Seventh Mississippi State - UAB Conference on Differential Equations and Computational Simulations, *Electronic Journal of Differential Equations*, Conf. 17 (2009), pp. 81–94. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

A THIRD-ORDER M-POINT BOUNDARY-VALUE PROBLEM OF DIRICHLET TYPE INVOLVING A P-LAPLACIAN TYPE OPERATOR

CHAITAN P. GUPTA

ABSTRACT. Let ϕ , be an odd increasing homeomorphisms from \mathbb{R} onto \mathbb{R} satisfying $\phi(0) = 0$, and let $f : [0,1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ be a function satisfying Caratheodory's conditions. Let $\alpha_i \in \mathbb{R}, \xi_i \in (0,1), i = 1, \ldots, m - 2, 0 < \xi_1 < \xi_2 < \cdots < \xi_{m-2} < 1$ be given. We are interested in the existence of solutions for the *m*-point boundary-value problem:

$$(\phi(u''))' = f(t, u, u', u''), \quad t \in (0, 1),$$

$$u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} \alpha_i u(\xi_i), \quad u''(0) = 0$$

in the resonance and non-resonance cases. We say that this problem is at *resonance* if the associated problem

$$(\phi(u''))' = 0, \quad t \in (0,1),$$

with the above boundary conditions has a non-trivial solution. This is the case if and only if $\sum_{i=1}^{m-2} \alpha_i \xi_i = 1$. Our results use topological degree methods. In the non-resonance case; i.e., when $\sum_{i=1}^{m-2} \alpha_i \xi_i \neq 1$ we note that the sign of degree for the relevant operator depends on the sign of $\sum_{i=1}^{m-2} \alpha_i \xi_i - 1$.

1. INTRODUCTION

In this paper we consider the boundary-value problem

$$(\phi(u''))' = f(t, u, u', u''), \quad t \in (0, 1),$$

$$u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} \alpha_i u(\xi_i), \quad u''(0) = 0,$$

(1.1)

where ϕ is an odd increasing homeomorphism from \mathbb{R} onto \mathbb{R} with $\phi(0) = 0$ and the function $f: [0,1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ is Caratheodory. Also $\alpha_i \in \mathbb{R}, \xi_i \in (0,1)$, for $i = 1, 2, \ldots m - 2$, are such that $0 < \xi_1 < \xi_2 < \cdots < \xi_{m-2} < 1$.

²⁰⁰⁰ Mathematics Subject Classification. 34B10, 34B15, 34L30.

Key words and phrases. m-point boundary value problems; p-Laplace type operator; non-resonance; resonance; topological degree.

^{©2009} Texas State University - San Marcos.

Published April 15, 2009.

We say that (1.1) is at *resonance*, if the associated multi-point boundary-value problem

$$(\phi(u''))' = 0, \quad t \in (0,1),$$

$$u(0) = 0, u(1) = \sum_{i=1}^{m-2} \alpha_i u(\xi_i), \quad u''(0) = 0,$$

(1.2)

has a non-trivial solution.

We are interested here in the existence of solutions for the m-point boundaryvalue problem (1.1) in the resonance and in the non-resonance cases.

The study of multipoint second-order boundary-value problems for $\phi(u) \equiv u$ was initiated by Il'in and Moiseev in [16, 17] and has been the subject of many papers, see for example [2, 3, 8, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 23].

More recently multipoint second-order boundary-value problems containing the *p*-Laplace operator or the more general operator $-(\phi(u'))'$ complemented with linear boundary conditions, have been studied in [1, 4, 6, 22, 26, 27].

ear boundary conditions, have been studied in [1, 4, 6, 22, 26, 27]. Problem (1.1) is at resonance if and only if $\sum_{i=1}^{m-2} \alpha_i \xi_i = 1$, having $u(t) = \rho t$ as a non-trivial solution, where $\rho \in \mathbb{R}$ is an arbitrary constant.

Our aim in this paper is to obtain existence of solutions for problem (1.1), by using topological degree arguments. Thus, in section 2, we first derive a deformation lemma that is needed when problem (1.1) is at resonance.

In section 3 an existence theorem for problem (1.1) is derived from this lemma. Finally in section 4 we consider problem (1.1) when it is non-resonant. The crucial point here is to prove that the Leray Schauder degree of a certain operator is different from zero which is shown to be an explicit consequence of the non-resonance condition, i.e., $\sum_{i=1}^{m-2} \alpha_i \xi_i \neq 1$. In addition we obtain the interesting property that the degree of the operator changes sign when $\sum_{i=1}^{m-2} \alpha_i \xi_i$ goes from being less than one to being greater than one.

We shall denote by C[0, 1] (resp. $C^1[0, 1]$, $C^2[0, 1]$) the classical space of continuous (resp. continuously differentiable, twice continuously differentiable) real-valued functions on the interval [0, 1]. The norm in C[0, 1] is denoted by $|\cdot|_{\infty}$. Also, we shall denote by $L^1(0, 1)$ the space of real-valued (equivalence classes of) functions whose absolute value is Lebesgue integrable on (0, 1). The Brouwer and Leray-Schauder degree shall be respectively denoted by deg_B and deg_{LS}.

2. A deformation Lemma for the resonance case

We begin this section by formulating a general deformation lemma for the solvability of the boundary-value problem (1.1) in the resonance case.

Let $f^*: [0,1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times [0,1] \mapsto \mathbb{R}$ be a function satisfying Caratheodory's conditions; i.e., (i) for all $(s, r, q, \lambda) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times [0,1]$ the function $f^*(\cdot, s, r, q, \lambda)$ is measurable on [0,1], (ii) for a.e. $t \in [0,1]$ the function $f^*(t,\ldots,\cdot)$ is continuous on $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times [0,1]$, and (iii) for each R > 0 there exists a Lebesgue integrable function $\rho_R: [0,1] \mapsto \mathbb{R}$ such that $|f^*(t,s,r,q,\lambda)| \leq \rho_R(t)$ for a.e. $t \in [0,1]$ and all $(s,r,q,\lambda) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times [0,1]$ with $|s| \leq R$, $|r| \leq R$, and $|q| \leq R$. We suppose that $f(t,s,r,q) = f^*(t,s,r,q,1)$ is the given function in problem (1.1).

82

We, now, introduce an operator $\mathfrak{B}(u,\lambda): C^2[0,1] \times [0,1] \mapsto \mathbb{R}$ defined for $(u,\lambda) \in$ $C^{2}[0,1] \times [0,1]$ by

$$\mathfrak{B}(u,\lambda) = \lambda \Big(u(1) - \sum_{i=1}^{m-2} \alpha_i u(\xi_i) \Big) + (1-\lambda) \Big(\int_0^1 \int_0^s f^*(\tau, u(\tau), u'(\tau), u''(\tau), \lambda) d\tau ds - \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \int_0^s f^*(\tau, u(\tau), u'(\tau), u''(\tau), \lambda) d\tau ds \Big).$$
(2.1)

For $\lambda \in [0, 1]$ we consider the family of boundary-value problems:

$$\begin{aligned} (\phi(u''))' &= \lambda f^*(t, u, u', u'', \lambda), \quad t \in (0, 1), \\ u(0) &= 0, \quad u''(0) = 0, \quad \mathfrak{B}(u, \lambda) = 0. \end{aligned}$$
(2.2)

Let $\Omega \subset C^2[0,1]$ be a bounded open set. Let us set for $\rho \in \mathbb{R}$, $i_{\rho}(t) = \rho t$, for $t \in [0, 1]$, and

$$X = \{i_{\rho} : \rho \in \mathbb{R}\},\$$

then X is a one dimensional subspace of $C^2[0,1]$. Defining $i: \mathbb{R} \to X$ by $i(\rho) = i_{\rho}$ it is clear that i is an isomorphism from \mathbb{R} onto X.

Next let us define $F: X \mapsto \mathbb{R}$ by

$$F(i_{\rho}) = \int_{0}^{1} \int_{0}^{s} f^{*}(\tau, \rho\tau, \rho, 0, 0) d\tau ds - \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} f^{*}(\tau, \rho\tau, \rho, 0, 0) d\tau ds,$$

and set $\mathcal{F} = F \circ i$, then $\mathcal{F} : \mathbb{R} \mapsto \mathbb{R}$ is continuous, and is given by

$$\mathcal{F}(\rho) = \int_0^1 \int_0^s f^*(\tau, \rho\tau, \rho, 0, 0) d\tau ds - \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \int_0^s f^*(\tau, \rho\tau, \rho, 0, 0) d\tau ds.$$

We have the following lemma.

Lemma 2.1. Assume that

- (i) for $\lambda \in (0,1)$ the boundary-value problem (2.2) has no solution $u \in \partial \Omega$,
- (ii) the equation $\mathcal{F}(\rho) = 0$ has no solution for any ρ with $i_{\rho}(t) \in \partial \Omega \cap X$, and (iii) the Brouwer degree $\deg_B(F, \Omega \cap X, 0) \neq 0$.

Then the boundary-value problem (1.1) has at least one solution in $\overline{\Omega}$.

Proof. If the boundary-value problem (1.1) has a solution in $\partial\Omega$, then there is nothing to prove. Accordingly, let us assume that the boundary-value problem (1.1) has no solution in $\partial \Omega$. This assumption combined with assumption (i) implies that the boundary-value problem (2.2) has no solution $u \in \partial \Omega$ for $\lambda \in (0, 1]$.

Let us define an operator $\Psi^*: C^2[0,1] \times [0,1] \mapsto C^2[0,1]$ by setting for $(u,\lambda) \in$ $C^{2}[0,1] \times [0,1]$

$$\Psi^*(u,\lambda)(t) = \int_0^t \left(u'(0) + \int_0^s \phi^{-1} \left(\lambda \int_0^r f^*(\tau, u(\tau), u'(\tau), u''(\tau), \lambda) d\tau \right) dr \right) ds$$

+ $t\mathfrak{B}(u,\lambda),$ (2.3)

where $\mathfrak{B}(u,\lambda)$ is as defined in equation (2.1).

83

We note from our assumptions that the function f^* satisfies Caratheodory's conditions so that for $(u, \lambda) \in C^2[0, 1] \times [0, 1]$, $f^*(t, u(t), u'(t), u''(t), \lambda) \in L^1(0, 1)$. Accordingly, the function $s \in [0, 1] \mapsto \int_0^s f^*(\tau, u(\tau), u'(\tau), u''(\tau), \lambda) d\tau$ is absolutely continuous on [0, 1]. Since, now, the integrand in (2.3) is continuous on [0, 1] we see that the operator Ψ^* is well defined.

Next, let us suppose that u(t) be a solution to the boundary-value problem (2.2) for some $\lambda \in [0, 1]$. We, then, see by integrating the equation in (2.2) and using the boundary conditions in (2.2) that u(t) satisfies the equation

$$u(t) = \Psi^*(u, \lambda)(t), t \in [0, 1],$$

along with

$$u(0) = 0, u''(0) = 0, \mathfrak{B}(u, \lambda) = 0.$$

Conversely, let us suppose that for some $\lambda \in [0,1]$, u(t), $t \in [0,1]$, satisfies the equation

$$u(t) = \Psi^*(u,\lambda)(t). \tag{2.4}$$

We first see from the equation (2.4) and the definition of $\Psi^*(u, \lambda)$ that

$$\iota(0)=0.$$

Next, we obtain, by differentiating the equation (2.4) that

$$u'(t) = u'(0) + \int_0^t \phi^{-1} \Big(\lambda \int_0^r f^*(\tau, u(\tau), u'(\tau), u''(\tau), \lambda) d\tau \Big) dr + \mathfrak{B}(u, \lambda), t \in [0, 1].$$
(2.5)

Evaluating (2.5) at t = 0 we see that

$$\mathfrak{B}(u,\lambda) = 0$$

Again, we obtain, by differentiating (2.5) that

$$u''(t) = \phi^{-1} \Big(\lambda \int_0^t f^*(\tau, u(\tau), u'(\tau), u''(\tau), \lambda) d\tau \Big).$$
(2.6)

Evaluating the equation (2.6) at t = 0 we see that

$$u''(0) = 0.$$

Also, equation (2.6) further implies that $\phi(u''(t))$ is absolutely continuous on [0, 1] and

$$(\phi(u''(t)))' = \lambda f^*(t, u(t), u'(t), u''(t), \lambda), t \in [0, 1].$$

Thus $u(t), t \in (0, 1)$, is a solution to the boundary-value problem (2.2). We have, accordingly, proved that $u(t), t \in (0, 1)$, is a solution to the boundary-value problem (2.2) if and only if $u(t), t \in [0, 1]$, is a solution to the equation (2.4).

We observe that it is easy to show, using standard arguments, that $\Psi^* : C^2[0,1] \times [0,1] \mapsto C^2[0,1]$ is a completely continuous operator. If, now, $u(t) \in \partial\Omega$ is a solution to the boundary-value problem (1.1) then we are done. Accordingly, let us assume that the boundary-value problem (1.1) has no solution on $\partial\Omega$. Since, now, $f^*(t, s, r, q, 1) = f(t, s, r, q)$ for all $(t, s, r, q) \in [0, 1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ we see that the assumption (i) of the lemma implies that

$$u \neq \Psi^*(u, \lambda)$$
 for all $u \in \partial \Omega$ and $\lambda \in (0, 1]$.

We, next, assert that $u \neq \Psi^*(u,0)$ for all $u \in \partial\Omega$. Indeed, let $u \in \partial\Omega$ be such that $u = \Psi^*(u,0)$. It then follows from the definition of Ψ^* , as given in (2.3),

85

that $u(t) = \rho t = i_{\rho}(t)$, with $\rho = u'(0) + \mathfrak{B}(u,0)$, $u'(t) = \rho + \mathfrak{B}(u,0)$, u''(0) = 0, $\mathfrak{B}(u,0) = 0$, $u \in \partial \Omega \cap X$, and

$$\begin{aligned} \mathfrak{B}(u,0) &= \int_0^1 \int_0^s f^*(\tau, u(\tau), u'(\tau), u''(\tau), 0) d\tau ds \\ &- \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \int_0^s f^*(\tau, u(\tau), u'(\tau), u''(\tau), 0) d\tau ds \\ &= \int_0^1 \int_0^s f^*(\tau, \rho\tau, \rho, 0, 0) d\tau ds - \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \int_0^s f^*(\tau, \rho\tau, \rho, 0, 0) d\tau ds \\ &= \mathcal{F}(\rho) = 0. \end{aligned}$$

But this contradicts the assumption (ii) of the lemma. We thus get that

$$u \neq \Psi^*(u, \lambda)$$
 for all $u \in \partial \Omega$ and $\lambda \in [0, 1]$.

Thus $\deg_{LS}(I - \Psi^*(\cdot, \lambda), \Omega, 0)$ is well defined for all $\lambda \in [0, 1]$. By the homotopy invariance property of Leray-Schauder degree we obtain immediately that

$$\deg_{LS}(I - \Psi^*(\cdot, 1), \Omega, 0) = \deg_{LS}(I - \Psi^*(\cdot, 0), \Omega, 0) = \deg_B(I - \Psi^*(\cdot, 0)|_X, \Omega_0, 0),$$
(2.7)

where, $\Omega_0 = \Omega \cap X$. Now since for $v \in X$

$$(I - \Psi^*(\cdot, 0))v = -i_{F(v)},$$

we have

$$\deg_{LS}(I - \Psi^*(\cdot, 1), \Omega, 0) = \deg_B(-i_{F(\cdot)}, \Omega_0, 0) = -\deg_B(i_{F(\cdot)}, \Omega_0, 0).$$

Since, $i^{-1} \circ i_{F(\cdot)} \circ i = \mathcal{F}$, we obtain by using a standard formula in degree theory that

$$\deg_B(i_{F(\cdot)},\Omega_0,0)) = \deg_B(\mathcal{F},i^{-1}(\Omega_0),0)).$$

Hence, by assumption (*iii*) of the lemma, it follows that $\deg_{LS}(I-\Psi^*(\cdot,1),\Omega,0) \neq 0$. Thus, the mapping $\Psi \equiv \Psi^*(\cdot,1) : C^2[0,1] \mapsto C^2[0,1]$ has at least one fixed-point in $\overline{\Omega}$ and hence the boundary value problem (1.1) has at least one solution in $\overline{\Omega}$. This completes the proof of the lemma.

3. EXISTENCE THEOREMS

We shall assume that for any constants $\Lambda \ge 0$, A > 0 with $\Lambda < A$ it holds that

$$\tilde{\alpha}(A,\Lambda) \equiv \limsup_{z \to \infty} \frac{\phi(\frac{A+\Lambda}{A-\Lambda}z+c)}{\phi(z)} < \infty.$$
(3.1)

We need the following lemma in the proof of our existence theorems.

Lemma 3.1. Let $g : [0,1] \mapsto \mathbb{R}$ be a strictly increasing (resp. strictly decreasing) function on [0,1]. Then the function $G : (0,1] \hookrightarrow \mathbb{R}$ defined for $t \in (0,1]$ by

$$G(t) = \frac{1}{t} \int_0^t g(s) ds$$

is strictly increasing (resp. decreasing) function on (0,1]. In particular, $\int_0^1 g(s)ds - \frac{1}{t}\int_0^t g(s)ds > 0$ (resp. < 0) for every $t \in (0,1)$. Moreover, given $\alpha_i \ge 0$, $\xi_i \in (0,1)$, $i = 1, 2, \dots, m-2$ with $\sum_{i=1}^{m-2} \alpha_i \xi_i = 1$ we have $\int_0^1 g(s)ds - \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} g(s)ds > 0$ (resp. < 0).

Proof. Let us suppose that g is a strictly increasing function on [0, 1]. Now we see that

$$G'(t) = \frac{g(t)}{t} - \frac{1}{t^2} \int_0^t g(s)ds = \frac{1}{t^2} \left(\int_0^t (g(t) - g(s))ds > 0 \right)$$

for every $t \in (0, 1]$. Accordingly, G is strictly increasing on (0, 1] and $\int_0^1 g(s)ds - \frac{1}{t} \int_0^t g(s)ds > 0$ for every $t \in (0, 1)$. Finally, we see that

$$\int_{0}^{1} g(s)ds - \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} g(s)ds$$
$$= \sum_{i=1}^{m-2} \alpha_{i}\xi_{i} (\int_{0}^{1} g(s)ds - \frac{1}{\xi_{i}} \int_{0}^{\xi_{i}} g(s)ds) > 0.$$

Similarly G is strictly decreasing on (0, 1] and $\int_0^1 g(s)ds - \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} g(s)ds < 0$ when g is a strictly decreasing function on [0, 1]. This completes the proof of the lemma.

Theorem 3.2. Let $f : [0,1] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ in the boundary-value problem (1.1) be a continuous function and satisfies the following conditions:

(i) there exist non-negative functions $d_1(t)$, $d_2(t)$, $d_3(t)$, and r(t) in $L^1(0,1)$ such that

$$|f(t, u, v, w)| \le d_1(t)\phi(|u|) + d_2(t)\phi(|v|) + d_3(t)\phi(|w|) + r(t),$$

for all $t \in [0,1]$, $u, v, w \in \mathbb{R}$,

(ii) there exist constants $\Lambda \ge 0$, $B \ge 0$, A > 0 with $\Lambda < A$ and a $v_0 > 0$ such that for all v with $|v| > v_0$, all $t \in [0, 1]$ and all $u, w \in \mathbb{R}$ one has

$$|f(t, u, v, w)| \ge -\Lambda |u| + A|v| - \Lambda |w| - B_s$$

(iii) there exists an R > 0 such that for all ρ , with $|\rho| > R$, either

$$\rho f(t, \rho t, \rho, 0) > 0, \text{ for all } t \in [0, 1], \text{ or } \\
\rho f(t, \rho t, \rho, 0) < 0, \text{ for all } t \in [0, 1].$$

Suppose, further, that

$$\tilde{\alpha}(A,\Lambda)(\|d_1\|_{L^1(0,1)} + \|d_2\|_{L^1(0,1)}) + \|d_3\|_{L^1(0,1)} < 1.$$
(3.2)

Then, given $\alpha_i \geq 0$, $\xi_i \in (0,1)$, $i = 1, 2, \dots, m-2$ with $\sum_{i=1}^{m-2} \alpha_i \xi_i = 1$ the boundary value problem (1.1) has at least one solution in $u(t) \in C^2[0,1]$.

Proof. We first choose an $\varepsilon > 0$ be such that

$$(\tilde{\alpha}(A,\Lambda) + \varepsilon)(\|d_1\|_{L^1(0,1)} + \|d_2\|_{L^1(0,1)}) + \|d_3\|_{L^1(0,1)} < 1,$$

which is possible to do, in view of (3.2). We consider the family of boundary-value problems:

$$(\phi(u''(t)))' = \lambda f(t, u(t), u'(t), u''(t)), \quad t \in (0, 1), \lambda \in [0, 1], u(0) = 0, \quad \mathfrak{B}(u, \lambda) = 0, \quad u''(0) = 0,$$

$$(3.3)$$

where $\mathfrak{B}(u, \lambda)$ is as defined in (2.1). Let u(t) be a solution to the boundary-value problem (3.3) for some $\lambda \in (0, 1)$. Then either there exists a $t_0 \in [0, 1]$ such that

$$|u'(t_0)| \le v_0 \tag{3.4}$$

 $\rm EJDE\text{-}2009/\rm CONF/17$

or $|u'(t)| > v_0$ for all $t \in [0, 1]$. In case, $|u'(t)| > v_0$ for all $t \in [0, 1]$, we claim that there exists a $\tau_0 \in [0, 1]$ such that $f(\tau_0, u(\tau_0), u'(\tau_0), u''(\tau_0)) = 0$. Indeed, let us suppose that $f(t, u(t), u'(t), u''(t)) \neq 0$ for all $t \in [0, 1]$. It then follows from the continuity of f(t, u(t), u'(t), u''(t)) on the interval [0, 1] either f(t, u(t), u'(t), u''(t)) > 0for all $t \in [0, 1]$ or f(t, u(t), u'(t), u''(t)) < 0 for all $t \in [0, 1]$. Let us first suppose that f(t, u(t), u'(t), u''(t)) > 0 for all $t \in [0, 1]$. It then follows from the boundary condition in (2.4) that

$$\begin{split} \lambda \Big[\int_{0}^{1} \Big(u'(0) + \int_{0}^{s} \phi^{-1} \Big(\lambda \int_{0}^{r} f(\tau, u(\tau), u'(\tau), u''(\tau)) d\tau \Big) dr \Big) ds \\ &- \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \Big(u'(0) + \int_{0}^{s} \phi^{-1} \Big(\lambda \int_{0}^{r} f(\tau, u(\tau), u'(\tau), u''(\tau)) d\tau \Big) dr \Big) dr \Big) ds \Big] \\ &+ (1 - \lambda) \Big[\int_{0}^{1} \int_{0}^{r} f(\tau, u(\tau), u'(\tau), u''(\tau)) d\tau ds \\ &- \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{r} f(\tau, u(\tau), u'(\tau), u''(\tau)) d\tau dr \Big] \\ &= 0. \end{split}$$
(3.5)

We, next, see that the functions

$$\begin{split} \int_0^t \Big(u'(0) + \int_0^s \phi^{-1} \Big(\lambda \int_0^r f(\tau, u(\tau), u'(\tau), u''(\tau)) d\tau \Big) dr \Big) ds, \\ \int_0^s \int_0^r f(\tau, u(\tau), u'(\tau), u''(\tau)) d\tau dr \end{split}$$

are strictly increasing functions on (0, 1], in view of our assumption

f(t, u(t), u'(t), u''(t)) > 0

for all $t \in [0, 1]$. We then get from Lemma 3.1 and (3.5) that 0 > 0, a contradiction. Similarly, the supposition f(t, u(t), u'(t), u''(t)) < 0 for all $t \in [0, 1]$ leads to the contradiction 0 < 0. Hence, there must exist a $\tau_0 \in [0, 1]$ such that

$$f(\tau_0, u(\tau_0), u'(\tau_0), u''(\tau_0)) = 0, \qquad (3.6)$$

proving the claim. We next see from (3.6) and assumption (ii) that

$$|u'(\tau_0)| \le \frac{B}{A} + \frac{\Lambda}{A} ||u||_{\infty} + \frac{\Lambda}{A} ||u''||_{\infty}.$$
(3.7)

Thus we see from (3.4) and (3.7) that there exists a $\tau_1 \in [0, 1]$ (either t_0 or τ_0) such that

$$|u'(\tau_1)| \le v_0 + \frac{B}{A} + \frac{\Lambda}{A} ||u||_{\infty} + \frac{\Lambda}{A} ||u''||_{\infty}.$$
(3.8)

It then follows from the equation $u'(t) = u'(\tau_1) + \int_{\tau_1}^t u''(s) ds$ and (3.8) that

$$||u'||_{\infty} \le \frac{A+\Lambda}{A-\Lambda} ||u''||_{\infty} + \frac{Av_0+B}{A-\Lambda}.$$
 (3.9)

Next, we see by integrating the equation in (3.3) from 0 to $t \in [0, 1]$ and noting u''(0) = 0, that

$$\phi(u''(t)) = \lambda \int_0^t f(\tau, u(\tau), u'(\tau), u''(\tau)) d\tau.$$
(3.10)

It now follows from equations (3.10), (3.8) using assumption (i), the fact that u(0) = 0 implies $||u||_{\infty} \leq ||u'||_{\infty}$ that

$$\begin{split} \phi(|u''(t)|) \\ &\leq \phi(||u||_{\infty}) ||d_1||_{L^1(0,1)} + \phi(||u'||_{\infty}) ||d_2||_{L^1(0,1)} + \phi(||u''||_{\infty}) ||d_3||_{L^1(0,1)} + ||r||_{L^1(0,1)} \\ &\leq (||d_1||_{L^1(0,1)} + ||d_2||_{L^1(0,1)}) \phi(\frac{A+\Lambda}{A-\Lambda} ||u''||_{\infty} + \frac{Av_0 + B}{A-\Lambda}) \\ &+ ||d_3||_{L^1(0,1)}) \phi(||u''||_{\infty}) + ||r||_{L^1(0,1)} \\ &\leq ((\tilde{\alpha}(A,\Lambda) + \varepsilon)(||d_1||_{L^1(0,1)} + ||d_2||_{L^1(0,1)}) + ||d_3||_{L^1(0,1)}) \phi(||u''||_{\infty}) \\ &+ C_{\varepsilon}(||d_1||_{L^1(0,1)} + ||d_2||_{L^1(0,1)}) + ||r||_{L^1(0,1)}, \end{split}$$

and hence

$$\phi(\|u''\|_{\infty}) \leq ((\tilde{\alpha}(A,\Lambda) + \varepsilon)(\|d_1\|_{L^1(0,1)} + \|d_2\|_{L^1(0,1)}) + \|d_3\|_{L^1(0,1)})\phi(\|u''\|_{\infty}) + C_{\varepsilon}(\|d_1\|_{L^1(0,1)} + \|d_2\|_{L^1(0,1)}) + \|r\|_{L^1(0,1)}.$$
(3.11)

It now follows from (3.2), the estimates (3.11), (3.9) and $||u||_{\infty} \leq ||u'||_{\infty}$ that there exists an $R_0 > R$, where R is as in assumption (iii), such that the family of boundary value problems (3.3) have no solution on the boundary of a bounded open set $\Omega = B(0, \tilde{R}) \subset C^2[0, 1]$, for every $\tilde{R} \geq R_0$. Accordingly, we see that the family of boundary value problems (3.3) satisfy condition (i) of Lemma 2.1. Next, we see from assumption (iii) and Lemma 3.1 for all ρ , $|\rho| > R$, that

$$\int_{0}^{1} \int_{0}^{s} f(\tau, \rho\tau, \rho, 0) d\tau ds - \sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \int_{0}^{s} f(\tau, \rho\tau, \rho, 0) d\tau ds$$

is strictly positive or strictly negative. Accordingly, we see that $f^*(t, u, v, w, \lambda) = f(t, u, v, w)$ satisfies the condition (ii) of Lemma 2.1.

Finally, we again see from assumption (iii), the continuity in $\rho \in \mathbb{R}$ of the function

$$\psi(\rho) = \int_0^1 \int_0^s f(\tau, \rho\tau, \rho, 0) d\tau ds - \sum_{i=1}^{m-2} \alpha_i \int_0^{\xi_i} \int_0^s f(\tau, \rho\tau, \rho, 0) d\tau ds$$

and the assumption that $\widetilde{R} > R$, that $F(i_{\widetilde{R}}(t))$ and $F(i_{-\widetilde{R}}(t))$ have opposite signs. It follows immediately that $F(i_{\rho}(t)) = 0$ for an odd number of $\rho \in (-\widetilde{R}, \widetilde{R})$ which implies that the Brouwer degree $\deg_B(F, \Omega \cap X, 0) \neq 0$. Thus the condition (iii) of Lemma 2.1 is also satisfied. Thus it follows from Lemma 2.1 that the boundary value problem (1.1) has at least one solution in $\overline{\Omega}$. This completes the proof of the theorem.

4. A result for the non-resonance case

In this section we will consider problem (1.1) in the non-resonance case. Problem (1.1) is in the non-resonance case if problem (1.2) has only the trivial solution. This holds if and only if the α_i , ξ_i satisfy $\sum_{i=1}^{m-2} \alpha_i \xi_i \neq 1$. We assume henceforth that α_i , ξ_i satisfy this condition. Notice that we do not assume a sign condition on the α'_i s. In addition, we shall assume that for any σ , $0 < \sigma < 1$, it holds that

$$\tilde{\alpha}(\sigma) = \limsup_{z \to \infty} \frac{\phi(\frac{1}{1-\sigma}z)}{\phi(z)} < \infty.$$
(4.1)

Let us set $\xi_{m-1} = 1$, $\alpha_{m-1} = -1$, $\sigma_{ij} = \alpha_i(\xi_i - \xi_j)$ for $i \neq j$ and $\sigma_{jj} = \sum_{i=1}^{m-1} \alpha_i \xi_j$ for $i, j = 1, 2, \cdot, \cdot, \cdot, m-1$. We note that the assumption $\sum_{i=1}^{m-2} \alpha_i \xi_i \neq 1$ is equivalent to $\sum_{i=1}^{m-1} \alpha_i \xi_i \neq 0$. Also, for each $j = 1, 2, \dots, m-1$ we have

$$\sum_{i=1}^{m-1} \sigma_{ij} = \sum_{i=1, i \neq j}^{m-1} \sigma_{ij} + \sigma_{jj} = \sum_{i=1, i \neq j}^{m-1} \alpha_i (\xi_i - \xi_j) + \sum_{i=1}^{m-1} \alpha_i \xi_j = \sum_{i=1}^{m-1} \alpha_i \xi_i \neq 0.$$

It follows that

$$\sum_{i=1}^{m-1} (\sigma_{ij})^+ \neq \sum_{i=1}^{m-1} (\sigma_{ij})^-,$$

for $j = 1, 2, \dots, m - 1$, where for $\alpha \in \mathbb{R}$, $\alpha^+ = \max(\alpha, 0)$ and $\alpha^- = \max(-\alpha, 0)$. Let us set

$$\sigma^* = \begin{cases} \min\{\frac{\sum_{i=1}^{m-1} (\sigma_{ij})^+}{\sum_{i=1}^{m-1} (\sigma_{ij})^-}, \frac{\sum_{i=1}^{m-1} (\sigma_{ij})^-}{\sum_{i=1}^{m-1} (\sigma_{ij})^+}\} & \text{if } \sum_{i=1}^{m-1} (\sigma_{ij})^+ \neq 0 \text{ and} \\ & \sum_{i=1}^{m-1} (\sigma_{ij})^- \neq 0 \text{ for all } j, \\ 0, & \text{otherwise.} \end{cases}$$
(4.2)

Note that $0 \le \sigma^* \le 1$. The main result of this section is the following theorem.

Theorem 4.1. Let $f:[0,1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a function satisfying Caratheodory's conditions such that the following condition holds:

there exist non-negative functions $d_1(t)$, $d_2(t)$, $d_3(t)$, and r(t) in $L^1(0,1)$ such that

 $|f(t, u, v, w)| \le d_1(t)\phi(|u|) + d_2(t)\phi(|v|) + d_3(t)\phi(|w|) + r(t),$

for a. e. $t \in [0,1]$ and all $u, v, w \in \mathbb{R}$. Suppose, further,

$$\tilde{\alpha}(\sigma^*)(\|d_1\|_{L^1(0,1)} + \|d_2\|_{L^1(0,1)}) + \|d_3\|_{L^1(0,1)} < 1,$$
(4.3)

where σ^* is as defined in (4.2) and $\tilde{\alpha}$ is as defined in (4.1).

Then, the boundary-value problem (1.1) has at least one solution $u \in C^2[0,1]$.

We need the following variant of an a priori estimate from [14] in the proof of Theorem 4.1 and present this in the following lemma.

Lemma 4.2. Let $u \in C^{1}[0,1]$, be such that $u'' \in L^{\infty}(0,1)$ and satisfies

$$u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} \alpha_i u(\xi_i),$$

with $\sum \alpha_i \xi_i \neq 1$. If $\sum_{i=1}^{m-1} (\sigma_{ij})^+ \neq 0$, and $\sum_{i=1}^{m-1} (\sigma_{ij})^- \neq 0$ for all j, then $\|u'\| < \frac{1}{m} \|u''\|$

$$\|u'\|_{\infty} \le \frac{1}{1 - \sigma^*} \|u''\|_{\infty}.$$
(4.4)

If one of $\sum_{i=1}^{m-1} (\sigma_{ij})^+$, $\sum_{i=1}^{m-1} (\sigma_{ij})^-$ is zero for some j = 1, 2, ..., m-1, then $u'(\eta_0) = 0$ for some $\eta_0 \in [0, 1]$, and

$$\|u'\|_{\infty} \le \|u''\|_{\infty}.$$
 (4.5)

Proof. We first, note, that the assumption

$$u(1) = \sum_{i=1}^{m-2} \alpha_i u(\xi_i)$$

is equivalent to

$$\sum_{i=1}^{m-1} \alpha_i u(\xi_i) = 0,$$

with $\xi_{m-1} = 1$, $\alpha_{m-1} = -1$ and the non-resonant condition $\sum_{i=1}^{m-2} \alpha_i \xi_i \neq 1$ is equivalent to $\sum_{i=1}^{m-1} \alpha_i \xi_i \neq 0$.

Next, for each $j = 1, 2, \cdot, \cdot, \cdot, m-1$ we have $u(\xi_j) = \xi_j u'(\eta_{jj})$ for some $\eta_{jj} \in [0, 1]$. Also for $i, j = 1, 2, \cdot, \cdot, \cdot, m-1$ with $i \neq j$ we have $u(\xi_i) - u(\xi_j) = u'(\eta_{ij})(\xi_i - \xi_j)$ for some $\eta_{ij} \in [0, 1]$. Accordingly,

$$\sum_{i=1,i\neq j}^{m-1} \alpha_i u'(\eta_{ij})(\xi_i - \xi_j) = \sum_{i=1,i\neq j}^{m-1} \alpha_i (u(\xi_i) - u(\xi_j))$$
$$= -\sum_{i=1}^{m-1} \alpha_i u(\xi_j) = -\sum_{i=1}^{m-1} \alpha_i \xi_j u'(\eta_{jj}),$$

using the mean-value theorem and the assumptions u(0) = 0, $\sum_{i=1}^{m-1} \alpha_i u(\xi_i) = 0$ (equivalently, $u(1) = \sum_{i=1}^{m-2} \alpha_i u(\xi_i)$). We thus get $\sum_{i=1}^{m-1} \sigma_{ij} u'(\eta_{ij}) = 0$, and hence $\sum_{i=1}^{m-1} (\sigma_{ij})^+ u'(\eta_{ij}) = \sum_{i=1}^{m-1} (\sigma_{ij})^- u'(\eta_{ij})$. So there must exist χ_j^1 and χ_j^2 in [0,1] such that

$$\left(\sum_{i=1}^{m-1} (\sigma_{ij})^{+}\right) u'(\chi_{j}^{1}) = \left(\sum_{i=1}^{m-1} (\sigma_{ij})^{-}\right) u'(\chi_{j}^{1}).$$
(4.6)

If one of $\sum_{i=1}^{m-1} (\sigma_{ij})^+$, $\sum_{i=1}^{m-1} (\sigma_{ij})^-$ is zero for some $j = 1, 2, \ldots, m-1$ then it follows from (4.6) that there is an $\eta_0 \in [0, 1]$ (indeed one of χ_j^1 or χ_j^2) such that $u'(\eta_0) = 0$ and the estimate (4.5) is immediate.

Next, suppose that $\sum_{i=1}^{m-1} (\sigma_{ij})^+ \neq 0$ and $\sum_{i=1}^{m-1} (\sigma_{ij})^- \neq 0$ for every $j = 1, 2, \ldots, m-1$. Then either $u'(\chi_j^1) = u'(\chi_j^1) = 0$ for some $j = 1, 2, \ldots, m-1$, in which case the estimate (4.5) is immediate, or $u'(\chi_j^1) \neq u'(\chi_j^1)$ for every $j = 1, 2, \ldots, m-1$. It follows that there exist $\eta_1, \eta_2 \in [0, 1]$ with $u'(\eta_1) \neq u'(\eta_2)$ such that

$$u'(\eta_1) = \sigma^* u'(\eta_2). \tag{4.7}$$

The estimate (4.4) is now immediate from (4.1), (4.7) and the equation

$$u'(t) = u'(\eta_1) + \int_{\eta_1}^t u'' ds.$$

This completes the proof of the lemma.

Proof of Theorem 4.1. We consider the family of boundary-value problems:

$$(\phi(u''(t)))' = \lambda f(t, u(t), u'(t), u''(t)), \quad t \in (0, 1), \lambda \in [0, 1],$$

$$u(0) = 0, \quad u(1) = \sum_{i=1}^{m-2} \alpha_i u(\xi_i), \quad u''(0) = 0.$$
 (4.8)

90

91

Also, we define an operator $\Psi^* : C^2[0,1] \times [0,1] \mapsto C^2[0,1]$ by setting for $(u,\lambda) \in C^2[0,1] \times [0,1]$

$$\Psi^{*}(u,\lambda) = \int_{0}^{t} \left(u'(0) + \int_{0}^{s} \phi^{-1} \left(\lambda \int_{0}^{r} f^{*}(\tau, u(\tau), u'(\tau), u''(\tau), \lambda) d\tau \right) dr \right) ds + t \left(u(1) - \sum_{i=1}^{m-2} \alpha_{i} u(\xi_{i}) \right).$$

Following standard arguments, it can be proved that Ψ^* is a completely continuous operator. Furthermore reasoning in an entirely similar way as we did in the proof of Lemma 2.1 it can be proved that u is a solution to the family of boundary-value problems (4.8) if and only if u is a fixed point for the operator $\Psi^*(\cdot, \lambda)$; i.e., usatisfies

$$u = \Psi^*(u, \lambda).$$

We will show next that there is a constant R > 0 independent of $\lambda \in [0, 1]$ such that if u satisfies (4.8) for some $\lambda \in [0, 1]$ then $||u||_{C^2[0,1]} < R$.

We note first that if u satisfies

$$u = \Psi^*(u, 0),$$

then we must have u = 0. Indeed from the definition of Ψ^* or from problem (4.8), it follows that $u(t) = \rho t$ with $\rho = u'(0) = u'(t)$, for all $t \in [0, 1]$. Then from the second boundary condition in (4.8), and the assumption $\sum_{i=1}^{m-2} \alpha_i \xi_i \neq 1$, we find that $\rho = 0$, implying that u(t) = 0 for all $t \in [0, 1]$.

In the rest of the argument we will assume that $\lambda \in (0, 1]$. Also we will suppose that $\sigma^* > 0$ since the proof for the case $\sigma^* = 0$ is simpler.

Let us choose $\varepsilon > 0$ such that

$$(\tilde{\alpha}(\sigma^*) + \varepsilon)(\|d_1\|_{L^1(0,1)} + \|d_2\|_{L^1(0,1)}) + \|d_3\|_{L^1(0,1)} < 1,$$
(4.9)

which can be done in view of the assumption (4.3). Next, we have from the definition of $\tilde{\alpha}$, as given in (4.1), that there exists a constant C_{ε}^{1} such that

$$\phi(\frac{1}{1-\sigma^*}z) \le (\tilde{\alpha}(\sigma^*) + \varepsilon)\phi(z) + C_{\varepsilon}^1, \text{ for all } z.$$
(4.10)

Let, now, u be a solution of the family of boundary-value problems (4.8). Then $u \in C^2[0, 1]$ with $\phi(u''(t))$ absolutely continuous on [0, 1] and satisfies

$$u(0) = 0, u(1) = \sum_{i=1}^{m-2} \alpha_i u(\xi_i), u''(0) = 0.$$

We, now, use the estimates

$$\|u\|_{\infty} \le \|u'\|_{\infty}, \|u'\|_{\infty} \le \frac{1}{1-\sigma^*} \|u''\|_{\infty}, \phi(\|u''\|_{\infty}) \le \|(\phi(u''))'\|_{L^1(0,1)}$$
(4.11)

and the inequality (4.10) to get

$$\begin{split} &|(\phi(u''))'|_{L^{1}(0,1)} \\ &\leq \phi(\|u\|_{\infty})\|d_{1}\|_{L^{1}(0,1)} + \phi(\|u'\|_{\infty})\|d_{2}\|_{L^{1}(0,1)} \\ &+ \phi(\|u''\|_{\infty})\|d_{3}\|_{L^{1}(0,1)} + \|r\|_{L^{1}(0,1)} \\ &\leq (\|d_{1}\|_{L^{1}(0,1)} + \|d_{2}\|_{L^{1}(0,1)})\phi(\frac{1}{1-\sigma^{*}}\|u''\|_{\infty}) \\ &+ \phi(\|u''\|_{\infty})\|d_{3}\|_{L^{1}(0,1)} + \|r\|_{L^{1}(0,1)} \\ &\leq \left(\tilde{\alpha}(\sigma^{*}) + \varepsilon\right)(\|d_{1}\|_{L^{1}(0,1)} + \|d_{2}\|_{L^{1}(0,1)})\phi(\|u''\|_{\infty}) + \|d_{3}\|_{L^{1}(0,1)}\phi(\|u''\|_{\infty}) + C_{\varepsilon} \\ &\leq \left[(\tilde{\alpha}(\sigma^{*}) + \varepsilon\right)(\|d_{1}\|_{L^{1}(0,1)} + \|d_{2}\|_{L^{1}(0,1)}) + \|d_{3}\|_{L^{1}(0,1)}]\|(\phi(u''))'\|_{L^{1}(0,1)} + C_{\varepsilon}, \end{split}$$

where

$$C_{\varepsilon} = \|r\|_{L^{1}(0,1)} + C_{\varepsilon}^{1}(\|d_{1}\|_{L^{1}(0,1)} + \|d_{2}\|_{L^{1}(0,1)}).$$

It, now, follows from (4.9) that there exists a constant $R_0 > 0$, independent of $\lambda \in (0, 1]$ such that if u is a solution of the family of boundary-value problems (4.8) then

$$\|(\phi(u''))'\|_{L^1(0,1)}) \le R_0$$

This, combined with (4.11) gives that there exist a constant R > 0 such that

$$||u||_{C^2[0,1]} < R.$$

This in turn implies that $\deg_{LS}(I - \Psi^*(\cdot, \lambda), B(0, R), 0)$ is well defined for all $\lambda \in [0, 1]$, where B(0, R) is the ball with center 0 and radius R in $C^2[0, 1]$.

In what follows we will use the notation of section 2, thus X will denote the one dimensional subspace of $C^2[0,1]$ given by $X = \{i_\rho : \rho \in \mathbb{R}\}, i_\rho(t) = \rho t$ and $i : \mathbb{R} \mapsto X$ is the isomorphism from \mathbb{R} onto X given by $i(\rho) = i_\rho$. Let us define the function $G : \mathbb{R} \mapsto \mathbb{R}$ by

$$G(\rho) = \Big(\sum_{i=1}^{m-2} \alpha_i \xi_i - 1\Big)\rho,$$
(4.12)

for $w \in X$, $w(t) = \rho t$ for some $\rho \in \mathbb{R}$. Now, since

(

$$I - \Psi^*(\cdot, 0))(w) = i_{G(\rho)},$$

it is easy to see that

$$G = i^{-1} \circ (I - \Psi^*(\cdot, 0))|_X \circ i,$$

and hence, by the homotopy invariance property of Leray-Schauder degree, it follows that

$$deg_{LS}(I - \Psi^*(\cdot, 1), B(0, R), 0) = deg_{LS}(I - \Psi^*(\cdot, 0), B(0, R), 0)$$

$$deg_B(I - \Psi^*(\cdot, 0)|_X, X \cap B(0, R), 0) = deg_B(G, (-R, R), 0).$$

Thus taking into account (4.12), we obtain the interesting formulas for the degree

$$\deg_{LS}(I - \Psi^*(\cdot, 1), B(0, R), 0) = \begin{cases} 1 & \text{if } \sum_{i=1}^{m-2} \alpha_i \xi_i > 1\\ -1 & \text{if } \sum_{i=1}^{m-2} \alpha_i \xi_i < 1. \end{cases}$$

Hence if $\sum_{i=1}^{m-2} \alpha_i \xi_i \neq 1$ we have that $\deg_{LS}(I - \Psi^*(\cdot, 1), B(0, R), 0) \neq 0$ and there is a $u \in B(0, R)$ that satisfies

$$u = \Psi^*(\cdot, 1),$$

equivalently u is a solution to the boundary-value problem (4.1). This completes the proof of the theorem.

References

- Cuan-zhi, Bai and Fang, Jin-xuan; Existence of multiple positive solutions for nonlinear m-point boundary-value problems, Applied Mathematics and Computation, 140 (2003), 297-305.
- [2] Feng, W. and Webb, J. R. L. Solvability of three-point boundary-value problems at resonance, Nonlinear Analysis T.M.A. 30 (1997) 3227-3238.
- [3] Feng, W. and Webb, J. R. L.; Solvability of m -point boundary-value problems with nonlinear growth, J. Math. Anal. Appl. 212 (1997) 467–480.
- [4] Garcia-Huidobro, M.; Gupta, C. P. and Manasevich, R.; Solvability for a Non-linear Three-Point Boundary Value problem with p-Laplacian-Like Operator at Resonance . Abstract Analysis and Applications, Vol. 6, No. 4, (2001) pp. 191-213.
- [5] Garcia-Huidobro, M.; Gupta, C. P. and Manasevich, R. An m-point boundary-value problem of Neumann type for a p-Laplacian like operator, Nonlinear Analysis 56 (2004) 1071-1089.
- [6] Garcia-Huidobro, M. and Manasevich, R.; A three point boundary-value problem containing the operator -(φ(u'))', Discrete and Continuous Dynamical Systems, Proceedings of the fourth international conference on dynamical systems and differential equations, Wilmington, (2003), 313-319.
- [7] Garcia-Huidobro M., Manasevich R. and Zanolin, F.; Strongly Nonlinear Second Order ODE's with Unilateral Conditions, Differential and Integral Equations 6 (1993) 1057-1078.
- [8] Gupta, C. P.; Solvability of a three-point boundary-value problem for a second order ordinary differential equation, Journal of Mathematical Analysis and Applications 168 (1992) 540-551.
- [9] Gupta, C. P.; A note on a second order three-point boundary-value problem, Journal of Mathematical Analysis and Applications 186 (1994) 277-281.
- [10] Gupta, C. P.; A second order m-point boundary-value problem at resonance, Nonlinear Analysis T.M.A., 24 (1995) 1483-1489.
- [11] Gupta, C. P.; Existence theorems for a second order m-point boundary-value problem at resonance. International Jour. Math. & Math. Sci. 18(1995) pp. 705-710
- [12] Gupta, C. P.; Ntouyas, S.; Tsamatos, P. Ch.; On an m-point boundary-value problem for second order ordinary differential equations, Nonlinear Analysis T.M.A. 23 (1994) 1427-1436.
- [13] Gupta, C. P.; Ntouyas, S.; Tsamatos, P. Ch.; Solvability of an m-point boundary-value problem for second order ordinary differential equations, Journal of Mathematical Analysis and Applications 189 (1995) 575-584.
- [14] Gupta, Chaitan P.; Trofimchuk, Sergej I.; Solvability of a multi-point boundary-value problem and related a priori estimates, Geoffrey J. Butler Memorial Conference in Differential Equations and Mathematical Biology (Edmonton, AB, 1996). Canad. Appl. Math. Quart. 6 (1998), no. 1, 45–60.
- [15] Gupta, C. P. and Trofinchuk, S.; Solvability of multi point boundary-value problem of Neumann type, Abstract Analysis and Applications 4 (1999) 71-81.
- [16] Il'in ,V. A. and Moiseev, E. I.; Nonlocal boundary-value problem of the first kind for a Sturm Liouville operator in its differential and difference aspects, Differential Equations 23 (1987) 803-810.
- [17] Il'in, V. A. and Moiseev, E. I.; Nonlocal boundary-value problem of the second kind for a Sturm Liouville operator, Differential Equations 23 (1987) 979-987.
- [18] Liu, B.; Solvability of multi point boundary value problem at resonance (I), Indian Journal of Pure and Applied Mathematics 33 (2002) 475-494.
- [19] Liu, B.; Solvability of multi point boundary value problem at resonance (II), Applied Mathematics and Computations 136 (2003) 353-377.
- [20] Liu, B. and Yu, J.; Solvability of multi point boundary-value problem at resonance (III), Applied Mathematics and Computations 129 (2002) 119-143.
- [21] Liu, B.; Solvability of multi point boundary value problem at resonance (IV), Applied Mathematics and Computations 143 (2003) 275-299.
- [22] Liu, Y. and Ge, W.; Multiple positive solutions to a three-point boundary value problem with *p*-Laplacian, Journal of Mathematical Analysis and Applications **277** (2003) 293-302.

- [23] Ma, Rayun and Castañeda, Nelson; Existence of Solutions of Nonlinear m-point Boundary Value Problems, Journal of Mathematical Analysis and Applications 256 (2001) 556-567.
- [24] Sedziwy, S.; Multipoint boundary-value problems fro a second order differential equations, Journal of Mathematical Analysis and Applications 236 (1999) 384-398.
- [25] Thompson, H. B. and Tisdell, C.; Three-point boundary-value problems for second-order, ordinary, differential equations, Math. Comput. Modelling 34 (2001), no. 3-4, 311–318.
- [26] Wang, J.-Y and Jiang, D.; A unified approach to some two-point, three-point, and four-point boundary value problems with Carathéodory functions, Journal of Mathematical Analysis and Applications 211 (1997) 223-232.
- [27] Wang, J.-Y. and Zheng, D.-W.; On the existence of positive solutions to a three-point boundary value problem for the one-dimensional p-Laplacian, ZAAM 77 (1997) 477-479.

Chaitan P. Gupta

DEPARTMENT OF MATHEMATICS, 084, UNIVERSITY OF NEVADA, RENO, NV 89557, USA *E-mail address:* gupta@unr.edu