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Abstract. We study a three dimensional climate model which represents the

coupling of the mean surface temperature with the ocean temperature. We
prove the existence of a bounded weak solution by a fixed point argument.

1. Introduction

In the last decades, several works about global climate energy balance models
(EBM) have appeared which study the evolution of the mean surface temperature
of the Earth (see for example, Dı́az [7], Dı́az and Tello [9], Ghil and Childress [12],
Hetzer [13], North [15], etc.). From the mathematical point of view, two dimensional
EBM (latitude – longitude) has an spatial domain given by a Riemannian manifold
without boundary M simulating the Earth surface, as follows

c(x)ut − div(k(x)|∇u|p−2∇u) +Re(x, u) ∈ Ra(x, u) (0, T )×M,

u(x, 0) = u0(x) M,
(1.1)

where u represents the mean surface temperature, Re and Ra the emitted and
absorbed energy, respectively. Ra depends on the planetary coalbedo β (which is
eventually discontinuous on u). One dimensional models (early proposed) assume
uniform temperature over each parallel. By calling x the sine of the latitude and
doing a change to spherical coordinates, we obtain

c(x)ut − (k(x)(1− x2)p/2|ux|p−2ux)x +Re(x, u) ∈ Ra(x, u) (0, T )× (−1, 1),

(1− x2)p/2|ux|p−2ux = 0 x ∈ {−1, 1},
u(x, 0) = u0(x) (−1, 1),

(1.2)
In these models, the effect of the oceans is only considered in a implicit and empirical
way in the spatial dependence of the coefficients. However, some works about the
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rapid climatic change in Glacial-Holocene transition (see p.e. Berger et al [4]) show
that the cause could be the past changes in deep water formation. In this work we
study a model including the effect of the deep Ocean based in the model proposed
by Watts - Morantine [19]. In such 3D model, the atmosphere temperature comes
to an energy balance model closed to (1.1).

2. The Mathematical Model

The model represents the evolution of the temperature in a global ocean Ω with
constant depth H. The upper boundary of Ω is a manifold M simulating the
Earth surface. The bottom of the ocean is a manifold N . For the mathematical
treatment, we assume that M and N are C∞ two dimensional compact connected
oriented Riemannian Manifold of R3 without boundary and dist(M,N ) = H. For
example M and N can be two spheres with the same center and radius R and
R−H, respectively.

The shape of the spatial domain Ω suggest us to use a suitable coordinate system
(θ, ϕ, z) where z ∈ (−H, 0) is measured from M to N in the orthogonal direction
to the tangent space TpM.

The governing equation for the ocean interior is a heat equation with transport,

∂U

∂t
− div(∇U) + w

∂U

∂z
= 0 (t, x) ∈ (0, T )× Ω, (2.1)

where U is the temperature, t the time, the variable z ∈ (−H, 0) represents the
depth and w is the vertical velocity.

At the bottom of the ocean (z = −H), the advective and diffusive transports
must be equal

F̂ (x,∇NU) +
∂U

∂z
= 0 in (0, T )×N , (2.2)

where F̂ is linear on the gradient ∇NU and the gradient is understood in the sense
of the Riemannian metric of N . Analogously for the F and M below.

The boundary condition at z = 0 comes from an energy balance
∂u

∂t
− div(|∇Mu|p−2∇Mu) +

∂U

∂n
+ F (x,∇Mu) +Re(u) ∈

1
ρc
QS(x)β(U) (2.3)

where u : M→ R and
U

∣∣
M = u. (2.4)

Here, u represents the temperature on M. Re is the energy emitted by the surface
M to the outer space by cooling. The diffusion operator for p = 2 is the Laplace
- Beltrami operator on the manifold M. The pioneering climate energy balance
models considered the linear case p = 2, but, later, Stone [17] proposed the case
p = 3 in order to consider the negative feedback in the eddy fluxes. In order to
include both cases we consider p ≥ 2. β(u) the coalbedo function (a nondecreasing
function of u of the type β(u) = 0.7 if u > −10 + ε, β(u) = 0.4 if u < −10− ε with
ε ≥ 0). The coalbedo function will be treated in the general class of multivalued
graphs. More precisely, we shall assume that β is a maximal monotone graph of
R2 such that β is bounded (i.e. m ≤ b ≤ M for any b ∈ β(s) for any s ∈ R).
We recall that β was assumed to be multivalued at u = −10 by Budyko [6] and
β locally Lipschitz by Sellers [16]. The function S : M → R is the insolation
function and Q > 0 the Solar constant. This kind of models are very sensitive to
small fluctuations of Solar and terrestrial parameters, see Hetzer [13], Arcoya, Diaz,
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Tello [1], Diaz, Tello [11] and the references therein. The equation describing the
energy balance at M is similar to the equation studied in Diaz, Tello [9] except for
the two terms describing the thermal communication with the deep ocean through
the advective and diffusive transports of heat.

We also need to add the initial conditions at t = 0,

U(0, ·) = U0(·) and u(0, ·) = u0(·). (2.5)

We notice that u is also an unknown in this model.
The model can be simplified by considering that M is the sphere of radius R

and the temperature is constant over each parallel. In this case, the spatial domain
Ω is reduced to a rectangle with boundary Γ0 ∪ ΓH ∪ Γ1 and the model obtained
(P2D) is

∂U

∂t
− KH

R2

∂

∂x
((1− x2)

∂U

∂x
)−Kv

∂2U

∂z2
+ w

∂U

∂z
= 0 in (0, T )× Ω,

wx
∂U

∂x
+KV

∂U

∂z
= 0 in (0, T )× ΓH ,

D
∂U

∂t
− DKH0

R2

∂

∂x

(
(1− x2)p/2|∂U

∂x
|p−2 ∂U

∂x

)
+KV

∂U

∂n

+ wx
∂U

∂x
+ G(U) ∈ 1

ρc
QS(x)β(x,U) in (0, T )× Γ0,

(1− x2)p/2|∂U
∂x

|p−2 ∂U

∂x
= 0 in (0, T )× Γ1,

U(0, x, z) = U0(x, z) in Ω,

U(0, x, 0) = u0(x) in Γ0,

where x represents the sine of the latitude. The physical description and the numer-
ical approximation if p = 2 and where β depends only on x is in Watts Morantine
[19]. The proof of existence of bounded weak solution to this 2-D model is in Diaz
and Tello [10]. The number of steady states of (P2D) was studied in [11].

We notice that in the 3D model some physical constants were assumed equal to
one.

The goal of the present work is to prove the existence of weak solutions to the
3D evolution model with dynamical and diffusive boundary condition described in
(2.1)-(2.5).

3. Existence of weak solutions

The model represents the temperature evolution in a global ocean Ω. The un-
known are U : Ω → R and u : M → R. The independent spatial variables are
(θ, ϕ, z) where z ∈ (−H, 0). See [9] and [14] to the expression of the operators ∇
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and div in the new coordinates. Let (P) be the problem

∂U

∂t
− div(∇U) + w

∂U

∂z
= 0 in (0, T )× Ω,

∂u

∂t
− div(|∇Mu|p−2∇Mu) +

∂U

∂n
+ F (x,∇Mu) + G(u)

∈ 1
ρc
QS(x)β(U) in (0, T )×M

U
∣∣
M = u

F̂ (x,∇NU) +
∂U

∂z
= 0 in (0, T )×N

U(0, x, z) = U0(x, z) in Ω,

u(0, ·) = u0(·) on M,

(3.1)

where

(H1) Ω is a bounded and open set of R3 with constant depthH and ∂Ω = M∪N .
M andN are C∞ two dimensional compact connected oriented Riemannian
Manifold of R3 without boundary and dist(M,N ) = H.

Here ∇M and div are understood in the sense of the Riemannian metric on
M. We study the existence of solutions of (3.1) under the following structure
hypotheses:

(H2) β is a bounded maximal monotone graph, i.e. |v| ≤M for all v ∈ β(s), and
all s ∈ D(β) = R.

(H3) G : R → R is a continuous strictly increasing function such that G(0) = 0
and |G(σ)| ≥ C|σ|r for some r > 0.

(H4) S : M→ R, s1 ≥ S(x) ≥ s0 > 0 a.e. x ∈M.
(H5) f ∈ L∞((0, T )× Ω),
(H6) F : M× TM→ R and F̂ : N × TN → R are linear on the tangent bundle

spaces TM and TN with bounded coefficients.
(H7) w ∈ C1(Ω).

We define the functional space on the Riemannian manifold M, as follows,

V := {u ∈ L2(M) : ∇Mu ∈ Lp(TM)}

where TM = ∪p∈MTpM is the tangent bundle space (see Aubin [2]).

Definition 3.1. We say that the pair (U, u) ∈ C([0, T ];L2(Ω) × L2(M)) is a
bounded weak solution of (3.1) if

(i) (U, u) ∈ L∞((0, T )×Ω)×L∞((0, T )×M)∩L2(0, T ;H1(Ω))×Lp(0, T ;V ),
(ii) there exists Z ∈ L∞((0, T ) ×M) with Z(t, x) ∈ β(u(t, x)) a.e. (t, x) ∈

(0, T )×M such that
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Ω

U(T, x)φ(T, x)dA−
∫ T

0

〈φt(t, x), U(t, x)〉H1(Ω)′×H1(Ω)dt

+
∫ T

0

∫
Ω

∇U∇φdAdt+
∫ T

0

∫
Ω

w
∂U

∂z
φ dAdt

−
∫ T

0

∫
M

∂U

∂n
φdS dt+

∫ T

0

∫
N
F̂ (x,∇N )φdS dt

=
∫

Ω

U0(x)φ(0, x)dA,

and ∫
M
u(T, x)ψ(T, x)dA−

∫ T

0

〈ψt(t, x), u(t, x)〉V ′×V dt

+
∫ T

0

∫
M
|∇u|p−2∇u∇ψ dS dt+

∫ T

0

∫
M
G(u)ψ dS dt

+
∫ T

0

∫
M

∂U

∂n
ψ dS dt+

∫ T

0

∫
M
F (x,∇M)ψ dS dt

=
∫ T

0

∫
M
QS(x)Z(t, x)ψ dAdt+

∫ T

0

∫
M
fψ dAdt+

∫
M
u0(x)ψ(0, x)dS

for every test function (φ, ψ) ∈ L2(0, T ;H1(Ω)) × Lp((0, T );W 1,p(M)) such that
(φt, ψt) ∈ L2(0, T ;H1(Ω)′) × Lp′

(0, T ;V ′). Here <,>V ′×V denotes the duality
product in V ′ × V .

Theorem 3.2. Let U0 ∈ L∞(Ω) and u0 ∈ L∞(M). Then there exists at least a
bounded weak global solution of (3.1).

The main idea for the proof is to construct an operator T and to find a fixed
point which is the solution of (3.1). The proof consist of several steps.
Step 1. For every h ∈ L∞((0, T )×M) we consider the problem (Ph) by replacing
the coalbedo term in (3.1) by h. The proof of the existence of solution of (Ph) is
inspired in Diaz and Jimenez [8] and Bejaranu, Diaz and Vrabie [3]. We define the
vectorial operator A

A(U, u) 7−→ (AU,Bu)

on the domain

D(A) = {(U, u) ∈ L2(Ω)× L2(M) : AU ∈ L2(Ω), Bu ∈ L2(M), U|M = u},

where

AU = −div(∇U) + w
∂U

∂z
,

Bu = −div(|∇Mu|p−2∇Mu) +
∂U

∂n
+ F (x,∇Mu) + G(u).

The existence of solution of (Ph) is a consequence of the following properties of A.

Lemma 3.3. There exists λ0 > 0 such that for every λ > λ0, we have:

(i) A+ λI is T -accretive in L2(Ω)× L2(M).
(ii) R(A+ λI) = L2(Ω)× L2(M).
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Note that (i) allows us to prove a comparison principle for the system

λU +AU = f in L2(Ω)

λu+Bu = g in L2(M)
U|M = u

F̂ (x,∇NU) +
∂U

∂z
= 0 N .

(3.2)

In fact, if f1 ≤ f2 and g1 ≤ g2 then the solutions of (3.2) with f = f1, g = g1
and of (3.2) with f = f2, g = g2 satisfy

U1 ≤ U2, and u1 ≤ u2.

Remark 3.4. Lemma 3.3 and similar arguments to those in [9, Lemma 3] allow us
to prove the existence of a maximal and minimal solutions.

To prove (ii) in Lemma 3.3 we notice that the operator B can be expressed as
B1 +B2 +B3, where B1 and B2 are maximal monotone operators in L2(M),

B1u = −div(|∇Mu|p−2∇Mu) + G(u)

and the pseudo-differential operator

B2u =
∂U

∂n
,

where U is the solution of the problem

λU +AU = f in L2(Ω)
U|M = u.

The operator B3 is defined by

B3u = F (∇Mu).

This operator is not necessarily monotone but it is dominated (in some sense) by
the operators B1 and B2. Consequently, it is possible to apply the abstracts results
of perturbation of maximal monotone operators (see e.g. [5, Proposition 2.10]), and
we arrive to the conclusion.
Step 2. We follow the proof in [9, Theorem 3]. We define the operator T : h→ g
where g ∈ β(uh) and uh is the solution of (Ph). It is easy to see that every fixed
point of T is a solution of (3.1).

We prove that T satisfies the hypotheses of Kakutani fixed point Theorem (see
p.e. Vrabie [18]). We denote X = Lp((0, T ), L2(M)) then

(i) K = {h ∈ Lp((0, T ), L∞(Ω)) : ||h(t)|| ≤ C0 a.e. t ∈ (0, T )} is a nonempty,
convex and weakly compact set of X;

(ii) T : K 7→ 2X with nonempty, convex and closed values such that T (g) ⊂ K,
∀g ∈ K;

(iii) graph(T ) is weakly×weakly sequentially closed.
Consequently, T has at least one fixed point in K which is a solution of (3.1).

This completes the proof of Theorem 3.2.

Remark 3.5. The boundedness of the solutions is a consequence of the existence
of super-solutions and sub-solutions which are constants.
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