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ABSTRACT. The paper studies energy functionals on quasimetric spaces, de-
fined by quadratic measure-valued Lagrangeans. This general model of medium,
known as metric fractals, includes nested fractals and sub-Riemannian man-
ifolds. In particular, the quadratic form of the Lagrangean satisfies Sobolev
inequalities with the critical exponent determined by the (quasimetric) homo-
geneous dimension, which is also involved in the asymptotic distribution of the
form’s eigenvalues. This paper verifies that the axioms of the metric fractal
are preserved by space products, leading thus to examples of non-differentiable
media of arbitrary intrinsic dimension.

1. INTRODUCTION

Many models of continuous medium can be put into a general framework of
Dirichlet forms (cf. [2] [7]) on topological measure spaces that are not necessarily
differentiable (or piecewise differentiable) manifolds, or are manifolds whose nat-
ural metric structure is no longer Riemannian. Sobolev inequalities formalize a
basic consistency of such medium by subordinating a characteristic of displacement
(LP-norm) to the value of the energy, and they can be derived from the scaled
Poincaré inequality. Theory of the abstract Sobolev spaces for Dirichlet forms on
metric spaces (cf.[8, [9] and references therein), when applied to fractals, requires
one substantial reconsideration: in the case of fractal media the scaling factor R® in
the Poincaré inequality on metric balls Br(x) has an exponent s whose values vary
with the fractal. To extend the abstract Sobolev theory to fractals one needs to
replace the metric d with a quasimetric d? with a ¢ > 0 that returns the standard
value of the exponent in the scaling factor of the Poincaré inequality. Once this is
done, the critical Sobolev exponent and the spectral asymptotics attain the classical
magnitudes, 2% and n(\) = O(\?) respectively, where v is the homogeneous di-
mension derived from the doubling property of measure with respect to the chosen
quasimetric, which allows to call it the intrinsic quasimetric. Sobolev inequalities
in the quasimetric framework may admit minimizers (ground states), similarly to
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the Euclidean case. Existence of minimizers is known for compact spaces due to
compactness in Sobolev imbeddings ([4], cf. [9] for the metric case), for compact
problems on non-compact spaces, [4], and for non-compact problems in [3]. A quasi-
metric space with Dirichlet form satisfying a scaled Poincaré inequality is called a
metric fractal and the dimension v is called intrinsic or spectral dimension.

This paper considers the set of axioms for a metric fractal from [I6], stemming
from the notion of measure-valued Lagrangeans from [12]. This axiomatic sys-
tem sets a framework that, on one side, describes a wide range of media, and on
the other, inherits many essential properties of energy functionals associated with
elliptic operators on Euclidean space, but it also covers subelliptic operators on
manifolds and most common fractals (Koch and Sierpinski curves and snowflakes,
bi-dimensional carpets) and more general elastic fractal media, such as the vari-
ational fractals of [14], endowed with its intrinsic Lagrangean metric ([15]). This
paper addresses a more general case than the paper of R. Strichartz [T9] that gener-
alizes Kigami’s construction to products of p.c.f. fractals, a general class of fractals
where the energy functionals have been constructed, but which does not include,
for instance, Sierpinski carpet. This note, instead of constructed energies, uses
common properties of the latter in an axiomatic definition of the energy functional.

Our main result (Theorem [3.3]) establishes the permanence property of these ax-
ioms, namely that the product of two metric fractals X, X5 of spectral dimensions
V1, Vs is a metric fractal of spectral dimension v4 +v5. This result implies, for exam-
ple, a Sobolev inequality on such spaces as a product of the Sierpinski gasket (with
the usual self-similar measure and energy, and the quasidistance d(z,y) = | — y|*
with s chosen so that the homogeneous dimension is equalized with the spectral
dimension) and the realization of the Heisenberg group on R?™*! endowed with
the left Haar measure (which is the Lebesgue measure), the homogeneous quasi-
distance and the quadratic form of the Heisenberg-Kohn Laplacian.

2. DEFINITION OF METRIC FRACTAL

Definition 2.1. A metric fractal is a quintuple (X, d, u, £,C), where

(i) (X,d) is a complete connected quasimetric space with a quasidistance
d: X xX — [0,00) (a symmetric nonnegative function vanishing only on the
diagonal and satisfying d(z,y) < k(d(z, z) + d(z,y)) with some k > 1);

(ii) p is a doubling measure (a positive Borel measure supported on X and
satisfying the inequality

w(Br(x)) r

for all x € X and all r, R satisfying 0 < r < R with some Ry € (0, +0o0]);

(iii) C is a dense subalgebra of C.(X) (the space of continuous functions with
compact support on X), — and L is a (signed) Radon measure-valued, positive
symmetric bilinear form on the set D, := {¢(u) : ¢ € C1(R),u € C} — to be called
a Lagrangean - with £(u,u) of finite mass on X for every u € D, and

Lp(u),v) = &' (w)L(u, v) (2)

for any u,v € D and any ¢ € C*(R).

(1)
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(iv) d, p and L are related, with some ¢ > 0 and A > 1, by the inequality

1/2
1 / 1

—_ | — Uy dp < cR 7/ dL(u,u) (3)
(Br(x)) JBp) Bn(e) W(BAR()) /B, ()

forue D,z e X,0< AR < Ryp.

In (iv) above, the notation u,4 is used for the average value of u on the set A
with respect to the given measure. In what follows an abbreviated notation Bp is
used for quasimetric balls Br(z) in X when the statements concern all x € X.

The term metric fractal, borrowed from [16], is used here in a broader sense: the
definition omits the capacity conditions, required in [I6] with the purpose to obtain
fractal Harnack inequalities, and follows the set of conditions from [12] that suffice
to verify Sobolev and Morrey inequalities.

The doubling property together with completeness of (X, d) assures that the
quasi-metric balls Br(z) are compact. Therefore X is locally compact and the
measure space (X,u) is o—finite. We consider the Hilbert space L?(X,u) with

inner product
(u,v) = / uv dp.
X

The space C.(X) is dense in L?(X, ). By our assumption in (2.1), C is dense
in C.(X) (for the uniform convergence of sequences supported on compact sets),
therefore C is dense in L?(X,p). Since Dy N L?(X, ) D Dz N Co(X) D C, then
Dy N L3(X, p) is dense in L?(X, p).

Under assumptions of Definition the following Sobolev inequality is estab-
lished in [12] (cf. [8,[5] that use similar but less general conditions): If p € [1, 2%)
when v > 2 or p > 1 when v < 2, there exist C' > 0 and o > 1 for every u € D,
and every quasimetric ball By :

1/p 1/2
<N(113R)/BR |u—uBR|P) SCR(i,u(BlgR) /B(,R dL(u, u)) . (4)

From the local inequality follows the global inequality, with additional re-
quirement p > 2 when X is not compact:

(/Xu|p)2/1’§c/x dﬁ(u,u)+/}(|u|2du, (5)

By Cauchy inequality one has |ug,| < C([ [u?|)*/?, so that from (4)) follows

(/BR )" < C/BGR AL (u, ) +/BR ful2dp, ©

which easily extends to if X is compact. If X is not compact, one considers a
covering of X by a collection of Br(z;) such that the multiplicity of the covering
of X with corresponding B,,, is finite (existence of such coverings is a well-known
consequence of the doubling property) and adds @ over the covering. Condition
p > 2 is required for the superadditivity in the left hand side.

We consider a Sobolev space H}(X) defined as the completion of Dy in the

energy norm
1/2
(/ dﬁ(u,u)+/ \u|2du> .

X X
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By the definition of the energy norm, H}(X) is continuously imbedded into L?(X, )
and so may be regarded as the space of measurable functions.

Proposition 2.2. The Lagrangean L admits a continuous extension to a Radon
measure-valued positive symmetric bilinear form on H}(X).

Proof. Let u € H*(X) be given by a Cauchy sequence uy € Ds. Then L(uy,uy)A
will be a Cauchy sequence for any Borel set A and by Theorem 30.2, [1], £(ug, ug)
converges weakly to some Radon measure m,. The measure m, inherits from
L(ug,ug) bilinearity and the parallelogram identity with respect to u. By setting
L(u,u) = m,, we define the extension of L as a positive symmetric measure-valued
quadratic form to the whole H'(X). Continuity of (u,v) — [, dL(u,v) is then
immediate. (]

3. PERMANENCE OF METRIC FRACTALS UNDER SPACE PRODUCTS

Let (X, d;, iy £4,Ci), © = 1,2, be two metric fractals. We define the product
metric fractal as the quasimetric space X = X; x X5 equipped with the qua-
sidistance d(z,y) = max{d;(z1,y1),d(z2,y2)} and the standard product measure
= p1 X po. We will denote balls in respective spaces as B}é C X;,1=1,2, and
omit the notation for the center of the ball). The quasidistance for the product
space is chosen so that B = BL x B%

Let now C be the set of finite linear combinations of functions of the form
up(x1)ug(x2), u; € C;. It is obviously an algebra and it is dense in C.(X) due
to the following argument. For every i = 1,2, and R > 0, the function x%(z;) =

di(2i,Xi\Bp)
di(xi,Xi\B}é)+di(a:i,B}‘2/2
szm € C;. Then the function xg(x1,22) := xk(z1)x%(z2) can be approximated by
X}37n(:c1)x2R77l(x2) €C. Givenaw € C.(X) and an € > 0, let R > 0 be such that the
modulus of continuity of w on any ball of radius R does not exceed £ and C(;(nsider
(R;w;

a locally finite cover of X with Br(z;), j € N. Then the functions ¢; = S
k T L

form a partition of unity on X and [w — 3, w(z;)¢;| < e. Since the sum above is
finite and every ¢; can be approximated by functions from C, we conclude that C
is dense in C.(X).

We define the product Lagrangean on products of functions u;,v; € C;:

3 is in C.(X;) and so it can be approximated by some sequence

ﬁ(ulumvﬂb) = U2U2£1(U1,Ul) X 2 + U1U1£2(U271)2) X 1 (7)
= El(u1u2,vlv2) X 2 + LQ(UlUQ,'UlUQ) X 1.
and extend it by bilinearity to C.

Lemma 3.1. The product Lagrangean L admits a continuous extension (in the
energy norm) to Dz (defined as {¢(C),p € CY(R)}). Moreover, if u,v € C and
¢ € CH(R),

L(p(u),v) = ¢' (W) L(u,v). (8)
Proof. First consider u = uj(x1)us(x2). Then
L(p(uruz),v) = L1(p(uruz),v) x pz + La(p(uruz),v) X
= ug' (urug) L1 (u1,v) X po + w1’ (urua)Lo(uz,v) X p (9)

= ¢ (uruz)L(uiug, v).
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(From here the chain rule extends by bilinearity to all functions of the form ¢(u),
u € C where ¢ is a polynomial.

Assume now that ¢ € C!'(R). By the Weierstrass approximation theorem for
functions of real variable, applied to ¢’, we get a sequence of polynomials ¢,, that
approximates ¢ in C''(R), uniformly on compact subsets. We claim that the se-
quence @, (u) is a Cauchy sequence in the energy norm over any compact set K,
that is

sup ([ loatu) = emwPdit [ 406000) = o) oalu) = om)) 0

m,n>N

By uniform convergence,

sup [ [n(w) = o (WPl < sup_supln(u) = o (1) PulE) — 0.
mn>N JK mn>N K
In particular, we have p,(u)x — ¢(u) k-

Applying the chain rule for each of the polynomials ¢,,, we have:

sup /K AL (o (1) — (1), (1) — o (1))

m,n>N

< sup /K (& (1) — o ()L (11 )

m,n>N

< sup sup|en(u) — @m(u)|2/ dL(u,u) — 0.
m,n>N K K
Let w = lim ¢, (u). Since ¢, converges pointwise, with necessity w = p(u).

Due to [I, Theorem 30.2], there exists a Radon measure on X, which we denote
here by p(w,w), such that [, dL(¢n(u), on(u)) — [4 dp(w,w). We now prove that
w(w,w) is a Lagrangean. The measure p(w,w) inherits homogeneity and parallel-
ogram identity from L(py(u),on(u)), therefore it is a quadratic measure-valued
functional of w, p(w,w) = L(w,w) associated with a (measure-valued) positive
symmetric bilinear form £(u,v) defined now for all u,v € D,.

Since [, ¢}, (u)dL(u,v) — [} ¢'(u)dL(u,v) by the uniform convergence theorem
for integrals, and since [, dL(pn(u),v) — [, dL(¢(u),v) by the definition of the
Lagrangean on D, we have the chain rule on D. (I

Lemma 3.2. There is a ¢ > 1, ¢ > 0 such that for every R > 0 and u € Dy, we
have

1 1 1/2
w(Br(x)) /BR(Z) v = s < CR(M(BqR(x)) /BqR(m) dﬁ(u’u)> ' (10)

Proof. In the calculations below we will denote B2, (z1) as v. We consider first
u € C. We have:

1
1 (BL) 1o (B2) u(z1, ) — upg|duid
p1(Bg)pu2(BE) /BR| (21, 22) — upg|dpadps
1 1
S BU m(BY) w(x1,x2) —upg2 (x1)|dusd
~ m(Br) n2(Bf) /BRI (@1, 22) = gy (71)ldpizdpn
1 1

+77/ v(r1) —vgL |durdp
p2(B%) 1 (Bj) BR‘ D) = s ldpndpn
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¢ 1/2
< Ml(g}%) /B}% <M2(;§23) /32 dﬁz(u($1,~),U($1,.))) dpy

2R

1 1/2
+cR 7/ Ly (v,
¢ (,Ul(B;lR) Bl o (v U)>

cR 1/2
11 (BL) /215 (B2 )1/ (/31 B dLo(u(wy,-), ulzs, -))dul(ml))
q2 R a2 R

v &l ([, dnutautapine) " qn
u(-, z2), u(-, x x .
MI(B;13)1/2M2(3123)1/2 Bl xB3, 1 2 2))0H2(T2

In the calculation above we use for L£1,L5, and, several times, the Cauchy
inequality, including its following variation:

LLQ(;%%)Q/BI Rdﬁl(/Bg u(~,x2)d,u2(x2),/312% U(',$2)dﬂ2(x2))

1
= p2(B%) /Bl X B2 ALy (u(-; xa), u(-, x3))dps(22).

(12)

To verify the above inequality, we change first the integral limits (which for u € C
needs nothing but a trivial use of bilinearity). After that the Cauchy inequality is
applied to the bilinear form £;(,-)B, p, and once again, to the integral over B:

% / e / uCoza)dia(en). [ ulag)nn(s))
; /B 2 /B 2 /B ) ALy (u(-, w2), u(-, x5))dpiz (2 dpua ()
M(é@ (s (/B;IRdﬁl<u<-,x2>7u<»xz>>)”2dm<xz>)

([ (] aeatutaut o) i)

R

= @(/Bz (/Bl d£1(U(',xz),u(.7x2))>1/2du2(x2))2

< #2(1B%2)/Bl w3 d‘Cl(u('yx2)7u(',$2))d,u2(x2).

From it follows that

1
Lt — s,
R
Ayl
S — = ey [ [, 22) —upg|dpadp
p(BRpa(Bg) Jg, S
cR / 1/2
dC (u(x ,~),7.L(.’£ 7))d:u‘ (x )
ﬂl(Blllz)l/QW(BgQR)l/Q( . 2 1 1 1 1)

cR

1/2
+ / ALy (u(-, 22), u 22))dpaa (z2)
p(By, p)'/?p2(BE)1/2 ( Bl .xB% )
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cR
M(BqR)1/2
+dLa(u@r, ). uler, N (a)

This completes the proof of (10) when u € C.
Let us now replace u in (10]) by ¢(u) with a polynomial ¢ and use the chain rule

for £1,£2.

<

(/BqR dﬁ1(u(-7xg),u(.,zg))duz(xg)

1 /
—_— pou(ry,x2) — (pou)p,|duidu
BB Jp, 77 T e el
cR

<
pa(BR)2ua(B, p)'?

X </3le2 (<P’0u(x1,.))2d£2(u(x1,.)’u(x17,))dﬂl(xl)>1/z

2R

n cR
i1 (B ) P02 (BR)V2

X (/]31 2 (¢’ Ou("x2))2d£1(“("$2),u(~,x2))d#2(x2))1/2'

Let ¢, be as in the previous lemma so that ¢, (u) — ¢(u) locally in the energy
norm and in Llloc. Then, repeating the argument of Lemma on extension of the
Lagrangean to the Dy, we have [ dL(on(u),pn(u)) — [z, dL(p(u), p(u)). The
assertion of the lemma follows. O

Theorem 3.3. The quintuple (X, d, u, £,C) defined above is a metric fractal in ac-
cordance to the Definition[2.] with X = X1 x X, d(z,y) = max{d(z1, 1), d(z2,y2)}
v =+ e, p = 1 X u2,C defined as an algebra of finite sums of the form
Yo ui(x)vi(xe), ui € Cr, v; € Co and L given by and extended by continuity to
D, by Lemmal[3.1}

Proof. Property (i) is immediate. To prove (ii) we verify that

(Bl < BY) _ (Bh) ja(BR) _ o Ry
u(B x B2) i (B}) pa(B2) — v ’

so the relation holds for the product space with v = 17 4+ vo. The chain

rule extends trivially to all u,v € Dy. The Poincaré inequality is proved in

Lemma [3.2] O
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