0,∞), the function uλ, defined
by uλ(x) := λqu(λx) for all x ∈ RN such that u is defined at λx, is again a solution
of (1.1). We call uλ a rescaling (or more precisely, the λ-rescaling) of u and say that
two solutions of (1.1) are scaling-equivalent if one is a rescaling of the other. Clearly,
every entire radial solution of (1.1) is scaling-equivalent to an entire solution with
center value 1 or −1, and every large radial solution of (1.1) is a rescaling of a large
solution on B, the open ball of radius 1 centered at the origin in RN.

Our first objective is to understand the structure of the set L of all large radial
solutions of (1.1) on B. Any such solution u is uniquely determined by its cen-
ter values u(0),∆u(0), . . . ,∆m−1u(0). Hence there is a one-to-one correspondence
between L and the set H of all points ξ ∈ Rm such that the radial solution of
(1.1) with center values ξ1, ξ2, . . . , ξm blows up at |x| = 1; this correspondence is a
homeomorphism with respect to the natural topology of L as a subspace of C2m(B)
(see Remark 2.1 for details). Understanding the structure of L thus amounts to
understanding the structure of the set H.

We show that H is homeomorphic to a relatively open subset S of Sm−1, the unit
sphere in Rm; the homeomorphism is the restriction to H of a smooth projection of
Rm \ {0} onto Sm−1, called the scaling-projection (see Section 4 for details). The
set Sm−1 \ S is contained in O := {ξ ∈ Rm | (−1)m−iξi < 0 ∀ i ∈ {1, . . . ,m}} (the
negative half-axis if m = 1, the open fourth quadrant if m = 2, an open orthant
in Rm otherwise). If m ≥ 2, then H ∩ O is unbounded unless S = Sm−1. Since
Sm−1 \S ⊂ O, the set S contains in particular Sm−1

+ , the intersection of Sm−1 with
the nonnegative cone Rm

+ of Rm. The set H+ := H ∩ Rm
+ is a compact unordered

manifold that defines an order decomposition of Rm
+ and is homeomorphic to Sm−1

+

under the radial projection.
These and other properties of H have immediate implications for the existence

or nonexistence of large radial solutions of (1.1) on B with prescribed center values.
For example, the fact thatH+ is homeomorphic to Sm−1

+ under the radial projection
implies that for every unit vector ξ ∈ Rm

+ there exists exactly one large radial
solution u of (1.1) on B such that the vector (u(0),∆u(0), . . . ,∆m−1u(0)) is a
positive multiple of ξ.

Regarding the global structure of the hypersurface H, let us discuss two special
cases. First consider the familiar second-order case, m = 1. Since S0 = {±1},
our general result says that H consists either of exactly one positive number or of
exactly two real numbers of opposite sign. In other words, (1.1) has either exactly
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one large radial solution on B, with a positive center value, or it has exactly two
such solutions, one with a positive and one with a negative center value. Well-
known facts about second-order elliptic equations imply that the latter possibility
occurs if and only if Equation (1.1) is subcritical.

Now consider the fourth-order case, m = 2. Our general result implies that H
is homeomorphic, under the scaling-projection, to a relatively open subset S of
the unit circle S1 that contains at least the segments of S1 in the first, second,
and third quadrants. Invoking recent results on biharmonic equations with power
nonlinearities [9, 15, 30], we are able to prove more. If (1.1) is subcritical, then
S = S1, and H is a closed simple curve. If (1.1) is critical or supercritical, then
there is a point ξ = (ξ1, ξ2) ∈ S1 with ξ1 > 0 and ξ2 < 0 such that S = S1\{ξ}, and
H is an unbounded simple curve that “closes at infinity” in the fourth quadrant. In
either case, the origin belongs to the “interior” of H. For a graphical visualization,
see Figures 2 and 4 in Section 4, where the set H is shown in a subcritical and a
supercritical case.

For arbitrary m ∈ N, we prove that the hypersurface H is compact and a full
(m−1)-sphere (homeomorphic to Sm−1 under the scaling-projection) whenever the
equation (1.1) is subcritical. In the critical case, by contrast, we know that H is
not a full (m−1)-sphere and is in fact unbounded (unless m = 1, of course). We
conjecture that, in generalization of the results for m = 1 and m = 2, the set H
is a punctured (m−1)-sphere (homeomorphic to Sm−1 minus a single point in the
orthant O) whenever (1.1) is critical or supercritical, but have not been able to
prove this for m ≥ 3.

These results and the conjecture are closely related to the question of existence
and uniqueness (up to scaling) of entire radial solutions of (1.1). Indeed, our result
for the subcritical case is a consequence of the nonexistence of entire radial solutions;
the one for the critical case follows from the fact that at least one scaling-equivalence
class of entire radial solutions is known explicitly. In the critical/supercritical case,
existence and uniqueness (up to scaling) of an entire radial solution would prove
our conjecture; but, to the best of our knowledge, this is an open problem for m ≥ 3
(see Section 3 for details and comments on the relevant literature). This problem
and other issues relating to the existence and properties of entire radial solutions of
polyharmonic equations are of independent interest and the subject of an ongoing
investigation.

Beyond the structure of the set of all large radial solutions of (1.1) on B, we
are interested in their asymptotic behavior near the boundary of B. In view of
the existing literature on large solutions of elliptic equations and systems (see, for
example, [1, 7, 8, 10, 18, 26] and the references therein), one would expect any large
solution u of (1.1) on B to satisfy

u(x) ∼ C

(1− |x|)γ
as |x| → 1,

for some real numbers C > 0 and γ > 0. (Given two real-valued functions u1 and
u2 on B, we write u1(x) ∼ u2(x) if the ratio u1(x)/u2(x) converges to 1 as |x| → 1.)
A simple calculation shows that if u is a radial solution with this kind of asymptotic
behavior, then, necessarily, γ = q and C = Q, where

q :=
2m
p− 1

and Q :=
(
q(q + 1) . . . (q + 2m− 1)

)q/(2m)
.
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These numbers are independent of the space dimension N ; the number q appeared
already in the definition of a λ-rescaling.

A detailed analysis of the blow-up behavior of large radial solutions of (1.1)
on B will be carried out in a companion paper [6]. In many cases, we find precisely
the “expected behavior” described above. However, if m ≥ 6 and p exceeds a
certain critical value depending only on m, then there exist large radial solutions
that oscillate, more and more rapidly near the boundary of B, about the “expected
asymptotic profile.” Still, as |x| → 1, the ratio of u(x) and Q/(1 − |x|)q remains
bounded from above and from below by positive constants depending only on m
and p. For a special case, the biharmonic equation with critical exponent, a result
in the same direction appears in [12].

Some of the basic ideas underlying the present paper and [6] were already de-
veloped in our earlier work [5], where we studied a very special elliptic system,
equivalent to a biharmonic equation, which nonetheless behaves in many ways like
Equation (1.1) in the second-order case. At least in principle, our approach works
just as well if the nonlinearity |u|p in Equation (1.1) is replaced by ±u|u|p−1 or,
more generally, by f(u), where f : R → R is a p-homogeneous function. However,
in this more general situation, one encounters large radial solutions that are nei-
ther eventually positive nor eventually negative, but wildly oscillatory and neither
bounded from below nor from above. In fact, this is the only possible kind of
blow-up behavior in the case of a decreasing nonlinearity f(u); it does not occur
if m = 1, in which case no large radial solutions exist if f is decreasing, but does
occur if m = 2. Oscillatory blow-up of this kind is also possible (albeit non-generic)
in the case of an increasing nonlinearity, but only if m ≥ 3. In all these cases, the
analysis is more delicate with regard to both, the structure of the set of large radial
solutions and the asymptotic behavior of its members, and several questions remain
open. We hope to address these issues in future work.

The present paper is organized as follows. In Section 2 we reduce the problem to
the study of a system of first-order ODEs and give a complete classification of its
solutions. In Section 3 we collect the relevant information regarding entire radial
solutions of (1.1). Section 4 contains our main results about the set of all large
radial solutions of (1.1) on B, along with a detailed discussion of the fourth-order
case.

2. The ODE System for Radial Solutions

With vi := ∆i−1u for i ∈ {1, . . . ,m} and vm+1 := |v1|p, Equation (1.1) is equivalent
to the system

∆vi = vi+1, i ∈ {1, . . . ,m}.
Radial solutions, as defined in the introduction, correspond to maximal forward
solutions of the ODE system

v′′i +
N − 1
r

v′i = vi+1, i ∈ {1, . . . ,m},

starting at r = 0 with v′i(0) = 0 for all i ∈ {1, . . . ,m}. Letting µ := N − 1, the
above system is equivalent to the first-order system

v′i = wi, w′i +
µ

r
wi = vi+1, i ∈ {1, . . . ,m}, (2.1)

which we will study for arbitrary µ ∈ R+.
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We begin by collecting a few basic facts regarding the existence, uniqueness,
maximal continuation, and regularity of solutions of (2.1). These facts are analo-
gous to standard results for regular ODE systems and can be established with the
same means.

By a forward solution of the system (2.1), we mean a continuous R2m-valued
function (v, w) = (v1, w1, . . . , vm, wm) on an interval of the form [r0, r∞) with
0 ≤ r0 < r∞ ≤ ∞, differentiable on (r0, r∞), such that the differential equations
(2.1) are satisfied for all r ∈ (r0, r∞). The interval [r0, r∞) is called the solution’s
interval of existence and the point r0 its starting-point .

A forward solution (v, w) on [r0, r∞) is called maximal if it cannot be continued
beyond r∞, that is, if there is no forward solution starting at r0 that is a proper
extension of (v, w). In this case, we refer to the point r∞ as the solution’s exit
point .

Given a starting-point r0 ∈ R+ and initial values vi(r0), wi(r0) ∈ R, with
wi(r0) = 0 if r0 = 0 and µ > 0, there exists a unique maximal forward solution
starting at r0, which depends continuously on the initial values and on the parame-
ters p and µ. In particular, the solution’s exit point depends lower-semicontinuously
on initial values and parameters: if (v, w) is a maximal forward solution on [r0, r∞)
and if r1 ∈ (r0, r∞), then every maximal forward solution starting at r0 with ini-
tial values and parameters sufficiently close to those of (v, w) exists on an interval
containing [r0, r1].

A maximal forward solution with interval of existence [r0, r∞) is called global if
r∞ = ∞. If r∞ < ∞, the solution is necessarily unbounded; in this case, we call
the solution explosive, refer to r∞ as its blow-up point , and say that the solution
blows up at r∞.

Even though the system (2.1) is singular at r = 0 if µ > 0, forward solutions
have the maximal regularity determined by the right-hand side of the last equation,
vm+1 = |v1|p, and depend not only continuously, but differentiably on initial values
and parameters. In particular, since the mapping s 7→ |s|p is at least C1 (recall
that p > 1), any forward solution is necessarily C2 on its interval of existence,
including the starting-point. More precisely, if (v, w) is a forward solution of (2.1)
on [r0, r∞), then vi ∈ C2(m+1−i)+1([r0, r∞)) and wi ∈ C2(m+1−i)([r0, r∞)) for all
i ∈ {1, . . . ,m}. Note that if µ > 0, then any forward solution (v, w) starting at 0
necessarily satisfies wi(0) = 0, w′i(0) = vi+1(0)/(µ + 1), and w′′i (0) = 0 for all
i ∈ {1, . . . ,m}.

In the sequel we will use the term “solution” as a synonym for “maximal forward
solution.” Further, a solution (v, w) of (2.1) will be called even if it starts at r = 0
with w(0) = 0. Note that if r∞ is the exit point of such a solution, then the
even extension ṽ of v and odd extension w̃ of w determine a C2-function (ṽ, w̃)
on (−r∞, r∞) that satisfies the differential equations (2.1) on (−r∞, r∞) \ {0}.
The even solutions of (2.1) are uniquely determined by the initial values of their
v-components and depend continuously (in fact, differentiably) on those values.
Given a point ξ ∈ Rm, we will denote the even solution with v(0) = ξ by (vξ, wξ)
and refer to it as the even solution starting at ξ.

Finally, we will call a solution of (2.1) nonnegative, positive, nondecreasing , in-
creasing , et cetera, if each of its components has the respective property throughout
the solution’s interval of existence, and we will say that the solution approaches in-
finity if each of its components does so.
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Remark 2.1. The even solutions of (2.1) with µ = N − 1 correspond to radial
solutions of Equation (1.1) as defined in the introduction. More precisely, nontriv-
ial global even solutions of (2.1) correspond to entire radial solutions, explosive
even solutions of (2.1) to large radial solutions of (1.1). In particular, large radial
solutions of (1.1) on the unit ball B are in one-to-one correspondence with even
solutions of (2.1) that blow up at r = 1.

Now let H denote the subset of Rm consisting of all points ξ such that the even
solution of (2.1) starting at ξ blows up at r = 1; further, let L denote the set of all
large radial solutions of (1.1) on B. As a consequence of the preceding discussion, L
is contained in C2m(B) (a complete metrizable space under the C2m-topology on
compact subsets of B), and the mapping u 7→ (u(0),∆u(0, . . . ,∆m−1u(0)) is a
homeomorphism from L ⊂ C2m(B) onto H ⊂ Rm (assuming that µ = N − 1, of
course). In this sense, the structure of L is determined by that of H.

Remark 2.2. As long as v1 ≥ 0, the system (2.1) satisfies the well-known Kamke
condition and hence a comparison principle. This can be proved in the same way
as for regular ODE systems; we refer to [27] for the methodology and to Lemma 3.2
in [16] for an analogous result involving a singular system. A precise statement
requires some additional terminology.

Given a, b ∈ Rm, we write a ≤ b or b ≥ a (a < b or b > a) if the respective
inequalities hold componentwise. If a ≤ b or a ≥ b (a < b or a > b), we call a and b
ordered (strictly ordered); if a ≥ 0 (a > 0), we call a nonnegative (positive).

By a subsolution (supersolution) of (2.1), we mean a continuous R2m-valued
function (v, w) = (v1, w1, . . . , vm, wm), defined on a nontrivial interval I ⊂ [0,∞),
differentiable at least in the interior of I, and satisfying the differential inequalities
obtained from the differential equations in (2.1) by replacing “=” with “≤” (“≥”).
If µ > 0, any subsolution (supersolution) on an interval starting at 0 necessarily
satisfies w(0) ≤ 0 (w(0) ≥ 0).

Now, suppose that (v, w) and (v, w) are a subsolution and a supersolution of
(2.1), respectively, on a common interval [r0, r∞) with 0 ≤ r0 < r∞ ≤ ∞, such
that v1 ≥ 0 throughout and v(r0) ≤ v(r0), w(r0) ≤ w(r0). Then v(r) ≤ v(r) and
w(r) ≤ w(r) for all r ∈ [r0, r∞). Moreover, v(r) < v(r) and w(r) < w(r) for all
r ∈ (r0, r∞), unless v(r0) = v(r0) and w(r0) = w(r0).

Remark 2.3. Since the constant 0 is a trivial solution of (2.1), the comparison
principle implies that the nonnegative cone R2m

+ of R2m is forward-invariant in a
strong sense: any solution of (2.1) starting in R2m

+ will remain in R2m
+ and will, in

fact, immediately enter the interior of R2m
+ , unless it is the trivial solution. Further,

it follows from the differential equations that for any nontrivial nonnegative solution
(v, w), the components vi and the functions r 7→ rµwi(r), for i ∈ {1, . . . ,m}, are
strictly increasing.

Remark 2.4. Sub- and supersolutions of (2.1) for µ > 0 can be constructed from
solutions of the autonomous system

v′i = wi, w′i = vi+1, i ∈ {1, . . . ,m}. (2.2)

Clearly, if (v, w) is a solution (or supersolution) of (2.2) with w ≥ 0, then (v, w) is
a supersolution of (2.1) for every µ ∈ R+. Now suppose that (v, w) is a solution
(or subsolution) of (2.2) on an interval I ⊂ [0,∞) such that w(r) ≤ rw′(r) for
all r ∈ I. (This condition is satisfied, for example, if the interval I starts at 0
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and if v(0) ≥ 0 and w(0) = 0, which implies that w′ is nondecreasing.) Given
µ ∈ R+, let ν := 1/

√
µ+ 1 and define (ṽ, w̃) by ṽ(r) := v(νr) and w̃(r) := νw(νr)

for r ∈ Ĩ := {r ∈ [0,∞) | νr ∈ I}. A short computation shows that (ṽ, w̃) is a
subsolution of (2.1) on Ĩ. Implicitly, this was already observed in [28].

Estimates in [28] show that all eventually positive solutions of the autonomous
system (2.2) are explosive and approach infinity at the blow-up point. Using the
subsolutions from Remark 2.4, the same can then be proved for eventually positive
solutions of (2.1) with arbitrary µ ∈ R+. We will give a different proof, based on
uniform a-priori bounds, which yields the continuity of the blow-up point as a func-
tion of initial data and parameters. The following lemma gathers some preliminary
information about the solutions of (2.1). (Recall that “solution” means “maximal
forward solution.”)

Lemma 2.5. Let (v, w) be an arbitrary solution of (2.1).
(a) Every component of (v, w) is bounded from below by a polynomial.
(b) If any component of (v, w) is bounded from above by a polynomial, then the
same is true for all components, and (v, w) is a global solution.
(c) If (v, w) is not a global solution, then (v, w) approaches infinity.
(d) If (v, w) is a nontrivial global solution that does not approach infinity and if w
is initially zero, then every component of v is strictly monotonic and vanishes at
infinity. More precisely, the functions vi and r 7→ rµwi(r), for i ∈ {1, . . . ,m}, are
increasing if m−i is even, decreasing if m−i is odd, and in either case, vi(r) → 0
as r →∞.
(e) If (v, w) is a nontrivial solution with nonnegative initial values, then (v, w)
approaches infinity.

Proof. Throughout, suppose that (v, w) is a solution of (2.1) with interval of exis-
tence [r0, r∞). Integrating the differential equations, we have

vi(r) = vi(r0) +
∫ r

r0

wi(s) ds, rµwi(r) = rµ
0wi(r0) +

∫ r

r0

sµvi+1(s) ds

for all r ∈ [r0, r∞) and i ∈ {1, . . . ,m}. It follows that if wi or vi+1 is bounded from
above (from below) by a polynomial, then so is vi or wi, respectively. Using the
fact that vm+1 = |v1|p is bounded from below by 0 and repeatedly applying the
preceding argument, we see that every component of (v, w) is bounded from below
by a polynomial; this proves (a).

Now suppose that some component of (v, w) is bounded from above by a polyno-
mial. Our earlier argument then shows that the same is true for all the “preceding”
components and in particular for v1. Due to (a), v1 is also bounded from below by
a polynomial. Hence we have a polynomial bound for |v1| and also for vm+1 = |v1|p.
Applying the earlier argument again, we obtain polynomial upper bounds for all
the components of (v, w). Together with (a), this implies that the norm of (v, w) is
polynomially bounded. In particular, (v, w) is not explosive, and this finishes the
proof of (b).

Next, suppose that (v, w) is explosive, that is, r∞ <∞. Further assume that vi+1

is eventually nonnegative for some i ∈ {1, . . . ,m}. Since d
dr

(
rµwi(r)

)
= rµvi+1(r)

for all r ∈ (r0, r∞), the function r 7→ rµwi(r) is eventually nondecreasing, neces-
sarily without bound (else, since r∞ <∞, wi itself would be bounded, contradict-
ing (b)). Thus, rµwi(r) → ∞, whence wi(r) → ∞, as r → r∞. In particular, wi
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is eventually positive. But then, vi is eventually increasing, necessarily without
bound; that is, vi(r) → ∞ as r → r∞. In particular, vi is eventually positive.
Since vm+1 = |v1|p is nonnegative throughout, repeated application of the preced-
ing argument shows that vi(r), wi(r) →∞ as r → r∞ for all i ∈ {1, . . . ,m}. This
proves (c).

In preparation for the proof of (d), let us verify the following statement, which
holds for any solution (v, w): (∗) If i ∈ {1, . . . ,m} and vi+1 is eventually positive
(negative) and bounded away from zero, then wi and vi approach infinity (negative
infinity). In view of (c), it suffices to consider the case of a global solution. So,
suppose that i ∈ {1, . . . ,m}, ε ∈ (0,∞), ri ∈ [r0,∞), and vi+1 ≥ ε on [ri,∞). For
r ∈ [ri,∞), we then have

rµwi(r) = rµ
i wi(ri) +

∫ r

ri

sµvi+1(s) ds ≥ rµ
i wi(ri) +

ε

µ+ 1
(
rµ+1 − rµ+1

i

)
,

whence

wi(r) =
(ri
r

)µ

wi(ri) +
ε

µ+ 1

(
r − ri

(ri
r

)µ)
,

and thus, wi(r) → ∞ as r → ∞. Since v′i = wi, this implies that vi approaches
infinity as well. The same reasoning shows that wi and vi will both approach
negative infinity if vi+1 ≤ −ε on [ri,∞), and this finishes the proof of (∗).

Now suppose that (v, w) is a nontrivial global solution with w(r0) = 0 and that
(v, w) does not approach infinity. Further, suppose that vi+1 is nonnegative (non-
positive) for some i ∈ {1, . . . ,m}. Then the function r 7→ rµwi(r) is nondecreasing
(nonincreasing); in fact, it must be strictly increasing (strictly decreasing). (If it
were constant on a nontrivial interval I ⊂ (r0,∞), then all components of (v, w)
would vanish on I, which is impossible as (v, w) is not the trivial solution.) Since
wi(r0) = 0, it follows that wi > 0 (wi < 0) on (r0,∞), and thus, vi is strictly
increasing (strictly decreasing) as well. Let Li denote the (proper or improper)
limit of vi(r) as r → ∞. We claim that Li = 0. Suppose that Li > 0. Then vi is
eventually positive and bounded away from zero. Due to (∗), all the “preceding”
components of (v, w), if any, approach infinity. In any case, v1 is eventually positive
and bounded away from zero, and so is vm+1 = |v1|p. Applying (∗) again, we see
that all components of (v, w) must approach infinity, contradicting our assumption.
Now suppose that Li < 0. Then vi is eventually negative and bounded away from
zero. Using (∗) in the same way as before, we infer that also v1 is eventually neg-
ative and bounded away from zero. But then, vm+1 = |v1|p is eventually positive
and bounded away from zero, and we arrive at a contradiction just as before. In
conclusion, we have Li = 0.

Since vm+1 = |v1|p is nonnegative, the preceding argument shows r 7→ rµwm(r)
and vm are strictly increasing with vm(r) → 0 as r → ∞. In particular, vm is
nonpositive, and the remaining assertions in (d) follow by iteration.

Finally, to prove (e), suppose that (v, w) is a nontrivial solution with nonnegative
initial values and that (v, w) is global (else, the claim would follow from (c)). By
Remark 2.3, all components of (v, w) are positive on (r0, r∞), and there is no loss
of generality in assuming that already the initial values are positive. Now suppose
(v, w) did not approach infinity. Then, by virtue of the comparison principle in
Remark 2.2, neither would the nontrivial global solution (ṽ, w̃) starting at r0 with
ṽ(r0) = v(r0) and w̃(r0) = 0. But this is impossible, since (d) would imply that
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ṽm is strictly increasing with limit zero. The contradiction shows that (v, w) does
approach infinity, and this concludes the proof of the lemma. �

Lemma 2.6. For every δ ∈ (0,∞) there exists a constant Cδ ∈ (0,∞) such that
for every positive solution (v, w) of (2.1) on [r0, r∞) with r0 ≥ δ and r∞ > r0 + δ,
we have

v1w1 . . . vmwm < Cδ on [r0, r∞ − δ), (2.3)
where r∞ − δ = ∞ if r∞ = ∞.

Proof. Let δ ∈ (0,∞), define ε :=
(
2mq+(2m−1)m

)−1 with q := 2m/(p− 1), and
consider the autonomous scalar ODE

ζ ′ =
(
ζε − mµ

δ

)
ζ. (2.4)

The constant (mµ/δ )1/ε is an equilibrium; solutions above this equilibrium are
explosive and approach infinity. Choose Cδ > (mµ/δ )1/ε such that the maximal
forward solution of (2.4) with ζ(0) = Cδ exists precisely on the interval [0, δ).

Now let (v, w) be a positive solution of the equation (2.1) on [r0, r∞) and define
η := v1w1 . . . vmwm. Differentiating and using the differential equations for the
components of (v, w), we get

η′ =
(w1

v1
+
v2
w1

+ · · ·+ wm

vm
+
vm+1

wm

)
η − mµ

r
η. (2.5)

Moreover, since p q = q + 2m, we have(w1

v1

)q+2m−1( v2
w1

)q+2m−2

. . .
(wm

vm

)q+1(vm+1

wm

)q

=
vq

m+1

vq+2m
1

η = η,

whence(w1

v1

)ε(q+2m−1)( v2
w1

)ε(q+2m−2)

. . .
(wm

vm

)ε(q+1)(vm+1

wm

)εq

= ηε. (2.6)

Since, by the definition of ε, the exponents on the left-hand side of (2.6) add up
to 1, the convexity of the exponential function yields(w1

v1

)ε(q+2m−1)( v2
w1

)ε(q+2m−2)

. . .
(wm

vm

)ε(q+1)(vm+1

wm

)εq

≤ ε(q + 2m− 1)
w1

v1
+ ε(q + 2m− 2)

v2
w1

+ · · ·+ ε(q + 1)
wm

vm
+ εq

vm+1

wm

≤ w1

v1
+
v2
w1

+ · · ·+ wm

vm
+
vm+1

wm
.

Combining this with (2.5) and (2.6), we obtain

η′ ≥
(
ηε − mµ

r

)
η. (2.7)

Now suppose that r0 ≥ δ and r∞ > r0 + δ. Assuming (2.3) to be false, choose
r1 ∈ [r0, r∞ − δ) such that η(r1) ≥ Cδ. Due to (2.7) we then have

η′ ≥
(
ηε − mµ

δ

)
η on [r1, r∞) and η(r1) ≥ Cδ.

Let ζ be the maximal forward solution of (2.4) starting at r1 with ζ(r1) = Cδ.
Then ζ exists on [r1, r1 + δ) and blows up at r1 + δ < r∞. On the other hand,
the comparison principle implies that ζ ≤ η on [r1, r1 + δ), and η is continuous on
[r1, r1 + δ]. This contradiction proves (2.3). �
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Proposition 2.7. Let (v, w) be an eventually positive solution of (2.1) with interval
of existence [r0, r∞). Then r∞ <∞ and (v, w) approaches infinity. Moreover, given
r1 ∈ (r∞,∞), any solution of (2.1) starting at r0 with initial values sufficiently
close to those of (v, w) blows up before r1.

Proof. Without loss of generality, assume that r0 > 0 and that (v, w) is positive
throughout. From Lemma 2.5(e), we know that (v, w) approaches infinity. Assum-
ing r∞ = ∞, Lemma 2.6 would yield the boundedness of v1w1 . . . vmwm and hence
a contradiction. Thus, r∞ <∞.

Now, let r1 ∈ (r∞,∞), fix δ ∈ (0, r0] such that r∞ + δ ≤ r1, and choose Cδ

as in Lemma 2.6. Assuming the final assertion of the proposition to be false,
choose a sequence of solutions (v(n), w(n)) of (2.1), starting at r0 with exit points
r
(n)
∞ ≥ r1, such that (v(n)(r0), w(n)(r0)) → (v(r0), w(r0)) as n → ∞. Since the

initial values of (v, w) are strictly positive, the same can be assumed for (v(n), w(n)),
and this implies that (v(n), w(n)) is positive throughout. But then, since we have
r0 + δ < r∞ + δ ≤ r1 ≤ r

(n)
∞ , Lemma 2.6 shows that v(n)

1 w
(n)
1 . . . v

(n)
m w

(n)
m < Cδ

on [r0, r
(n)
∞ − δ) and, in particular, on [r0, r∞). Continuous dependence on initial

data now implies that v1w1 . . . vmwm ≤ Cδ on [r0, r∞), contradicting the fact that
(v, w) approaches infinity. The proposition is proved. �

Remark 2.8. Combining Lemma 2.5(c) and Proposition 2.7, we see that a solution
of (2.1) is explosive if and only if it is eventually positive. Moreover, the last part
of Proposition 2.7 implies the upper semicontinuity, and hence continuity, of the
blow-up point as a function of initial values (recall that lower semicontinuity is
a consequence of standard continuous-dependence results). Observing that the
constant Cδ in Lemma 2.6 varies continuously with the parameters µ and p, we
obtain, in fact, the continuity of the blow-up point as a function of both initial
data and parameters.

The close connection between continuity of the blow-up point and uniform a-
priori bounds (as in Lemma 2.6) has been observed and exploited in other types of
blow-up problems; see, for example, [21].

In the sequel we will need a few additional properties of the blow-up point of
explosive solutions of (2.1) as a function of initial values. These properties have
to do with the scaling-law, already mentioned in connection with Equation (1.1),
which obviously extends to the system (2.1). For a precise statement, we need some
notation.

For λ ∈ (0,∞) let Λ denote the linear isomorphism of Rm defined by

Λ(x1, x2, . . . , xm) := (x1, λ
2x2, . . . , λ

2(m−1)xm)

for (x1, x2, . . . , xm) ∈ Rm. Given a solution (v, w) of (2.1) on [r0, r∞) and a number
λ ∈ (0,∞), let rλ0 := r0/λ, rλ∞ := r∞/λ and define

vλ(r) := λqΛv(λr), wλ(r) := λq+1Λw(λr)

for r ∈ [rλ0, rλ∞). Then (vλ, wλ) is a solution of (2.1) on [rλ0, rλ∞). Consistent
with the terminology used in the introduction, we call (vλ, wλ) a rescaling (more
precisely, the λ-rescaling) of (v, w) and say that two solutions of (2.1) are scaling-
equivalent if one is a rescaling of the other. Clearly, this defines an equivalence
relation.
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Recall that we are mostly interested in even solutions of (2.1), that is, solutions
(v, w) starting at r = 0 with w(0) = 0. Given x ∈ Rm, we denote by (vx, wx) the
even solution of (2.1) starting at x, that is, the one with v(0) = x. For λ ∈ (0,∞),
the λ-rescaling (vx

λ, w
x
λ) of (vx, wx) is nothing but the even solution of (2.1) starting

at λqΛx. This suggests to call the point

σx(λ) := λqΛx

a rescaling (more precisely the λ-rescaling) of x and to say that two points in Rm are
scaling-equivalent if one is a rescaling of the other. While the scaling-equivalence
class of 0 is trivial, that of any point x ∈ Rm \ {0} is a smooth simple curve, given
by

Σx := {σx(λ) |λ ∈ (0,∞)}.
We call Σx the scaling-parabola through x. Note that each scaling-parabola inter-
sects the boundary of every ball centered at the origin exactly once. In particular,
each point x ∈ Rm \ {0} is scaling-equivalent to a unique point π(x) on Sm−1, the
unit sphere in Rm. We refer to π, a smooth mapping of Rm \ {0} onto Sm−1, as
the scaling-projection.

For x ∈ Rm, let ρ(x) denote the exit point of the solution (vx, wx). We then have
ρ(σx(λ)) = ρ(x)/λ for all λ ∈ (0,∞). Thus, along every scaling-parabola Σx with
x ∈ Rm \ {0}, the function ρ is either strictly decreasing from ∞ to 0 or identically
equal to ∞. As a consequence of Lemma 2.5(d), the latter is possible only if x
belongs to the set

O := {ξ ∈ Rm | (−1)m−iξi < 0 ∀ i ∈ {1, . . . ,m}}
(the negative half-axis if m = 1, the open fourth quadrant if m = 2, an open orthant
in Rm otherwise). Further properties of ρ are gathered in the following proposition.

Proposition 2.9.
(a) The set {x ∈ Rm | ρ(x) < ∞} =

⋃
{Σx |x ∈ Sm−1, ρ(x) < ∞} is open; the set

{x ∈ Rm | ρ(x) = ∞} = {0}∪
⋃
{Σx |x ∈ Sm−1, ρ(x) = ∞} is closed and contained

in {0} ∪ O; and ρ is a continuous mapping of Rm onto (0,∞].
(b) Let x, y ∈ Rm with x ≤ y and x 6= y and suppose that vx

1 ≥ 0 (that is, the
first component of the even solution of (2.1) starting at x is nonnegative). Then
ρ(x) > ρ(y).
(c) Suppose that m ≥ 2 and let e(i) denote the i-th standard unit vector in Rm, for
some i ∈ {1, . . . ,m}. Then, for every a ∈ Rm, the function t 7→ ρ(a+te(i)) vanishes
as t→ ±∞.

Proof. All the claims in (a) follow directly from Lemma 2.5(c)/(d) and Proposi-
tion 2.7 (see Remark 2.8).

By the comparison principle in Remark 2.2, the assumptions in (b) guarantee
that the solutions (vx, wx) and (vy, wy) are strictly ordered except possibly at 0,
that is, vx < vy and wx < wy on the open interval (0, ρ(y)); clearly, ρ(x) ≥ ρ(y).
We claim that ρ(y) is finite. To see this, suppose that ρ(x) = ρ(y) = ∞. Then, by
Lemma 2.5(d), both vx

1 and vy
1 vanish at infinity, and it follows that∫ ∞

0

wx
1 (r) dr = −vx

1 (0) = −x1 ≥ −y1 = −vy
1 (0) =

∫ ∞

0

wy
1(r) dr,

contradicting the fact that wx
1 < wy

1 on (0,∞). Thus ρ(y) is finite, and nothing
is left to prove unless ρ(x) is finite as well. So, assume that both (vx, wx) and
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(vy, wy) are explosive and hence eventually positive. Choose r0 ∈ (0, ρ(x)) such
that vx(r0), wx(r0) > 0 and suppose that r0 < ρ(y) (else, we are done). We then
have 0 < vx(r0) < vy(r0) and 0 < wx(r0) < wy(r0), which allows us to choose a
number λ ∈ (1,∞) such that

0 < vx(r0) < λqΛvx(r0) < vy(r0), 0 < wx(r0) < λq+1Λwx(r0) < wy(r0).

The λ-rescaling (vx
λ, w

x
λ) of (vx, wx) satisfies vx

λ(r0/λ) = λqΛvx(r0) and wx
λ(r0/λ) =

λq+1Λwx(r0) and blows up at ρ(x)/λ. For r in the interval [r0, r0 + (ρ(x)− r0)/λ),
define

φ(r) := vx
λ(r + (1/λ− 1)r0) and ψ(r) := wx

λ(r + (1/λ− 1)r0).

Since r+(1/λ−1)r0 < r, the pair (φ, ψ) is a subsolution of (2.1); it satisfies φ(r0) =
λqΛvx(r0) and ψ(r0) = λq+1Λwx(r0) and blows up at the point r0 + (ρ(x)− r0)/λ.
By the comparison principle, the subsolution (φ, ψ) and the solution (vy, wy) are
ordered where both are defined, which implies that ρ(y) ≤ r0+(ρ(x)−r0)/λ < ρ(x).
This finishes the proof of (b).

Adopting the assumptions in (c), note that for all t, λ ∈ (0,∞) we have

σa±te(i)(λ) = σa(λ)± t σe(i)(λ) = σa(λ)± t λq+2i−2e(i).

Letting λ := t−1/(q+2i−2) and t→∞, we get

σa±te(i)(λ) = σa(λ)± e(i) → ±e(i),

which, due to the continuity of ρ, implies that

ρ(σa±te(i)(λ)) → ρ(±e(i)).

Note that ρ(±e(i)) < ∞ (any nontrivial global even solution of (2.1) starts in the
open orthant O if m ≥ 2). Since ρ(σa±te(i)(λ)) = ρ(a± te(i))/λ, it follows that

ρ(a± te(i)) = λρ(σa±te(i)(λ)) → 0 as t→∞,

and this completes the proof of the proposition. �

Remark 2.10. The last part of Proposition 2.9 implies in particular that if m ≥ 2,
then the function ρ attains a global maximum value on every line parallel to one
of the coordinate axes in Rm; this value is finite unless the line passes through the
origin or intersects a scaling-parabola Σx with ρ(x) = ∞, necessarily in the open
orthant O. We conjecture, but have not been able to prove in general, that ρ attains
its global maximum value at exactly one point on each such line and is strictly
monotonic on either side of that point. This would have interesting implications
for the geometric structure of the set H, as defined in Remark 2.1, and hence for the
set of all large radial solutions of Equation (1.1) on the unit ball (see Remark 4.6).

Note that the conjecture is trivially true for the coordinate axes (since the posi-
tive and negative half-axes are scaling-parabolae). Moreover, it follows from Propo-
sition 2.9(b) that if a ∈ Rm is such that the solution (va, wa) has a nonnegative
first component, then ρ is strictly decreasing on the half-line {a+ te(i) | t ∈ [0,∞)}
for every i ∈ {1, . . . ,m}. This holds in particular if a ∈ Rm

+ .
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3. Entire Radial Solutions

Combining Lemma 2.5 and Proposition 2.7, we obtain a complete classification
of all nontrivial even solutions of (2.1): any such solution is either explosive and
approaches infinity; or it is global and of the form described in Lemma 2.5(d). If
µ = N − 1, solutions of the former type correspond to large radial solutions of
the equation (1.1), solutions of the latter type to entire radial solutions of (1.1).
Thus every nontrivial radial solution of (1.1) is either large and scaling-equivalent
to a large solution on the unit ball or entire and scaling-equivalent to an entire
solution with center-value (−1)m. Note that, as a consequence of Lemma 2.5(d),
if u is an entire radial solution of (1.1), then ũ := (−1)mu is a positive solution of
the equation (−∆)m ũ = ũp on RN that vanishes at infinity. With slight abuse of
language, such solutions are frequently referred to as ground states (although they
may not have “finite energy,” which would impose a condition on the solutions’
rate of decay at infinity).

As discussed in the introduction, entire radial solutions of Equation (1.1) are a
subject of independent interest (see, for example, [9, 17, 25, 29]). Their existence
and uniqueness (up to scaling) or nonexistence is of critical importance in our
study of the structure of the set of all large radial solutions of (1.1). In this section,
we gather the relevant information, which we will state for the system (2.1) with
arbitrary µ ∈ R+. For convenience, nontrivial global even solutions of (2.1) will be
called entire solutions.

Most of the results in this section could be extracted from the literature, but
brief proofs are included for the sake of completeness. The following proposition
provides rather detailed a-priori information about the entire solutions of (2.1).
Much more could be said about their asymptotic behavior, at least in the second
and fourth-order cases (see [9]); but the decay estimates in (e) are sufficient for our
purposes.

Proposition 3.1. Every entire solution (v, w) of (2.1) satisfies the following con-
ditions for every i ∈ {1, . . . ,m}:
(a) the mapping r 7→ rµ−2(m−i)wi(r) is strictly monotonic, increasing (decreasing)
if m−i is even (odd);
(b) the mapping r 7→ rµ−2(m−i)−1vi(r) is strictly monotonic, decreasing (increasing)
if m−i is even (odd);
(c) 2(m− i)|wi(r)| < r|vi+1(r)| < (µ+ 1)|wi(r)| for all r ∈ (0,∞);

(d) r|wi(r)| <
(
µ− 2(m− i)− 1

)
|vi(r)| for all r ∈ (0,∞);

(e) |vi(r)| <
(√
µ2 − 1

/
r
)q+2i−2 and |wi(r)| <

√
µ−1
µ+1

(√
µ2 − 1

/
r
)q+2i−1 for all

r ∈ (0,∞).

Proof. Suppose that (v, w) is an entire solution of (2.1). Since, by Proposition 2.7,
(v, w) does not approach infinity, Lemma 2.5(d) applies and will be invoked repeat-
edly without further reference. Also, in all the subsequent estimates, we assume
without saying that r ∈ (0,∞).

First we verify the conditions (a)–(d) for i = m. Note that in this case (a) is
already proved. We also know that v1 is strictly monotonic with limit 0, which
implies that vm+1 = |v1|p is strictly decreasing and positive. Consequently,

rµwm(r) =
∫ r

0

sµvm+1(s) ds > vm+1(r)
∫ r

0

sµds = vm+1(r) rµ+1/(µ+ 1)
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and hence
0 < rvm+1(r) < (µ+ 1)wm(r),

which proves (c). Further, since vm vanishes at infinity and r 7→ rµwm(r) is strictly
increasing, we have

−vm(r) =
∫ ∞

r

wm(s) ds =
∫ ∞

r

s−µsµwm(s) ds > rµwm(r)
∫ ∞

r

s−µds,

which implies that µ > 1 and −vm(r) > rwm(r)/(µ − 1). Since wm(r) > 0, this
yields

0 < rwm(r) < −(µ− 1)vm(r)

and hence (d). Finally, substituting wm(r) = v′m(r) in the last inequality and
multiplying by rµ−2, we see that rµ−1v′m(r) + (µ − 1)rµ−2vm(r) < 0, that is,
d
dr

(
rµ−1vm(r)

)
< 0. This proves (b).

Now suppose that the conditions (a)–(d) hold for some i ∈ {2, . . . ,m}. We will
verify that the same conditions then hold with i replaced by i−1. For definiteness,
assume that m− i is even. In this case, we know that vi is strictly increasing and
negative. It follows that

rµwi−1(r) =
∫ r

0

sµvi(s) ds < vi(r)
∫ r

0

sµds = vi(r) rµ+1/(µ+ 1)

and hence
0 > rvi(r) > (µ+ 1)wi−1(r),

which proves the second inequality in (c). Also, by our inductive assumption,
r 7→ rµ−2(m−i)−1vi(r) is strictly decreasing, which implies that

rµwi−1(r) =
∫ r

0

s2(m−i)+1sµ−2(m−i)−1vi(s) ds

> rµ−2(m−i)−1vi(r) r2(m−i)+2/(2(m− i) + 2).

Since wi−1(r) < 0, this yields

rvi(r) < 2(m− i+ 1)wi−1(r) < 0,

which proves the first inequality in (c). Since vi(r) = w′i−1(r) + µ
r wi−1(r), multi-

plication of the above inequality by rµ−2(m−i+1) leads to

rµ−2(m−i+1)+1w′i−1(r) +
(
µ− 2(m− i+ 1)

)
rµ−2(m−i+1)wi−1(r) < 0,

that is, d
dr

(
rµ−2(m−i+1)wi−1(r)

)
< 0, proving (a). Using this and the fact that vi−1

vanishes at infinity, we get

−vi−1(r) =
∫ ∞

r

wi−1(s) ds < rµ−2(m−i+1)wi−1(r)
∫ ∞

r

s−µ+2(m−i+1)ds,

whence µ > 2(m− i+1)+1 and −vi−1(r) < rwi−1(r)/(µ−2(m− i+1)−1). Since
wi−1(r) < 0, this yields

0 > rwi−1(r) > −
(
µ− 2(m− i+ 1)− 1

)
vi−1(r),

proving (d). Noting that wi−1 = v′i−1 and multiplying by rµ−2(m−i+1)−2, we get

rµ−2(m−i+1)−1v′i−1(r) +
(
µ− 2(m− i+ 1)− 1

)
rµ−2(m−i+1)−2vi−1(r) > 0,
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that is, d
dr

(
rµ−2(m−i+1)−1vi−1(r)

)
> 0, which proves (b). This finishes the inductive

step in the case where m − i is even; the other case is dealt with analogously,
essentially by reversing all the inequalities.

Now we can prove (e). Iteratively applying the inequalities

r|vi+1(r)| < (µ+ 1)|wi(r)| and r|wi(r)| < (µ− 1)|vi(r)|, (3.1)

which follow directly from (c) and (d), we see that

r2m|v1(r)|p = r2m|vm+1(r)| < (µ+ 1)m(µ− 1)m|v1(r)|,

which implies r2m|v1(r)|p−1 < (µ2 − 1)m, whence rq|v1(r)| < (µ2 − 1)q/2, and thus

|v1(r)| <
(√
µ2 − 1

/
r
)q
.

Again applying the inequalities (3.1), we obtain the remaining estimates in (e). �

Remark 3.2. The inequality (d) in Proposition 3.1 shows that the existence of
an entire solution (v, w) of (2.1) requires that µ > 2m − 1. Moreover, by the
decay estimates in (e), we have wm(r) = O(r−(q+2m−1)) as r → ∞, which implies
that rγwm(r) → 0 for every γ ∈ [0, q + 2m− 1), so that r 7→ rγwm(r) cannot
be monotonic. Since we know that r 7→ rµwm(r) is monotonic, it follows that
µ ≥ q + 2m − 1. Well-known integral identities, the prototypes of which are due
to Rellich and Pohožaev, allow a further sharpening of this result. The following is
an explicit “radial” version of the Rellich-type identity (2.16) in [17], valid for any
R2m-valued function (v, w) = (v1, w1, . . . , vm, wm) on an interval [0, R] such that
v1 ∈ C2m([0, R]), vi+1 = v′′i + µ

r v
′
i for i ∈ {2, . . . ,m}, wi = v′i for i ∈ {1, . . . ,m},

and w(0) = 0, where m ∈ N, R ∈ (0,∞), and µ ∈ R+:

2
∫ R

0

rµ+1vm+1(r)w1(r) dr

= (2m− µ− 1)
∫ R

0

rµvm+1(r)v1(r) dr

+Rµ+1
m∑

i=1

wi(R)wm−i+1(R) + (µ− 1)Rµ
m∑

i=1

vi(R)wm−i+1(R)

+ 2Rµ
m∑

i=2

(i− 1)
(
vi(R)wm−i+1(R)− wi(R)vm−i+1(R)

)
−Rµ+1

m∑
i=2

vi(R)vm−i+2(R).

Specifically, if (v, w) is a solution of (2.1), that is, if vm+1 = |v1|p, an integration
by parts shows that

(p+ 1)
∫ R

0

rµ+1vm+1(r)w1(r) dr

= Rµ+1vm+1(R) v1(R)− (µ+ 1)
∫ R

0

rµvm+1(r)v1(r) dr,



118 J. I. DÍAZ, M. LAZZO, P. G. SCHMIDT EJDE/CONF/16

and substituting this into the preceding identity, we obtain

m

q +m
(µ+ 1− 2q − 2m)

∫ R

0

rµv1(r)|v1(r)|p dr

= Rµ+1
{ m∑

i=1

wi(R)wm−i+1(R) + (µ− 1)
m∑

i=1

R−1vi(R)wm−i+1(R)

+ 2
m∑

i=2

(i− 1)
(
R−1vi(R)wm−i+1(R)−R−1wi(R)vm−i+1(R)

)
−

m∑
i=2

vi(R)vm−i+2(R)− q

q +m
v1(R)|v1(R)|p

}
.

Now, if (v, w) is an entire solution of (2.1), then this identity holds for every
R ∈ (0,∞), and the decay estimates in Proposition 3.1(e) show that each term
within the braces on the right-hand side is O(R−(2q+2m)) as R → ∞. Assuming
µ+1 < 2q+2m, it would follow that

∫∞
0
rµv1(r)|v1(r)|p dr = 0, which is impossible

since v1 is either positive or negative. In conclusion, the system (2.1) does not have
any entire solutions unless µ ≥ 2q + 2m− 1.

Consistent with standard terminology in the theory of elliptic PDEs, we define
µ∗ := 2q + 2m − 1 and call the system (2.1) subcritical , critical , or supercritical ,
depending on whether µ < µ∗, µ = µ∗, or µ > µ∗. A simple computation shows
that these conditions are equivalent to p < p∗, p = p∗, and p > p∗, respectively,
where

p∗ :=

{
µ+1+2m
µ+1−2m if µ+ 1 > 2m,
∞ if µ+ 1 ≤ 2m.

If µ = N−1, then p∗ is the Sobolev critical exponent associated with Equation (1.1),
that is, the critical exponent for the embedding of Hm(B) into Lp+1(B). In this
terminology, the preceding observation regarding entire solutions of (2.1) simply
says that no such solutions exist if the system is subcritical. This is, of course, a
well-established fact, at least in the case of integer µ (see [17, 23, 29]).

The result is optimal in the sense that a family of entire solutions of (2.1) is
known explicitly in the critical case. In fact, if µ = 2q + 2m− 1, then the function
r 7→ (−1)m 2qQ/(1 + r2)q is the first component of such a solution, and addi-
tional ones are obtained by rescaling. If µ = N − 1, these solutions correspond to
“minimum-energy solutions” of Equation (1.1) on RN and determine the norm of
the embedding of the associated “finite-energy space” into Lp∗+1(RN ) (see [24]).

Remark 3.3. We call a nontrivial even solution (v, w) of (2.1) a solution of the
Dirichlet problem if there exists a point in the solution’s interval of existence where
the first m components of (v, w) = (v1, w1, . . . , vm, wm) vanish simultaneously.
More precisely, if R is a common zero of the first m components, we say that (v, w)
solves the Dirichlet problem for (2.1) on the interval [0, R]. Clearly, if µ = N−1, any
such solution corresponds to a nontrivial radial solution of Equation (1.1) satisfying
Dirichlet conditions on the boundary of the ball BR(0).

Let R ∈ (0,∞) and suppose that (v, w) solves the Dirichlet problem for (2.1) on
[0, R]. If m = 2k − 1 for some k ∈ N, then v1 is negative and increasing on [0, R],
and while v1, w1, . . . , vk−1, wk−1, vk vanish at R, the next component, wk, does not;
similarly, if m = 2k for some k ∈ N, then v1 is positive and decreasing on [0, R],
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and while v1, w1, . . . , vk, wk vanish at R, vk+1 does not (see [14, Theorem 3.3]).
Applying the Rellich-type identity from Remark 3.2 to the solution (v, w), we see
that all but one of the terms on the right-hand side vanish; in fact, we have

m

q +m
(µ+ 1− 2q − 2m)

∫ R

0

rµv1(r)|v1(r)|p dr

=

 Rµ+1w2
k(R) > 0 if m = 2k − 1, k ∈ N,

−Rµ+1v2
k+1(R) < 0 if m = 2k, k ∈ N.

In either case, it follows that µ+1− 2q− 2m < 0; that is, solutions of the Dirichlet
problem do not exist unless (2.1) is subcritical. Like the complementary result for
entire solutions in Remark 3.2, this is well known, at least for integer µ (see [19]
for the supercritical case and [23] for the critical case).

Remark 3.4. According to Remark 3.2, the system (2.1) has no entire solutions
if it is subcritical and at least one scaling-equivalence class of entire solutions if
it is critical. Moreover, the explicitly known solutions in the critical case can be
shown to be the only entire solutions with finite energy . For integer µ, this was
done by Swanson [24, 25] and again by Wei and Xu [29], who claim implicitly that
every entire solution has finite energy. This is correct for m ≤ 2 (see [15, 30] or the
discussion below) and probably for any m; but the argument in [29] (specifically the
proof of Lemma 4.3 ibidem) appears to be inconclusive, and we have not been able
to close the gap (see, however, the “note added in proof” at the end of the paper).

We conjecture, in fact, that (2.1) has exactly one scaling-equivalence class of
entire solutions not only in the critical, but also in the supercritical case. This
result is extractable from the literature (see below) if m ≤ 2, but appears to be
a wide open problem if m ≥ 3. We include short proofs in the cases m = 1 and
m = 2 for the sake of completeness.

First suppose that m = 1. Then uniqueness is trivial, since any entire solution
of (2.1) must be scaling-equivalent to the unique even solution starting at −1.
Furthermore, the first component of this solution is either negative throughout, in
which case the solution is global, or it has a zero, in which case the solution solves
the Dirichlet problem. By Remark 3.3, the latter is impossible if (2.1) is critical
or supercritical, so that in this case, the even solution starting at −1 is an entire
solution.

Now suppose that m = 2. Then any entire solution of (2.1) is scaling-equivalent
to an even solution (v, w) with v1(0) = 1 and v1 positive. Since v2(0) is the
only free parameter, any two solutions satisfying these conditions are ordered, and
Proposition 2.9(b) implies that not both can be global unless they are equal. This
proves uniqueness. Now, given α ∈ R, let (vα, wα) denote the even solution of
(2.1) starting at (1, α); further, define I := {α ∈ R | vα

1 ≥ 0}. By the comparison
principle, I is an interval containing R+. Since the solution (vα, wα) depends
continuously on α, I is closed. For the same reason, 0 is not a lower bound for I
(note that v0

1 is increasing and thus satisfies v0
1 ≥ 1). However, I is bounded from

below, else Proposition 2.9(b) would imply that the exit point of (vα, wα) increases
as α → −∞, contradicting Proposition 2.9(c). In conclusion, I has a negative
minimum α∗. Denote by (v∗, w∗) the even solution starting at (1, α∗). Its first
component, v∗1 , is either monotonically decreasing throughout, or it decreases to
a global minimum, necessarily with value 0, and increases to infinity thereafter.
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In the first case, (v∗, w∗) is an entire solution; in the second case, it solves the
Dirichlet problem. If (2.1) is critical or supercritical, the latter is impossible, by
Remark 3.3, and (v∗, w∗) is an entire solution. (For the supercritical case, a similar
proof was given in [9]; more general existence and nonexistence results can be found
in [4, 22].)

In conclusion, (2.1) has exactly one scaling-equivalence class of entire solutions if
the system is critical or supercritical and if m ≤ 2. If m ≥ 3, the above arguments
fail, with regard to both existence and uniqueness. As for uniqueness, note that
Proposition 2.9(b) implies that (2.1) cannot have two distinct global even solutions
that are initially ordered and have nonnegative first components. Since entire
solutions have positive first components if m is even, but negative first components
if m is odd , this observation is relevant if m is even, but does not imply uniqueness
unless m = 2.

The following theorem and corollary gather the main results of this section.

Theorem 3.5. Let µ∗ := 2q + 2m − 1. The system (2.1), for arbitrary m ∈ N,
has no entire solutions if µ < µ∗ and at least one scaling-equivalence class of entire
solutions if µ = µ∗. For m ∈ {1, 2}, the system has exactly one scaling-equivalence
class of entire solutions if µ ≥ µ∗.

Corollary 3.6. Equation (1.1), for arbitrary m ∈ N, has no entire radial solutions
in the subcritical and at least one scaling-equivalence class of entire radial solutions
in the critical case. For m = 1 or m = 2, there is exactly one scaling-equivalence
class of entire radial solutions if the equation is critical or supercritical.

4. Large Radial Solutions

Recall from Section 2 that we denote the even solution of (2.1) starting at x ∈ Rm

by (vx, wx), its exit point by ρ(x). The rescalings of a point x ∈ Rm are defined
by σx(λ) := λqΛx := λq(x1, λ

2x2, . . . , λ
2(m−1)xm) for λ ∈ (0,∞). If x 6= 0, the

curve Σx parametrized by σx is called the scaling-parabola through x; it intersects
the unit sphere Sm−1 in exactly one point, denoted by π(x). We call the mapping
π : Rm \ {0} → Sm−1 the scaling-projection.

Along each scaling-parabola, the exit point ρ is either identically equal to ∞
or strictly decreasing from ∞ to 0; in fact, ρ(σx(λ)) = ρ(x)/λ for all x ∈ Rm

and λ ∈ (0,∞). It follows that if ρ(x) < ∞, then the curve Σx intersects the set
H := {ξ ∈ Rm | ρ(ξ) = 1} exactly once, at the point σx(ρ(x)). On the other hand,
if ρ(x) = ∞, then Σx does not intersect H. We conclude that

H = {σξ(ρ(ξ)) | ξ ∈ Sm−1, ρ(ξ) <∞}.

Define S := {ξ ∈ Sm−1 | ρ(ξ) < ∞}. By Proposition 2.9(a), the set S is relatively
open in Sm−1, and the mapping ξ 7→ σξ(ρ(ξ)) is a homeomorphism from S onto H;
its inverse is the scaling-projection π, restricted to H.

Not only is H homeomorphic to an open subset of Sm−1 under the scaling-
projection; it is in fact a “separating hypersurface” in Rm, namely, the common
boundary of the connected open sets A and B, defined by

A := {ξ ∈ Rm | ρ(ξ) > 1} = {0} ∪ {σξ(λ) | ξ ∈ Sm−1, λ ∈ (0, ρ(ξ))},
B := {ξ ∈ Rm | ρ(ξ) < 1} = {σξ(λ) | ξ ∈ Sm−1, λ ∈ (ρ(ξ),∞)},
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the “inside” and “outside” of H, relative to the scaling-projection. Note, however,
that H is a closed subset of Rm and thus, cannot be bounded unless S is compact;
if m ≥ 2, this requires that S = Sm−1. In any case (including m = 1), the set A is
bounded if and only if S = Sm−1.

Recall from Proposition 2.9(a) that Sm−1 \ S is contained in the open orthant

O := {ξ ∈ Rm | (−1)m−iξi < 0 ∀ i ∈ {1, . . . ,m}}

(the negative half-axis if m = 1). This implies that H∩(Rm \O) is compact and, in
particular, bounded; but if m ≥ 2, then H∩O is bounded if and only if S = Sm−1.
(If m = 1, then H ∩O is empty unless S = S0 = {±1}.)

In particular, S contains Sm−1
+ := Sm−1 ∩ Rm

+ , and H+ := H ∩ Rm
+ is compact

and homeomorphic to Sm−1
+ under the scaling-projection. Moreover, it follows

from Proposition 2.9(b) that every half-line in Rm
+ , emanating from the origin,

intersects H+ exactly once. Thus, H+ is homeomorphic to Sm−1
+ also under the

radial projection.
As another consequence of Proposition 2.9(b), the set H+ is the boundary of

an order decomposition of Rm
+ . By this we mean a pair (A,B) of nonempty closed

sets A, B ⊂ Rm
+ with A ∪B = Rm

+ and int(A ∩B) = ∅ such that A is lower-closed
(that is, {ξ ∈ Rm

+ | ξ ≤ x} ⊂ A for every x ∈ A) and B is upper-closed (that is,
{ξ ∈ Rm

+ | ξ ≥ x} ⊂ B for every x ∈ B). The set A∩B, the common boundary of A
and B relative to Rm

+ , is called the boundary of the order decomposition (A,B).
(These notions, due to Hirsch [13], are useful in the theory of monotone dynamical
systems.) The set H+ is the boundary of the order decomposition (Ā+, B̄+) of Rm

+ ,
given by Ā+ := Ā ∩Rm

+ = {ξ ∈ Rm
+ | ρ(ξ) ≥ 1} (lower-closed) and B̄+ := B̄ ∩Rm

+ =
{ξ ∈ Rm

+ | ρ(ξ) ≤ 1} (upper-closed). Moreover, H+ = Ā+ ∩ B̄+ is unordered , that
is, it does not contain any two distinct points that are ordered.

We collect the basic properties of H in the following proposition.

Proposition 4.1.
(a) The set H := {ξ ∈ Rm | ρ(ξ) = 1} is a closed subset of Rm; it is homeomorphic,
under the scaling-projection, to the relatively open subset S of Sm−1, defined by
S := {ξ ∈ Sm−1 | ρ(ξ) <∞}; and it is the common boundary of the connected open
sets A := {ξ ∈ Rm | ρ(ξ) > 1} and B := {ξ ∈ Rm | ρ(ξ) < 1} (the “inside” and
“outside” of H, relative to the scaling-projection).
(b) The set Sm−1\S is contained in O := {ξ ∈ Rm|(−1)m−iξi < 0∀ i ∈ {1, . . . ,m}};
H ∩ (Rm \ O) is compact; and if m ≥ 2, then H ∩ O is bounded if and only if
S = Sm−1.
(c) The set H+ := H ∩ Rm

+ is compact, homeomorphic to Sm−1
+ := Sm−1 ∩ Rm

+

under the radial projection, unordered, and the boundary of the order decomposition
(Ā+, B̄+) of Rm

+ with Ā+ := Ā ∩ Rm
+ and B̄+ := B̄ ∩ Rm

+ .

A complete characterization of the set H, beyond the general properties gathered
above, requires the determination of the set S. Note that the points of Sm−1 \ S
are in one-to-one correspondence with the scaling-equivalence classes of entire radial
solutions of (2.1). Recalling Theorem 3.5, we conclude that S = Sm−1 whenever
(2.1) is subcritical. For m ≤ 2, we infer that S = Sm−1 \ {ξ0}, for some point
ξ0 ∈ Sm−1 ∩O, whenever (2.1) is critical or supercritical. In view of our conjecture
regarding entire solutions of (2.1) (see Remark 3.4), we expect the latter to hold
for m ≥ 3 as well. This leads to the following theorem and conjecture.
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Theorem 4.2.
(a) Suppose that m = 1. Then the set H consists of exactly two real numbers of
opposite sign if (2.1) is subcritical, of exactly one positive number if (2.1) is critical
or supercritical.
(b) Suppose that m = 2. Then the set H is a closed simple curve in R2 if (2.1)
is subcritical, an unbounded simple curve, asymptotic to a unique scaling-parabola
in the fourth quadrant of R2, if (2.1) is critical or supercritical; in either case, the
origin belongs to the interior of the curve.
(c) Suppose that m ≥ 3 and that (2.1) is subcritical. Then the set H is a closed
hypersurface in Rm, homeomorphic to Sm−1 under the scaling-projection.

Conjecture 4.3. Suppose that m ≥ 3 and that (2.1) is critical or supercritical.
Then the set H is an unbounded hypersurface in Rm, and there exists a point
ξ0 ∈ Sm−1 ∩ O such that H is homeomorphic to Sm−1 \ {ξ0} under the scaling-
projection.

Remark 4.4. While the conjecture is completely open in the supercritical case,
Theorem 3.5 and Proposition 4.1 yield at least a partial result if (2.1) is critical:
the set H is then an unbounded hypersurface in Rm, and there exists a nonempty
closed set X0 ⊂ Sm−1 ∩ O such that H is homeomorphic to Sm−1 \X0 under the
scaling-projection.

Remark 4.5. As discussed in Remark 2.1, the set H (for µ = N−1) is homeomor-
phic to the set L of all large radial solutions of Equation (1.1) on the unit ball B,
endowed with the natural topology of the space C2m(B). Thus, by Theorem 4.2, L
is a full (m−1)-sphere whenever (1.1) is subcritical; if (1.1) is critical or supercrit-
ical, and if m ≤ 2, then L is a punctured (m−1)-sphere. If proved, Conjecture 4.3
would imply the latter to hold without the restriction m ≤ 2.

Remark 4.6. In Remark 2.10 we conjectured that on every line parallel to one
of the coordinate axes in Rm, the function ρ attains its global maximum value at
exactly one point and is strictly monotonic on either side of that point. This is
equivalent to saying that any such line intersects the set H at most twice, which
would shed further light on the geometric structure of H, with interesting impli-
cations regarding the exact multiplicity of large radial solutions of Equation (1.1).
In fact, given any m−1 of the values u(0),∆u(0), . . . ,∆m−1u(0), there would be at
most two large radial solutions of (1.1) on B with these prescribed center values.

In the remainder of this section, we illustrate our results and derive further
information in the second and fourth-order cases. We note that the accompanying
graphs are not schematic drawings; they are based on high-accuracy numerical
computations (the method will be described in [6]). The depictions of typical large
radial solutions illustrate qualitative features that are consequences of the present
analysis, as discussed below. These graphs do not and cannot resolve fine points of
the solutions’ blow-up behavior; those will be addressed in [6].

First consider the familiar second-order case, m = 1. If the equation (1.1) is
subcritical, there are exactly two large radial solutions on the unit ball, one with a
positive, the other with a negative center value. If (1.1) is critical or supercritical,
there is exactly one such solution, with a positive center value. In either case, the
solutions are strictly increasing with respect to the radial variable. Figure 1 shows
the large radial solutions of (1.1) on B in space dimension N = 3 for p = 3, p = 4,
and p = 4.5 (subcritical, two solutions) as well as for p = 5 (critical, one solution).
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Figure 1. Large radial solutions of (1.1) on B for m = 1 and
N = 3, in the subcritical cases p = 3 (top-left), p = 4 (top-right),
p = 4.5 (bottom-left), and in the critical case p = 5 (bottom-right).

Now consider the fourth-order case, m = 2. If Equation (1.1) is subcritical, the
setH is a closed simple curve in R2, containing the origin in its interior. Hence there
exist numbers α, α ∈ R with α < 0 < α such that, given α ∈ R, Equation (1.1)
has no large radial solution on B with center value α if α < α or α > α; at
least one such solution if α = α or α = α; and at least two such solutions if
α < α < α. (As noted in Remark 4.6, we could say “exactly” instead of “at least”
if our conjecture regarding the monotonicity of ρ on lines parallel to the coordinate
axes were proved.)

Figure 2 depicts the set H for p = 3 and N = 3, along with the scaling-parabolae
passing through the four extremal points of H. The close-up in the graph on the
right reveals that there are indeed two extremal points in the fourth quadrant,
albeit very close to each other. Figure 3 shows typical large radial solutions of
(1.1) on B, including the ones with the smallest and largest center values (top-left
graph).
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Figure 2. The set H for m = 2, p = 3, N = 3 (subcritical, H compact).
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Figure 3. Large radial solutions of (1.1) on B for m = 2, p = 3,
N = 3 (subcritical).
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Figure 4. The set H for m = 2, p = 3, N = 13 (supercritical, H unbounded).

If Equation (1.1) is critical or supercritical, the set H is an unbounded simple
curve in R2, asymptotic to a unique scaling-parabola in the fourth quadrant and
containing the origin in its “interior.” Hence there exists a number α ∈ R with
α < 0 such that, given α ∈ R, Equation (1.1) has no large radial solution on B
with center value α if α < α; at least one such solution if α = α; and at least two
such solutions if α > α. (Again, we could say “exactly” instead of “at least” if the
conjecture in Remark 2.10 were proved.)

Figure 4 depicts the setH for p = 3 andN = 13, along with the scaling-parabolae
passing through the two extremal points of H and the unique scaling-parabola in
the fourth quadrant that does not intersect H. Figure 5 shows typical large radial
solutions of (1.1) on B, including the one with the smallest center value (on the
left). Despite its appearance, the graph on the right contains six solutions — two
for each of the center values, one positive, the other sign-changing.
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Figure 5. Large radial solutions of (1.1) on B for m = 2, p = 3,
N = 13 (supercritical).
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All large radial solutions of (1.1) on B that start in the upper half-plane or on
the horizontal axis (that is, solutions u with ∆u(0) ≥ 0) are strictly increasing
with respect to the radial variable; those starting in the lower half-plane (that is,
solutions u with ∆u(0) < 0) are strictly decreasing to a global minimum and strictly
increasing thereafter. In the subcritical case, there exists a solution of the second
kind whose minimum value is 0 and which, therefore, solves the Dirichlet problem
for Equation (1.1) on a ball centered at the origin. This solution necessarily starts
at a point (α∗, β∗) on the “upper” part of H in the fourth quadrant.

The segment of H in the first quadrant and its continuation into the fourth
quadrant, down to the point (α∗, β∗), is the locus of the starting-points of the
nonnegative large radial solutions of (1.1) on B. As a consequence of Proposi-
tion 2.9(b), this segment is unordered and thus the graph of a strictly decreasing
continuous function φ : [0, α∗] → R with φ(0) =: β∗ > 0 and φ(α∗) = β∗ < 0. It
follows that, given α ∈ R, Equation (1.1) has a unique nonnegative large radial
solution u on B with center value u(0) = α if and only if 0 ≤ α ≤ α∗. As α
increases from 0 to α∗, the second center value ∆u(0) decreases from β∗ > 0 to
β∗ < 0. Further, the solution is strictly positive except if α = 0 or α = α∗.

In the critical or supercritical case, radial solutions of (1.1) starting on the unique
scaling-parabola in the fourth quadrant that misses the set H are entire solutions
and positive. Consequently, the segment of H “above” this parabola is comprised of
starting-points of positive large radial solutions of (1.1) on B. Proposition 2.9(b)
implies that this segment, including its end-point above the origin, is unordered
and thus the graph of a strictly decreasing continuous function φ : [0,∞) → R with
φ(0) =: β∗ > 0 and φ(α) → −∞ as α → ∞. We conclude that Equation (1.1)
has a unique nonnegative large radial solution u on B with u(0) = α for every
center value α ∈ [0,∞). As α increases from 0 to ∞, the second center value ∆u(0)
decreases from β∗ > 0 to −∞, and the solution is strictly positive except if α = 0.
In the critical case, similar results were obtained in [12].

Figure 6 shows typical nonnegative large radial solutions of (1.1) on B in a
subcritical and a supercritical case. Included are the extremal solutions with center
value 0 (in both cases) and the one with center value α∗ in the subcritical case.
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m = 2 and p = 3, in the cases N = 3 (subcritical, left) and N = 13
(supercritical, right).
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Note Added in Proof. After this paper was accepted and edited for publication,
we became aware of Reference [3], which appears to close the gap in [29] discussed
at the beginning of Remark 3.4. It would follow that, in the critical case with
arbitrary m ∈ N, Equation (1.1) has exactly one scaling-equivalence class of entire
radial solutions, and then the set of all large radial solutions on the unit ball
is homeomorphic to a punctured (m−1)-sphere. This lends further credence to
Conjecture 4.3. We thank Tobias Weth of the University of Giessen for drawing
our attention to [3].
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