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A SIMPLE BIOCLOGGING MODEL THAT ACCOUNTS FOR
SPATIAL SPREADING OF BACTERIA

LAURENT DEMARET, HERMANN J. EBERL, MESSOUD A. EFENDIEV, PIOTR
MALOSZEWSKI

Abstract. An extension of biobarrier formation and bioclogging models is
presented that accounts for spatial expansion of the bacterial population in

the soil. The bacteria move into neighboring sites if locally almost all of the

available pore space is occupied and the environmental conditions are such
that further growth of the bacterial population is sustained. This is described

by a density-dependent, double degenerate diffusion-equation that is coupled

with the Darcy equations and a transport-reaction equation for growth limiting
substrates. We conduct computational simulations of the governing differential

equation system.

1. Introduction

In soils, aquifers, and many other porous and fractured media bacteria colonize
in abundance. Typically they are sessile, i.e. attached to the porous material and
embedded in a self-produced extracellular polymeric matrix (EPS) that protects
them against harmful environmental factors and mechanical washout. Naturally
occurring bacteria are a major contributor to the soil’s self-purification capacity.
Environmental engineers use these properties to devise microbially based technolo-
gies for soil remediation or groundwater protection.

A growing bacterial population occupies more and more pore space and thus
alters the local hydraulic conductivity of the porous medium (bioclogging) [2]. Al-
ready moderate bioclogging can change the local flow velocity and lead to the
development of preferred flow paths, mainly due to the EPS matrix [22]. Changing
flow velocities affect the convective transport of dissolved substrates and thus the
local availability of nutrients and biocides, i.e. the growth conditions for the bac-
teria [24]. Thus, soil hydrodynamics, substrate transport and bacterial population
dynamics are strongly coupled processes. This nonlinear phenomenon not only has
implications for the natural microbial ecology in soils but also has possible use in
engineering applications, cf [2, 22] and the references there. For example, biofilm
forming bacteria can be injected to soils and form biobarriers that are impermeable
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to water flow and thus prevent contaminants to reach the groundwater. In many
instances these biobarriers are reactive, i.e. they actively degrade the pollutant. In
other engineering applications, however, such as waste treatment, bioclogging can
be detrimental to process performance [2].

Mathematical modeling of hydrodynamics and pollutant transport in porous
media has a long history. Traditionally the focus has been on physical processes,
namely hydrodynamics and substrate transport, while the microbiological aspects
often are only considered in a simplified manner. If the restricting assumption of a
bacterial population in equilibrium is given up, then the bacterial populations are
typically treated like planktonic populations. On one end of the spectrum, they
are assumed to be suspended and subjected to the same transport mechanisms
(convection and Fickian diffusion) as the chemical species. On the other hand,
when the focus is on the bioclogging properties, it is often assumed that bacteria
are stationary, in the sense that bacterial biomass may locally aggregate due to
reactions but it does not move into neighboring regions. In such models the available
pore-space is typically not explicitly considered as a factor that limits the local
population size; instead biomass production is limited only by the usual growth
kinetics, i.e. substrate availability, cf. [20, 25]. With these models simulations
are typically terminated before the local pore space becomes completely clogged.
Alternatively, ad hoc growth limiters are sometimes used to enforce a shut-down of
biomass production if the available pore-space becomes limited, e.g. [5].

It seems more appropriate to consider bioclogging as a volume filling problem.
The microbes, immobilized in the EPS matrix, fill up the space that is locally avail-
able. If the pore is close to be completely filled but the environmental conditions
are such that microbial growth continues, the bacterial communities need to expand
and spill over into neighboring sites. In this paper we propose a model to describe
this spatial movement of bacteria in porous media. Such volume filling problems
can be described by density-dependent diffusion processes [16, 18]. This leads to
a quasi-linear degenerate transport-reaction equation for the bacterial population,
which needs to be coupled with models for flow field and substrate transport. The
standard model for macroscopic flow velocities in porous media are the Darcy equa-
tions [3] and this is what we use. In a nut-shell they say that the flow velocity is
proportional to the pressure gradient, where the proportionality factor is the hy-
draulic conductivity, which in our case varies in space and time due to biofilm
growth. More formally, the Darcy equations can be derived from the Stokes equa-
tion by homogenization [15]. Transport equations for dissolved substrates can be
derived from microscopic equations by homogenization or volume averaging tech-
niques. The particular difficulty for the system at hand is to correctly account
for the biofilm properties of the microbial population. The development of such
transport equations is currently an active area of research. According to [23] the
most striking difference between biofilms and planktonic bacterial populations is
the diffusive limitation of substrates in the EPS matrix. Starting from two sepa-
rate transport equations for biofilm and aqueous phase in the pore space, it was
shown in [13] that under a straightforward but simplifying equilibrium assumptions
this can be described by a classical semi-linear convection-diffusion reaction model,
if the parameters are accordingly interpreted. Models of this type have been used
in bio-barrier studies previously, e.g. [5], and we use them here as well.
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The resulting model is a system of nonlinear, degenerate partial differential equa-
tions of mixed elliptic/parabolic type, which is studied in computer simulations.

2. Governing equations

We propose the following model for bioclogging and biobarrier formation in the
computational domain Ω ∈ Rd (d ∈ {2, 3})

V =
1
µρ

A(M)(F −∇P ),

0 = ∇V,

P∂tC = ∇(DC∇C − V C) + P
κ1CM

κ2 + C
,

P∂tM = ∇(DM (M)∇M) + P
[ κ3CM

κ2 + C
− κ4M

]
(2.1)

for the dependent variables

V = V (t, x): Darcy velocity vector,
P = P (t, x): pressure,
C = C(t, x): concentration of growth limiting substrate,
M = M(t, x): biomass density.

The independent variables are

• t ≥ 0: time,
• x ∈ Ω: space.

Model (2.1) is formulated such that all parameters are non-negative. By P we
denote the fraction of the pores per unit volume of the ”empty” (i.e. absence of
bacterial biomass) porous medium, which we assume to be a positive constant.
Note that we distinguish here between three phases: the solid phase, which oc-
cupies the volume fraction 1 − P, the biofilm phase, which occupies the volume
fraction PM/Mmax and the liquid (void) phase, occupying the volume fraction
P − PM/Mmax = P(1 − M/Mmax). Here Mmax denotes the maximum biomass
density, i.e. is a measure for the maximum number of cells that can fit into a unit
volume.

Hydrodynamics. The first equation of (2.1) is the Darcy equation, the standard
model for flow in porous media [3, 15]. Constants µ and ρ are the dynamic viscosity
and the density of the fluid, respectively. Vector F denotes body forces. We will
use F ≡ 0 for simplicity and in accordance with [5]. The second equation of (2.1)
describes conservation of water in the porous medium. We can assume that this
equation holds because biofilms are largely composed of water. Thus, a growing
biofilm does not push water out of the system but assimilates it. This argumentation
was also used in [25].

In order to take the effect of bioclogging on the flow field into account, the
hydraulic conductivity A must change locally with the amount of bacterial biomass.
In the absence of biomass, M = 0, it is the hydraulic conductivity of the ”empty”
porous medium, A(0) = A0. It decreases as M increases, i.e. A′(M) ≤ 0. Several
expressions have been obtained for A in various experiments. Some of them are
summarized and compared in [25]; a more theoretical approach is taken in [21].
These models, along with others that are used in the bioclogging literature, e.g.
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[5, 14], agree in that A is in good approximation a cubic polynomial in a three-
dimensional setting (some authors use the exponent 19/6 ≈ 3, cf. [14, 25]), and a
quadratic polynomial in a two-dimensional setting. The ansatz

A(M) =

A0 ·
(
1− M

Mclog

)b
+a

1+a , if M ≤ Mclog

A0 · a
1+a , if M > Mclog

(2.2)

is proposed in [25] for bioclogging induced by homogeneous biofilms. The main
difference between this choice of A(M) and other proposed models is that A is
not entirely reduced to 0 as the pores clog but still allows for a minimum flow
through the soil. This is described by the two parameters Mclog (the biomass
density beyond which no further reduction of conductivity is observed; note that
Mclog < PMmax, we use Mclog = 0.9PMmax), and a, an adjustable parameter that
relates the minimum conductivity to the maximum conductivity (we use a = 0.05).

Substrate transport and degradation. The third equation of (2.1) describes con-
vective and diffusive transport of the limiting dissolved substrate (e.g. a nutrient)
as well as its degradation in biochemical reactions. The pore space can be viewed
as subdivided into an aqueous phase, with convective and diffusive substrate trans-
port, and a biofilm phase, with diffusive transport and biochemical reactions. We
model it here by a single equation, as has been suggested by other authors before
[1, 5, 13], thereby implicitly assuming an equilibrium between both phases. DC is
the diffusion coefficient of the substrate in the porous medium, where we assume
that the substrate does not diffuse through the solids in the porous medium. For
small molecules like oxygen or carbon, the difference of the diffusion coefficient in
water and in the biofilm matrix is small [4] and can often be neglected in biofilm
modeling [26]. We adopt this strategy here for the sake of simplicity. Thus, no
distinction is made between substrate diffusion in the biofilm and in the water.

The coefficient κ1 in (2.1) is the maximum substrate consumption rate and κ3

is the maximum specific growth rate. The ratio Y := κ3/κ1 is the yield coefficient
that indicates how much mass of substrate is required to produce a unit mass of
biomass. Typically we have Y < 1, e.g. for organic carbon. This means it takes
more substrate than new biomass is produced; the difference in mass is, for example,
oxidized to gain energy. The Monod half-saturation constant κ2 is the value for
which C = κ2 implies bacterial growth at half the maximum growth rate. Note
that the Monod kinetics used here implies a saturation effect, in the sense that
even if substrate is available in abundance the specified maximum growth cannot
be exceeded.

Biomass growth and spreading. The last equation in (2.1) finally describes forma-
tion and spreading of the bacterial population in the porous medium. Production of
new biomass is closely related to substrate degradation as described in the previous
paragraph. A first order decay model is assumed for cell loss; the parameter κ4 is
the cell death rate.

The spatial transport terms for biomass were introduced in the last equation of
(2.1) to allow for bacteria to spread into neighboring regions if locally the pores
become clogged but biomass production continues. Similar volume filling problems
have been described by nonlinear diffusion equations [18], where the diffusion co-
efficient DM (M) depends on the local population density. It increases with M ,
D′

M (M) ≥ 0. Moreover, the biomass should not move into neighboring regions
while space is available locally for more cells. We adopt the following form for
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DM (M) that was first introduced in [7] for a mesoscopic biofilm model,

DM (M) = d

(
M

PMmax

)α(
1− M

PMmax

)β
, 1 � d > 0, α > 1, β > 1 (2.3)

where PMmax is the maximum biomass density that can be attained in the pore.
Accordingly, M/(PMmax) is the fraction of the unit volume that is occupied by
biomass. It should be pointed out that the behavior of such a density-dependent
diffusion is entirely different than the behavior of the more familiar linear Fickian
diffusion. For one, for small biomass densities M � PMmax, the biomass equation
in (2.1) behaves essentially like the porous medium equation that describes flow in
unsaturated soils. In particular, unlike Fickian diffusion, this effect implies that
initial data with compact support lead to solutions with compact support. More
specifically it describes the formation of a sharp interface between the region that is
at least partly occupied with biomass, Ω2(t) : {x ∈ Ω : M(t, x) > 0}, and the region
Ω1(t) = {x ∈ Ω : M(t, x) = 0} that is free of biomass. This interfaces moves at
finite speed. On the other hand, for M ≈ PMmax the density-dependent diffusion
equation behaves like fast diffusion. This guarantees that the maximum attainable
biomass density PMmax is not exceeded. It can be shown that M remains separated
from this maximum value [10, 11], i.e. there is a small constant δ > 0, such that
PMmax − δ. Thus, the fast diffusion mechanism keeps the solution away from the
singularity. The interplay of both nonlinear diffusion effects can be summarized
as follows: As long as M is small, the biomass will compress locally but does not
spread notably. Only as M → PMmax, biomass starts to spread out locally into
neighboring regions in order to guarantee that the maximum biomass density is not
exceeded.

Note that both non-linear diffusion effects are needed to safely guarantee this
behavior. The porous medium power law D(M) = dMa alone is not able to ensure
boundedness of the solution by the physically maximal possible value PMmax, while
the power law D(M) = d(1 − M/PMmax)−b leads to an immediate dilution if
M ≈ PMmax instead of an interface that propagates at finite speed.

The solution M is continuous at the interface but not necessarily differentiable.
Thus, M is to be understood as a weak solution. The biomass equation with
nonlinearity (2.3) is a double-degenerate parabolic equation, which is not yet well
understood analytically. We refer to [6, 9, 11, 12] for first rigorous results.

Including the spatial spreading terms for bacteria is a major difference to other
bioclogging models. In some existing approaches, the biomass density is allowed to
grow unbounded. Thus eventually it attains locally unphysical values M > PMmax,
which marks the breakdown of the model. One model of this type is used in
[25]. However, the simulations carried out in that study are terminated before this
breakdown situation occurs, in accordance with the experiments to which they are
compared. In the biobarrier formation model in [5], M → PMmax somewhere in Ω
triggers an artificial local growth limiter in order to avoid this breakdown situation.
In fact, comparing the equations for C and M in our model (2.1) with the equations
for carbon and the biofilm former Klebsiella oxytoca in the single species biobarrier
model of [5, cf. the 2nd and 3rd equations of model (9)], we note that (2.1) is
a direct model extension of this earlier biobarrier model. The general approach
to include spatial spreading of bacterial biomass as density-dependent diffusion,
however, can be included in other bioclogging models as well, e.g. in [25]. For
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moderate biocloging, as long as M remains clearly below PMmax, the three models
(2.1), [5], [25] approximate each other quite well if the same hydraulic conductivity
function A(M) is chosen.

Model (2.1) is a fully transient model, despite the absence of time-derivatives in
the flow equations. We consider a creeping flow regime in the soil, where inertia
effects do not matter. The Darcy equations in the given form then can be derived
from the Stokes equation by homogenization techniques, as carried out in [15]. As
the soil texture changes, due to compression and expansion of biomass, the flow
field quickly adapts to the new conditions. Thus, both the flow velocity V and the
pressure P are indeed functions of t and of x.

Following the argumentation given in [25], based on [19] and the creeping flow
conditions that we impose, we can neglect detachment and re-attachment of biofilm
in our model in this first study.

In the form (2.1), the model is formulated for general two- or three-dimensional
domains. Lateron in the numerical simulations we will consider a two-dimensional
rectangular domain Ω = [0, L]× [0,W ] and drive the flow in the system by applying
a pressure difference at the inflow and outflow boundaries. Substrate is added at a
prescribed concentration at inflow. This leads to the following boundary conditions
to be imposed on (2.1)

P
∣∣
x1=0

= P∞, P
∣∣
x1=L

= P0, ∂nP
∣∣
∂Ω∩{0<x1<L} = 0

V T n
∣∣
∂Ω∩{0<x1<L} = 0

C
∣∣
x1=0

= C∞(·), ∂nC
∣∣
∂Ω∩{0<x1≤L} = 0

∂nM
∣∣
∂Ω

= 0

where n is the outward normal vector. P∞ and P0 are constants with P∞ > P0,
and C∞ = C∞(x2) ≥ 0. Furthermore we provide the following initial data

C(0, x) = C0(x), M(0, x) = M0(x), x ∈ Ω,

where we require C0 ≥ 0 and 0 ≤ M0 < PMmax. Note that no initial data
are required for the hydrodynamic quantities as these always follow the biomass
distribution tightly (quasi steady state assumption).

We re-scale (2.1) by introducing the dimensionless variables

x̃ =
x

L
, t̃ =

t

T
,

p =
P

P∞ − P0
, v =

TV

LP
, c =

C

‖C∞‖∞
, m =

M

PMmax

(2.4)

and, thus, ∇̃ = L∇ and ∂t̃ = T∂t. Furthermore, we make the assumption F = 0
and obtain from (2.1) the dimensionless form

v = −k0a(m)∇̃p

0 = ∇̃v

∂t̃c = ∇̃
(
dc∇̃c− vc

)
− k1

cm

k2 + c

∂t̃m = ∇̃
(
dM (m)∇̃m

)
+ k3

cm

k2 + c
− k4m

(2.5)
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where the new dimensionless parameters and coefficients are

dC =
DCT

PL2
, dm(m) =

dT

L2

mα

(1−m)β
,

a(m) =
A(mPMmax)

A0
, k0 =

(P∞ − P0)A0T

µρP
,

k1 = Tκ1
PMmax

‖C∞‖∞
, k2 =

κ2

‖C∞‖∞
, k3 = Tκ3, k4 = Tκ4.

From now on we will refer always to the dimensionless equation (2.5). However, for
the convenience of the notation we will drop the tildes.

3. Computer simulations

3.1. General setup. We conduct a series of computer simulations to illustrate the
behavior of the proposed bioclogging model. The numerical solution is based on
the following standard re-formulation of (2.5),

v = −k0a(m)∇p

0 = ∇ (a(m)∇p)

∂tc = ∇ (dc∇c− vc)− k1
cm

k2 + c

∂tm = ∇ (dM (m)∇m) + k3
cm

k2 + c
− k4m,

(3.1)

which is obtained by taking the divergence of the first equation of (2.5) and using
the incompressibility condition ∇v = 0, i.e. the second equation of (2.5).

The integration of the equations for c and m follows the approach that was
introduced and studied in [8] for the underlying diffusion-reaction biofilm model.
This is a semi-implicit, finite difference based finite volume scheme, formulated for
the concentrations in the centers of the grid cells, and implemented on a uniform
rectangular grid. The main feature is a non-local time discretisation. This reduces
the computational effort in every time-step to a linear system for substrate concen-
tration and one for biomass density. The time-step size is variable and chosen such
that 0 ≤ m < 1 is enforced for the numerical approximation.

For our current purpose this numerical scheme must be coupled with a solver for
the Darcy equation. For a given biomass distribution, the second equation of (3.1)
is a linear (non-constant coefficient) elliptic problem for p which is solved in the
cell centers as well, using standard second order discretization [17]. The velocity
field is obtained from p by second order finite differences on the cell edges, i.e. on
a staggered grid.

Thus, in every time step, first p is computed from the current biomass distribu-
tion, then v. Finally the equations for c and m are moved to the next time level,
and the routine is repeated.

In total, this procedure requires per time-step the solution of three sparse (banded
diagonal) linear algebraic systems, one for each of p, c, m. The stabilized bi-
conjugated gradient method is used for this purpose.

In our simulations we choose the computational domain to be rectangular, of
size Ω = [0, 1] × [0, 1

2 ]. It is discretized by a uniform grid of 400 × 200 cells.
Order of magnitude estimates for the physical and biological model parameters
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were obtained from the hydrological and biofilm modeling literature [3, 25, 26],
leading to the following dimensionless parameters that were used in the simulations

k0 = 2.94, k1 = 22.2, k2 = 0.1667, k3 = 1.0,

k4 = 0.02, dC = 0.002, α = β = 4, d = 10−8.

3.2. Bioclogging initiated by a large single patch of bacterial biomass.
In a first illustration of the bioclogging model, a spherical region of radius 0.1 in
the center of the domain is inoculated with bacterial biomass at the low density
m = 0.01. Thus, initially only 6.3% of the domain is occupied by a low density
biomass core. In Figure 1, the biomass density, substrate concentration and pressure
are shown for selected subsequent time instances. The concentration field is shown
color-coded in the background. For the biomass we plot color-coded equidistant
iso-lines, while the equidistant iso-lines for the pressure are plotted in white. Note
that the scale of the biomass iso-lines changes, as the bacterial population increases,
while the pressure field always is confined to the interval [0, 1]. The curvature of
the isobars indicates the direction of the local flow velocity, due to the first of (3.1).
In the simulation two distinctive phases can be distinguished.

Compression phase. Initially (t < 5) the biomass density increases homoge-
neously in the spherical core and no spatial spreading of biomass takes place. Even
during this compression phase the increasing biomass density increases the flow
resistance and the flow field seeks preferred flow directions around the spherical
core, as indicated by the curvature of the pressure lines. Production of biomass is
at the expense of nutrient consumption. In the biomass core, substrate is trans-
ported by diffusion and by convection (the convective contribution decreases with
increasing biomass density), and consumed by the bacteria. Accordingly, substrate
gradients are observed into the core and in main flow direction. Downstream of
the biomass core, the substrate concentration is lower than in the biomass but nu-
trient is initially replenished, both by convection (flow around the biomass patch)
and diffusion. At t = 5 substrate in the downstream end of the biomass core is
decreased to about 50% of the inflow concentration value.

Expansion phase. Eventually the entire pore space in the initially spherical
region is almost completely occupied by biomass and the biomass region starts
expanding. Due to substrate availability, the living conditions are best in the
upstream rim of this pocket and the biomass develops and expands faster there
than in the downstream region. In the growing biomass region substrate demand
increases and the concentration drops to low values inside the domain quickly.
As a consequence of the drastically different and heterogeneous growth conditions
inside the biomass region, the spatial homogeneity is perturbed. In particular in
the downstream trail end the biomass density is smaller than in the upstream rim.
The expanding biomass region leads also to an acceleration of the flow field around
the pocket, as implied by the stronger curvature of and smaller distance between
the isobars. We observe a flow induced substrate concentration boundary layer
that forms around the biomass region and extends in the downstream region of the
domain along the boundaries all the way down to the outflow region, as long as
free flow around the biomass core is possible. In this concentration boundary layer
microbial activity is highest and biomass density largest.
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t = 0.01 t = 2

t = 5 t = 7

t = 9.5 t = 12

Figure 1. Bioclogging, induced by a spherical region with initially
low biomass density: flow is from bottom to top. Shown are: c
(background) [left color map], p (equidistant white iso-lines); m
(colored iso-lines) [right color map], for selected t.

Eventually, at t ≈ 15 the biomass core spans over the width of the entire domain.
The concentration boundary layer is now found completely inside the biomass re-
gion, in the upstream rim. The biomass front propagates upstream, toward the
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t = 14.5 t = 17

;
t = 18 t = 19.5

t = 21 t = 23

Figure 2. Bioclogging, Fig. 1 continued.

nutrient source. The complete clogging of the flow channel implies that the flow
rate drops drastically, since the pressure difference between inflow and outflow
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remains constant. Thus, substrate supply becomes more and more diffusion domi-
nated. Substrate becomes limited inside the bacterial core over a short penetration
distance, leading to an initially almost stationary downstream interface. Eventu-
ally the biomass front reaches the upstream boundary. Due to favorable conditions
(c ≈ 1), more new biomass is produced here than decays in the substrate depleted
downstream zones. As a consequence of space limitations, active biomass is forced
downstream. Eventually a biomass front travels in flow direction.

In order to quantify and summarize the effect of bioclogging on the reactor scale,
we plot in Figure 3 the following lumped parameters as functions of time:

• occupancy of the domain, i.e. the region of the domain in which bacteria
can be found, regardless of the biomass density

ω(t) :=
1
|Ω|

∫
{x∈Ω: m(t,x)>0}

dx

• the total bacterial biomass in the system

Mtot(t) :=
∫

Ω

m(t, x)dx

• the hydrodynamic flow rate on inflow and outflow

Qin(t) :=
∫ 1/2

0

v(t, 0, y)dy, Qout(t) :=
∫ 1/2

0

v(t, 1, y)dy.

Our flow model is based on a quasi-steady state assumption, due to a time-
scale separation as outlined above. Therefore, in every time-step and for
every biomass distribution the flow field v is stationary. Thus, we must
have, Qin(t) ≡ Qout(t). This can be used as a criterion to test mass con-
servation properties of the flow solver.

• the substrate flux on inflow

Jin(t) :=
∫ L/2

0

v(t, 0, y)c(t, 0, y)dy − dC∂xc
∣∣
x=0

and on outflow, which due to the Neuman boundary condition there reduces
to the convective flux

Jout(t) :=
∫ L/2

0

v(t, 1, y)c(t, 1, y)dy.

The difference Jin − Jout indicates how much substrate is degraded by the
bacteria.

Integrating the last equation of (2.5) over the computational domain Ω yields
the differential inequality for Mtot(t)

dMtot

dt
<

( k3

k2 + 1
− k4

)
Mtot

and thus in particular the upper bound

Mtot(t) < Mtot(0)e(
k3

k2+1−k4)t (3.2)

where k3
k2+1 − k4 is the maximum net growth rate. The growth curve for Mtot will

stay below this maximum growth rate when substrate c becomes limited in the
biomass pocket.
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Figure 3. Some lumped parameters for the simulation shown in
Figure 1

A similar simple a priori estimate can be derived for ω(t), using that due to the
fast diffusion nonlinearity m ≤ 1. We have

ω(t) < ω(0)e(
k3

k2+1−k4)t

Note that initially m � 1, therefore as seen above, the increase in ω is delayed and
starts only after the end of the initial compression period at t = tcompression. We
can derive a quantitatively probably better but less rigorous estimate

ω(t) ≈ ω(0)e(
k3

k2+1−k4)(t−tcompression)

which is valid for some time, until biomass production becomes severely limited
inside the biomass pocket.
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According to Figure 3.a, biomass Mtot(t) initially grows exponentially (up to
t ≈ 5), at maximum growth rate, indicating that substrate availability is not limited
during this period. During this time the biomass occupied region does not spread,
but the biomass in the core region solidifies and compresses. After that the biomass
core starts spreading and the biomass growth rate remains sub-linear, indicating
growth limitations due to substrate limitation.

The flow in the system is driven by a constant pressure difference that is applied
at the inflow and outflow boundaries. Therefore, reductions in the flow rate Qin(t),
as plotted in Figure 3.b, are entirely due to an increased flow resistance, i.e. due to
an increase in bacterial biomass which clogs flow pathways in the porous medium.
This is expressed in terms of a decreasing permeability a(m). While the decline in
the flow rate is first gradually, an almost instantaneous drop is observed at around,
t ≈ 15, when the biomass front reaches the lateral boundaries (cf. also Fig. 1).
From then on the biomass region spans the total width of the domain. While before
that water could bypass the biomass region at increased flow velocities, this is not
possible anymore from then on. Thus all flow after that time is flow through the
biomass region.

In Figure 3.c the substrate fluxes Jin(t) on inflow and Jout(t) on outflow are
plotted, as well as the difference between them. Due to the Dirichlet condition
c = 1 on inflow, Jin(t) is closely aligned with Qin(t) (plotted in Fig. 3.b). Dif-
ferences between both functions are due to diffusive fluxes on inflow. As already
observed in Figure 1, those are close to negligible. Note that this behavior is quite
different from systems in which transport is only diffusive, i.e. the flow induced
convective transport contribution matters. The inflow flux Jin(t) remains positive
over the entire simulation interval. Naturally, Jout(t) lies always below Jin(t) due
to substrate consumption in the biomass core. As already indicated in Fig. 1,
substrate is eventually completely depleted in the downstream region, leading to
Jout ≈ 0 eventually (t ≈ 16 in our simulation). From then on, all substrate that
is supplied is completely consumed by the bacteria. Before the biomass core spans
across the whole domain (t < 15), the flow field is able to transport substrate
around the biomass region, leading to Jout > 0 even if some bacteria experience
already substrate limitation in the biomass core, as observed in Fig. 1. Note that
the declining consumption rate Jin(t) − Jout(t) for large t indicates a slow-down
in microbial activity, i.e. decreased growth rates, as evident also from Mtot(t) in
Fig.3.a.

Note that other bioclogging models that do not account for spatial spreading of
biomass, e.g. [5, 25], are only able to simulate the process over the initial period,
i.e. up to t ≈ 5.

3.3. Non-uniform substrate supply and irregular biomass distribution. In
a small numerical experiment we study the spatio-temporal development of biomass
and substrate patterns, as well as and preferential flow direction, under less regular
conditions than in the previous Section 3.2. To this end we perturb the symmetry
in the initial distribution of biomass and replace the constant (across the flow
channel width) inflow concentration by a variable one. The simulation experiment
mimics some characteristic features of experimental setups that are commonly used
in laboratory experiments [22, 25].
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The hydrodynamic conditions remain unchanged but the upstream substrate
concentration profile is chosen as the Gaussian distribution

c(t, 0, y) = c∞(y) = e−40(y−1/2)2 ,

mimicking a substrate plume that develops after a point injection into a well de-
veloped flow field upstream.

The biomass is initially distributed in four spherical pockets, the centers of which
are chosen randomly in the subdomain [0.3, 1] × [0, 0.5]. The upstream offset was
chosen to allow for the development of a plume-like concentration field, i.e. to keep
upstream boundary effects small. In these pockets the biomass density is set to
m = 0.01. The spherical regions are allowed to overlap and are not necessarily fully
contained in Ω. Thus, the initial occupancy ω(0) and total biomass Mtot(0) can
vary between different simulations.

In Figures 4 and 5 we show the simulations for two different initial distributions
of biomass. The compression phase and the expansion phase as described above are
observed in these simulations as well. Initially, the substrate concentration appears
unaffected by the bacterial biomass but soon we observe concentration boundary
layers at the rim of the biomass pockets as described in the previous example.
Depending on their locations relative to the flow and bulk concentration field, the
individual biomass pockets are affected differently. In particular in the simulation of
Figure 5 one colony lies outside the plume and, therefore, develops slower than the
other three. Nevertheless, its contribution to the development of an irregular flow
field (as indicated by the pressure iso-lines) is notable. During the expansion phase,
initially disjoint neighboring biomass regions merge. In Figure 4 substrate is carried
past the biomass core by convection, although at a largely reduced (compared to
inflow) concentration level.

It is naturally expected that different initial biomass distributions lead to differ-
ent spatio-temporal patters of biomass and substrate, as well as different preferential
flow paths, as shown in Figures 4 and 5. Whether this carries over to the lumped
parameters ω(t) and Mtot(t) is investigated by comparing several (in this case 14)
simulations, differing by initial distribution of biomass, cf. Figure 6. While there
is some variation in the time evolution, in all cases the total biomass in the system
Mtot(t) levels off at about the same value, determined by availability of substrate,
as a consequence of flow conditions (pressure difference between inflow and outflow)
and substrate concentration on inflow. The growth period before the plateau phase
is exponential in most cases, i.e. in good agreement with the lumped estimate (3.2),
although for few simulations sub-exponential growth curves evolve from the start,
indicating a local substrate limitation somewhere in the domain already in the ini-
tial phase of the experiment. The spatial distribution of biomass in the system,
expressed in terms of the occupancy function ω(t), appears to be more sensitive to
initial distribution of biomass than the amount of bacterial biomass Mtot(t).

4. Summary and conclusion

We proposed a bioclogging model, that is based on a volume-filling argument.
Unlike other models of bioclogging, it does not require an artificial biomass produc-
tion limiter when the available pore space is filled by biomass but allows for con-
tinued local production of new biomass as long as growth conditions are favorable.
Instead, the bacteria move into neighboring void regions when the space becomes
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Figure 4. Bioclogging, initiated by randomly distributed patches
of biomass: flow is from bottom to top. Shown are: c (background)
[left color map], p (equidistant white iso-lines), m(colored iso-lines)
[right color map], for selected t; bottom right: ω(t) and Mtot(t).

locally limited. This is described by a double-degenerate diffusion-mechanism for
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Figure 5. Bioclogging, as in Fig. 4, but with different initial
distribution of biomass.

biomass that encompasses two nonlinear diffusion effects, namely porous medium
degeneracy and fast diffusion singularity. This spatial model extension could also
be incorporated into other bioclogging models such as [5, 25].
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Figure 6. Occupancy ω(t) [left] and total biomass Mtot(t) [right]
for 14 simulations of Section 3.3

The model for spatio-temporal population dynamics needs to be coupled with
a model for hydrodynamics and for substrate transport. On the macro-scale, the
Darcy equations are the standard model to describe the flow field in a porous
medium and this is what was used here, taking into account that the hydraulic
conductivity of the soil changes locally when the amount of biomass in the pore
space changes. Developing macroscopic substrate transport equations for biofilm
formation in porous media is not as straightforward and in fact currently an active
area of research. The difficulty here lies in taking into account that the pore space
is divided into a liquid and a biofilm phase, which change as the biomass content
increases. We use here a simple one-equation model that incorporates both, biofilm
and aqueous phase in the pores, based on an equilibrium assumption [13]. It is to
be seen which modifications, if any at all, need to be made in the bioclogging model
once less restrictive substrate transport models become available.

The bioclogging model is formulated here in a first version for a rather simple
prototype system with only one bacterial species and one growth limiting substrate,
but it generalizes easily to more involved systems that involve several biomass
fractions or several dissolved substrates (nutrient, pollutants, biocides).

In computer simulations we could study the dependence between hydrodynam-
ics, substrate transport and population dynamics, and illustrate some qualitative
properties of the mathematical model. A rigorous solution theory for this class of
models, however, is yet to be established. First results for such double degenerate
diffusion-reaction equations exist in the biofilm modeling literature, upon which
future efforts in this direction will build.
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