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INFINITELY MANY PERIODIC SOLUTIONS OF NONLINEAR
WAVE EQUATIONS ON Sn

JINTAE KIM

Abstract. The existence of time periodic solutions of nonlinear wave equa-
tions

utt −∆nu +
` n− 1

2

´2
u = g(u)− f(t, x)

on n-dimensional spheres is considered. The corresponding functional of the
equation is studied by the convexity in suitable subspaces, minimax arguments

for almost symmetric functional, comparison principles and Morse theory. The

existence of infinitely many time periodic solutions is obtained where g(u) =
|u|p−2u and the non-symmetric perturbation f is not small.

1. Introduction

This article is focused on the nonlinear wave equation

Au = g(u)− f(t, x), (t, x) ∈ S1 × Sn, n > 1, (1.1)

where Au = utt−∆nu+(n−1
2 )2u, g(u) = |u|p−2u and f(t, x) is 2π-periodic function

in t.
The main difficulty of Problem (1.1) is the lack of compactness. When n is

odd, the null space of A is infinite dimensional, and the component of u in this
eigenspace is very difficult to control. This fact makes the problem much harder
than an elliptic equation ∆u = g(x, u), or than a Hamiltonian system in which
every eigenspace is finite dimensional. The associated functional of Equation (1.1)
is indefinite in a very strong sense. In particular, it is not bounded from above or
from below, and it does not satisfy the Palais-Smale compactness condition in any
reasonable space.

In the case of n = 1, Bahri, Brezis, Coron, Nirenberg Rabinowitz and Tanaka
[4, 7, 8, 9, 11, 16] have proved the existence of nontrivial periodic solutions of (1.1)
under reasonable assumptions on g(u) at u = 0 and at u infinity, and the monotonic-
ity of g. For n > 1, Benci and Fortunato [6] proved by using the dual variational
method that the wave equation (1.1) possesses infinitely many 2π-periodic solutions
in Lp in the case g(u) = |u|p−2u, 2 < p < 2 + 2

n and f = 0. The existence of a
nontrivial periodic solution in the case of g(0) = 0 and f = 0, and the existence of
multiple, in some cases infinitely many, time periodic solutions for several classes
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of nonlinear terms which satisfy symmetry and some growth conditions were es-
tablished in Zhou [20, 21]. These conditions include time translation invariance or
oddness; f = 0 and g(u) ∼ |u|p−2u as u→∞, (2 < p < 2(n+1)

n−1 ).
In this paper, we are going to study the effect of perturbations which are not

small, destroy the symmetry with f 6= 0, and show how multiple solutions persist
despite these nonsymmetric perturbations. Our main result is the following

Theorem 1.1. Suppose that

2 < p <
7n+ 1 +

√
25n2 − 2n+ 9

2(3n− 1)
.

Then for any f(t, x) ∈ Lp/(p−1)(S1 × Sn), 2π-periodic in t, the non-linear wave
equation (1.1) has infinitely many periodic weak solutions in Lp(S1×Sn)∩H(S1×
Sn).

Remark 1.2. By a weak solution of (1.1), we mean a function u(t, x) satisfying∫
S1×Sn

[u(φtt −∆nφ+ (
n− 1

2
)2φ) + g(u)φ− fφ] dx dt = 0

for all φ ∈ C∞(S1 × Sn).

Remark 1.3. In general we cannot expect the equation (1.1) to have nontrivial
solution if g in (1.1) is not super-linear [20].

In [20], the existence result is proved for the case g is an odd function and for 2 <
p < 1

2 (1+( 9n−1
n−1 )1/2), where finite-dimensional approximations are used to overcome

the lack of compactness mentioned above. Using, however, Tanaka’s idea [16], we
get around these difficulties by introducing a new functional I(u) = maxv∈N F (u+
v) where N is the kernel space of the wave operator A, u is in the orthogonal
complement of N and F (u) (3.1) is the associated functional of the wave equation
(1.1). Then since the nonlinear term g(u) = |u|p−2u is monotone (g′(t) > 0 for
t 6= 0), we can use Lyapunov-Schmitt argument (Lemma 3.1) along with a compact
embedding theorem (Theorem 2.1) to show that I(u) has the desired compactness
properties. And it is easy to see that each critical point of I(u) corresponds to
a unique critical point of F (u). We are able to make a slight improvement on p
compared to the result in [20].

If f(t, x) ≡ 0, the equation (1.1) has a natural symmetry, i.e., the functional
F (u) is symmetric and it is easier to handle. We will address the case where f(t, x)
is not identically 0 as a perturbation from symmetry by using the ideas from [12]
where elliptic equations and Hamiltonian systems are discussed. The situation for
the wave equation is more complicated since the operator A has infinitely many
positive and infinitely many negative eigenvalues. The idea is based on some topo-
logical linking theorems. The key in this argument is to estimate the size of some
explicitly constructed critical values. To do this, a symmetric comparison functional
K(u), defined only on the positive eigenspace, is introduced ([16, 2, 3]). Using the
symmetry the critical values of K(u) are constructed, and the relations between
critical values of I(u) and K(u) is established. Then the estimate of Morse index
at the critical points of K(u) as in [5, 16] will lead us to the needed estimate for
construction of critical points of I(u).

For more general nonlinearity where g is not an odd function, we believe that
same variational scheme can be applied. However, since the resulting functional
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is not symmetric anymore, S1-action (instead of Z2-action) should be considered
and the analysis will be more complicated. We are working on a case where g is
superlinear; i.e., g(ξ)/ξ →∞ as |ξ| → ∞.

2. Preliminaries and notation

Let A be the linear wave operator such that

Au = utt −∆nu+ (
n− 1

2
)2u,

where (t, x) ∈ S1 × Sn, n > 1. It is well known that the eigenvalues of A are

λ(`, j) = (`+
n− 1

2
− j)(`+

n− 1
2

+ j), `, j = 0, 1, 2, . . . , (2.1)

and the corresponding eigenfunctions in L2(S1 × Sn) are

φ`,m(x) sin jt, φ`,m(x) cos jt, m = 1, 2, . . . ,M(`, n),

where φ`,m(x), m = 1, 2, . . . ,M(`, n), are spherical harmonics of degree ` on Sn

and

M(`, n) =
(2`+ n− 1)Γ(`+ n− 1)

Γ(`+ 1) Γ(n)
= O(`n−1).

Then u ∈ L2(S1 × Sn) can be written as

u =
∑
`,j,m

u`,j,me
ijtφ`,m(x),

where u`,j,m are the Fourier coefficients. Note that

(Au, u)L2 =
∑
`,j,m

λ(`, j)|u`,j,m|2.

So the Sobolev space we will work on is defined as

H = {u ∈ L2(S1 × Sn) : ‖u‖2
H =

∑
`,j,m

|λ(`, j)||u`,j,m|2 +
∑

λ(`,j)=0

|u`,j,m|2 <∞}.

Clearly H is a Hilbert space with the inner product

〈u, v〉H =
∑
`,j,m

|λ(`, j)|u`,j,mv̄`,j,m +
∑

λ(`,j)=0

u`,j,mv̄`,j,m.

We decompose H into invariant subspaces:

N = {u ∈ H : u`,j,m = 0 for λ(`, j) 6= 0},
E+ = {u ∈ H : u`,j,m = 0 for λ(`, j) ≤ 0},
E− = {u ∈ H : u`,j,m = 0 for λ(`, j) ≥ 0}.

As can be seen from the expression of the eigenvalues, if the space Sn is odd
dimensional; i.e., n odd, the kernel N of the operator A is infinite dimensional and
‖u‖H = ‖u‖L2 for u ∈ N . Consequently, we only have a compact embedding of the
type E ↪→ Lp, (p > 2) for E = E+ ⊕ E− the orthogonal complement of N .

Theorem 2.1 ([20]). For any 2 ≤ p < 2n+2
n−1 , E ↪→ Lp is compact.
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Remark 2.2. Unlike the 1-dimensional case where the existence result is obtained
for all of 2 < p < ∞ [16, 20], the above embedding theorem 2.1 presents a crucial
restriction on p for any existence results of wave equations on Sn, n > 1. Note
that in 1-dimension the compact embedding E ↪→ Lp works for all of 2 < p < ∞
[9, 18, 20].

Remark 2.3. If n is even, then N = ∅ and H = E, and hence problems are much
easier to handle.

3. Variational Scheme

We now set up a variational formulation for the wave equation (1.1) as in [16].
The functional corresponding to the equation (1.1) for u ∈ H is given by

F (u) =
1
2
〈Lu, u〉H −

∫
Ω

(
1
p
|u|p − f · u)dt dx, (3.1)

where Ω = S1 × Sn, and L is the continuous self-adjoint operator in H associated
with the operator A, i.e.,

〈Lu, v〉H = (Au, v) =
∑
`,j,m

λ(`, j)u`,j,mv̄`,j,m.

Using the Hilbert Space norm defined above, for u = u+ + u− ∈ E, u+ ∈ E+,
u− ∈ E− and v ∈ N , F (u) can be written as

F (u+ v) =
1
2
‖u+‖2

E − 1
2
‖u−‖2

E − 1
p
‖u+ v‖p

p + (f, u+ v), (3.2)

which is in C2(E ⊕N, R). Because of the compact embedding Theorem 2.1 on E,
we instead work with the functional I(u) on E,

I(u) = max
v∈N

F (u+ v) =
1
2
‖u+‖2

E − 1
2
‖u−‖2

E −Q(u), (3.3)

where

Q(u) = min
v∈N

[
1
p
‖u+ v‖p

p − (f, u+ v)], (3.4)

The functional Q(u) has the following properties.

Lemma 3.1. (i) For all u ∈ Lp+1, there exists a unique v(u) ∈ N such that

Q(u) =
1
p
‖u+ v(u)‖p

p − (f, u+ v(u)). (3.5)

(ii) The map v : Lp → N is continuous.
(iii) Q : E → R is in C1 and for all u, h ∈ E,

〈Q′(u), h〉 = (|u+ v(u)|p−2(u+ v(u))− f, h). (3.6)

Moreover, Q′ : E → E∗ is compact and there are constants C1, C2 > 0
depending on ‖f‖p/(p−1) such that for all u ∈ E,

‖Q′‖E∗ ≤ C1(|Q(u)|
p−1

p + 1), (3.7)

|〈Q′(u), u〉 − pQ(u)| ≤ C2(|Q(u)|1/p + 1). (3.8)
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The proofs of the results in this section and the next section can be done as in
[16, 12] with slight modifications for n-dimension, so we omit most of them. For
later use we introduce Q0 ∈ C1(E,R) defined by

Q0(u) = min
v∈N

1
p
‖u+ v‖p

p =
1
p
‖u+ v0(u)‖p

p, (3.9)

where v0(u) can be given uniquely as in Lemma 3.1. Q(u) and Q0(u) have the
following relations.

Lemma 3.2. There is a constant C > 0 depending on ‖f‖p/(p−1) such that for
u ∈ E,

|Q(u)| ≤ C(Q0(u) + 1), (3.10)

|Q(u)−Q0(u)| ≤ C(Q0(u)1/p + 1). (3.11)

We will show that there is an unbounded sequence {uk} of critical points of I(u).
Then it is easy to see that uk + v(uk) are critical points of F (u).

Modified functional. Now we will follow the procedures of Rabinowitz [12] as
in [16] in constructing critical values for functionals that are not symmetric. The
procedure requires an estimate on the deviation from symmetry of I of the form

|I(u)− I(−u)| ≤ β1(|I(u)|µ + 1) for u ∈ E

that I does not satisfy. We introduce a modified functional J(u): Let χ ∈ C∞(R,R)
be such that χ(τ) = 1 for τ ≤ 1, χ(τ) = 0 for τ ≥ 2 and −2 ≤ χ′(τ) ≤ 0, 0 ≤ χ(τ) ≤
1, for τ ∈ R. For u = u+ + u− ∈ E+ ⊕ E− = E and a = max{1, 12

p−1}, let

Φ(u) = a(I(u)2 + 1)1/2, ψ(u) = χ(Φ(u)−1Q0(u)).

Define
J(u) =

1
2
‖u+‖2

E − 1
2
‖u−‖2

E −Q0(u)− ψ(u)(Q(u)−Q0(u)).

The functional J(u) ∈ C1(E,R) satisfies the following conditions.

Proposition 3.3. (i) there is α = α(‖f‖p/(p−1)) > 0 such that for u ∈ E,

|J(u)− J(−u)| ≤ α(|J(u)|1/p + 1),

(ii) there is M0 > 0 such that J(u) ≥ M0 and ‖J ′(u)‖E∗ ≤ 1 implies J(u) =
I(u).

(iii) If J ′(u) = 0 and J(u) ≥M0 for u ∈ E, then I(u) = J(u) and I ′(u) = 0.
(iv) J(u) satisfies (P.S.) on the set {u : J(u) ≥M0}.

Using the above proposition, we can show that large critical values of J(u) are
also critical values of I(u).

Construction of critical values (Rabinowitz’s process). We rearrange the
positive eigenvalues of the wave operator A as 0 < µ1 ≤ µ2 ≤ µ3 ≤ . . . , and let
e1, e2, e3, . . . be the corresponding orthonormal eigenfunctions. Then the positive
eigenspace E+ can be written as

E+ = span{ej : j ∈ N}.

Define
E+

k = span{ej : 1 ≤ j ≤ k}.
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Since, for u ∈ E+
k , ‖u‖E ≤ µ

1/2
k ‖u‖L2 , for u = u+ +u− ∈ E+

k ⊕E−, by Lemma 3.1
and Lemma 3.2, we have

J(u) ≤ 1
2
‖u+‖2

E − cµ
−p/2
k ‖u+‖p

E − 1
2
‖u−‖2

E + C. (3.12)

Hence there is an Rk > 0 such that J(u) ≤ 0 for all u ∈ E+
k ⊕E− with ‖u‖E ≥ Rk.

We may assume that Rk < Rk+1 for each k ∈ N.
Now we construct minimax values following [12]. Let BR denote the closed unit

ball of radius R in E, Dk = BRk
∩ (E+

k ⊕ E−) and

Γk = {γ ∈ C(Dk, E) : γsatisfies conditions (γ1)-(γ3) below},

(γ1) γ is odd in Dk,
(γ2) γ(u) = u for all u ∈ ∂Dk,
(γ3) γ(u) = α+(u)u+ + α−(u)u− + κ(u), where α+ ∈ C(Dk, [0, 1]) and α− ∈

C(Dk, [1, ᾱ]) are even functionals (ᾱ ≥ 1 depends on γ) and κ is a compact
operator such that on ∂Dk, α(u) = α+(u) + α−(u) = 1 and κ(u) = 0.

Define
bk = inf

γ∈Γ
sup

u∈Dk

J(γ(u)), k ∈ N.

If f ≡ 0 and J is even, it can be shown as in [1] that the numbers bk are critical
values of J . If f is not identically 0, that need not be the case. However we will use
these numbers as the basis for a comparison argument. To construct a sequence of
critical values of J , we must define another set of minimax values. Let

Uk = Dk+1 ∩ {u ∈ E : 〈u, ek+1〉 ≥ 0},
Λk = {λ ∈ C(Uk, E) : λ satisfies (λ1)-(λ3) below},

where
(λ1) λ|Dk

∈ Γk,
(λ2) λ(u) = u on ∂Uk \Dk,
(λ3) λ(u) = α̃+(u)u+ + α̃−(u)u− + κ̃(u), where α̃+ ∈ C(Uk, [0, 1]) and α̃− ∈

C(Uk, [1, α̃]) are even functionals (α̃ ≥ 1 depends on λ) and κ̃ is a compact
operator such that α̃(u) = 1 and κ̃(u) = 0 on ∂Uk \Dk.

Now define
ck = inf

λ∈Λ
sup

u∈Uk

J(λ(u)) k ∈ N.

By definition of bk and ck we easily see that ck ≥ bk. The key to this construction
is that we have the following existence result.

Proposition 3.4. Suppose ck > bk ≥M0. Let δ ∈ (0, ck − bk) and

Λk(δ) = {λ ∈ Λk; J(λ) ≤ bk + δ on Dk}.

Then
ck(δ) = inf

λ∈Λk(δ)
sup

u∈Uk

J(λ(u)) ( ≥ ck)

is a critical value of I(u).

Proof. By (iii) of Proposition 3.3, it is sufficient to show that ck(δ) is a critical
value of J(u). First note that by definition of bk and Λk,Λk(δ) 6= ∅. Choose
ε̄ = 1

2 (ck − bk − δ) > 0. Now suppose that ck(δ) is not a critical value of J . Then
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by a version of Deformation Lemma 3.5 below there exist ε ∈ (0, ε̄] and η as in the
lemma. Choose H ∈ Λk(δ) such that

max
Uk

J(H(u)) ≤ ck(δ) + ε.

Let H̄ = η(1,H). We need to show H̄ ∈ Λk. Clearly H̄ ∈ C(Uk, E). (λ1) and (λ2)
easily follow from the choice of H and (iv) of Lemma 3.5. Since H satisfies (λ3), so
does H̄ by the deformation Lemma 3.5. Moreover on Dk, J(H(u)) ≤ ck(δ)− ε̄ and
hence J(H̄(u)) = J(H(u)) ≤ bk + δ on Dk, again by (iv) of Lemma 3.5. Therefore
H̄(u) ∈ Λk(δ) and by (v) of Lemma 3.5,

max
Uk

J(H(u)) ≤ ck(δ)− ε,

which contradicts to the definition of ck(δ). Hence ck(δ) is a critical value of J �

Lemma 3.5 (cf. [13, 14, 16]). Suppose that c > M0 is a regular value of J(u),
that is, J ′(u) 6= 0 when J(u) = c. Then for any ε̃ > 0, there exist an ε ∈ (0, ε̃] and
η ∈ C([0, 1]× E,E) such that

(i) η(t, ·) is odd for all t ∈ [0, 1] if f(t, x) ≡ 0;
(ii) η(t, ·) is a homeomorphism of E onto E for all t;
(iii) η(0, u) = ufor all u ∈ E;
(iv) η(t, u) = u if J(u) /∈ [c− ε̃, c+ ε̃];
(v) J(η(1, u)) ≤ c− ε if J(u) ≤ c+ ε;
(vi) η(1, u) satisfies (λ3).

Therefore, to establish the existence of critical values, it suffices to show that
there exists a subsequence {kj} such that

ckj
> bkj

≥M0 for j ∈ N and bkj
→∞ as j →∞. (3.13)

This can be shown by the following, due to the almost symmetry of J(u) ((i) of
Proposition 3.3).

Proposition 3.6. If ck = bk, for all k ≥ k0, then there exists a constant C̄ > 0
such that

bk ≤ C̄kp/(p−1) for all k ∈ N. (3.14)

Therefore, we need to show only that there exists a subsequence {kj}, ε > 0 and
Cε > 0 satisfying the inequality

bkj
> Cεk

p/(p−1−ε)
j for all j ∈ N. (3.15)

4. Bahri-Berestycki’s max-min value βk [2, 3]

To show (3.15), we introduce a comparison functional. By the definition of Q0(u)
it can be shown [16] that for u = u+ + u− ∈ E = E+ ⊕ E−,

J(u) ≥ 1
2
‖u+‖2

E − 1
2
‖u−‖2

E − a0

p
‖u+‖p

p −
a0

p
‖u−‖p

p − a1, (4.1)

where a0 > 0, a1 > 0 are constants independent of u. For u ∈ E+, set

K(u) =
1
2
‖u+‖2

E − a0

p
‖u+‖p

p ∈ C2(E+,R).

Then we can easily see the following.
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Lemma 4.1. (i) J(u) ≥ K(u) − a1 for all u ∈ E+. (ii) K(u) satisfies the (P.S.)
on E+.

For m > k, k,m ∈ N, set

Am
k = {σ ∈ C(Sm−k, E+

m) : σ(−x) = −σ(x) for all x ∈ Sm−k}
and

βm
k = sup

σ∈Am
k

min
x∈Sm−k

K(σ(x)).

We can show that there exists a subsequence {mj} such that for all k,

βk = lim
j→∞

β
mj

k ∈ N.

exists. We list the following important properties of βk:

Proposition 4.2. (i) βk’s are critical values of K ∈ C2(E+,R) for each k ∈ N;
(ii) βk ≤ βk+1 for all k ∈ N; (iii) βk →∞ as k →∞.

The proof of the above proposition is same as in [16] except for some adjustment
for n-dimensional consideration. To estimate bk we establish the following relation
between bk and βk using topological linking lemmas.

Proposition 4.3. For all k ∈ N,

bk ≥ βk − a1, (4.2)

where a1 is the number in Lemma 4.1.

For a proof of the above proposition, see [16].

5. Estimate of βk using Morse Index

In this section some index properties of βk are discussed. The lower bound for
the index of K ′′ obtained here and the upper bound estimate in the next section
give the growth estimate (3.15) that we are looking for.
Definition. For u ∈ E+, we define an index of K ′′(u) by

indexK ′′(u) = the number of nonpositive eigenvalues of K ′′(u)

= max{dimS;S ≤ E+ such that 〈K ′′(u)h, h〉 ≤ 0 for all h ∈ S}.
Here A ≤ B in the bracket means A is a subspace of B.

Proposition 5.1. Suppose βk < βk+1. Then there exists uk ∈ E+ such that

K(uk) ≤ βk, K ′(uk) = 0, indexK ′′(uk) ≥ k.

The proof of the above proposition can be done using a theorem from Morse
theory; see [16].

6. Proof of the existence of the solutions

By Propositions 3.4 and 3.6, we know that (3.15), the growth estimate on bk’s
ensures the existence of an unbounded sequence of critical values. In view of (4.3),
however, we now need the growth estimate on βk’s. First note by Proposition 5.1
that there exists {ukj

} such that

βkj
≥ K(ukj

) =
1
2
‖ukj

‖2
E − a0

p
‖ukj

‖p
p = (

1
2
− 1
p
)a0‖uj‖p

p. (6.1)
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Thus, by Proposition 5.1 again, we need to get an upper bound of index K ′′(ukj
)

in terms of ‖ukj
‖p

p in proving (3.15). For u, h, w ∈ E+, k′′(u) is given by

〈K ′′(u)w, h〉 = 〈w, h〉 − (p− 1)a0(|u|p−2h, h).

Thus by the definition of index,

indexK ′′(u) = max{dimS : S ≤ E+, (p− 1)a0(|u|p−2h, h) ≥ ‖h‖2
E , h ∈ S}.

Define an operator D : L2 → E+ such that for v(x, t) =
∑
vl,j,mφl,me

ijt,

(Dv)(x, t) =
∑
m

∑
λ(l,j)>0

|λ(l, j)|−1/2vl,j,mφl,me
ijt.

Remark 6.1. D is an isometry from

L2
+ = spanL2{φl,me

ijt;λ(l, j) > 0}
to E+ and D = 0 on spanL2{φl,me

ijt;λ(l, j) ≤ 0}.

Remark 6.2. Setting h = Dv in the above expression of index, we get

indexK ′′(u) = max {dimS : S ≤ L2 s.t. (p− 1)a0(|u|p−2Dv,Dv) ≥ ‖v‖2
2, v ∈ S}

= #{µj : µj ≥ 1, eigenvalues of D∗((p− 1)a0|u|p−2)D}.

Proposition 6.3. There exist C > 0 such that for u ∈ E+,

indexK ′′(uj) ≤ C‖u‖r
s,

where r = 2(p−2)nq
n+1−(n−1)q and s = (p−2)q

q−1 .

Proof. We try to find a big enough l such that

(p− 1)a0(|u|p−2Dv,Dv) ≤ ‖v‖2
2, on E+\E+

l−1,

which implies index K ′′(u) ≤ l. First we have the following estimate on E+\E+
l−1∫

Ω

|Dv|2|u|p−2 ≤ C
( ∫

Ω|Dv|2q
)1/q( ∫

Ω|u|(p−2) q
q−1

) q−1
q

,

= C‖Dv‖2
2q‖u‖

p−1
(p−2) q

q−1
,

≤ C‖Dv‖2s
2 ‖Dv‖

2(1−s)
q̄ ‖u‖p−2

(p−2) q
q−1

,

≤ C
1
λs

l

‖v‖2s
2 ‖v‖

2(1−s)
2 ‖u‖p−2

(p−2) q
q−1

,

= C
1
λs

l

‖v‖2
2‖u‖

p−2
(p−2) q

q−1
,

where q̄ = 2n+2
n−1 , 1

2q = s
2 + 1−s

q̄ and to get the second last inequality, we used the
facts ‖Dv‖2

E ≤ |λl|−1‖v‖2
L2 on E+\E+

l−1 and ‖Dv‖2
E = ‖v‖2

L2 and the compact
embedding theorem 2.1. Thus to have

∫
|Dv|2|u|p−2 ≤ ‖v‖2

2, we need

‖u‖p−2
(p−2) q

q−1
≤ |λl|s ∼ C|l|s/n, s = (n+ 1− (n− 1)q)/2q, i.e.,

α := C‖u‖
(p−2)n 2q

(n+1)−(n−1)q

(p−2) q
q−1

∼ l.

Let l = [α+ 1]. Then∫
|Dv|2|u|p−1 ≤ ‖v‖2

L2 for all v ∈ E+\E+
l−1.
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and therefore

indexK ′′(u) ≤ l = [α+ 1] ≤ Cα = C‖u‖
(p−2) 2nq

n+1−(n−1)q

(p−2) q
q−1

.

�

We now prove (3.15); i.e., bkj
> C kj

p
p−1−ε . From Proposition 6.3 and Proposi-

tion 5.1 we have

j ≤ indexK ′′(ukj
) ≤ C‖ukj

‖
(p−2) 2nq

(n+1)−(n−1)q

(p−2) q
q−1

, 2 < p <
2(n+ 2)
n− 1

.

Note that
‖ukj‖p

p ≥ C‖ukj‖
p
(p−2) q

q−1
if q ≥ p

2
,

so that
‖ukj

‖p
p ≥ jp/((p−2) 2nq

(n+1)−(n−1)q if q ≥ p

2
.

In order to have (3.15), we need

(p− 2)
2nq

(n+ 1)− (n− 1)q
< (p− 1).

Since 2nq
(n+1)−(n−1)q is an increasing function of q, choose q = p

2 . Then we finally
obtain

2 < p <
7n+ 1 +

√
25n2 − 2n+ 9

2(3n− 1)
,

for which (3.15) is satisfied.
We remark that this upper bound of p may not be optimal and we are still trying

to improve it.
Now there exists a sequence uk ⊂ E of critical points of I(u) such that as k →∞

I(uk) =
1
2
‖u+

k ‖
2
E − 1

2
‖u−k ‖

2
E − 1

p
‖uk + v(uk)‖p

p − (f, uk + v(uk)) →∞.

Since I ′(uk) = 0, we have

〈I ′(uk), uk〉 = ‖u+
k ‖

2
E −‖u−k ‖

2
E − (|uk + v(uk)|p−2(uk + v(uk)) + f, uk + v(uk)) = 0.

Above two equations combined gives(1
2
− 1
p

)
‖uk + v(uk)‖p

p +
1
2
(f, uk + v(uk)) →∞ as n→∞. (6.2)

By direct calculation we can easily see that the {uk + v(uk)} are critical points of
F (u), so it follows from (6.2) that

‖uk + v(uk)‖p →∞ as k →∞.

This ensures the existence of a unbounded sequence of critical points for F (u), which
is a unbounded sequence of the weak solutions of the nonlinear wave equation (1.1)
on Sn.
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