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SUBSOLUTIONS: A JOURNEY FROM POSITONE TO INFINITE
SEMIPOSITONE PROBLEMS

EUN KYOUNG LEE, RATNASINGHAM SHIVAJI, JINGLONG YE

Abstract. We discuss the existence of positive solutions to −∆u = λf(u)
in Ω, with u = 0 on the boundary, where λ is a positive parameter, Ω is

a bounded domain with smooth boundary ∆ is the Laplacian operator, and

f : (0,∞) → R is a continuous function. We first discuss the cases when
f(0) > 0 (positone), f(0) = 0 and f(0) < 0 (semipositone). In particular,

we will review the existence of non-negative strict subsolutions. Along with
these subsolutions and appropriate assumptions on f(s) for s� 1 (which will

lead to large supersolutions) we discuss the existence of positive solutions.

Finally, we obtain new results on the case of infinite semipositone problems
(lims→0+ f(s) = −∞).

1. Introduction

Nonlinear eigenvalue problems of the form:

−∆u = λf(u) in Ω
u = 0 on ∂Ω,

(1.1)

where λ is a positive parameter, Ω is a bounded domain with smooth boundary
∂Ω,∆ is a Laplacian operator, and f : (0,∞) → R is a continuous function, arise in
the study of steady state reaction diffusion processes, in particular, nonlinear heat
generation, combustion theory, chemical reactor theory and population dynamics
(see Parks [31], Sattinger [34], Parter [32], Tam [36], Aris [6] and Selgrade [35]). In
the case when f(0) > 0 (positone problems) there is a very rich history (spanning
over 50 years) on the study of positive solutions (see Amann [4], Brown [8], Cohen
[16], Grandall [22], de Figueiredo [24], Gidas [25], Joseph [26], Kazdan [27], Laetsch
[28], and Rabinowitz [33]). The case when f(0) < 0 (semipositone problems) is
mathematically more challenging as pointed out by P. L. Lions [29]. See also Castro
[17]. However, in the past 20 years, there has been considerable progress on the
study of semipositone problems (see [1, 2, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 19, 20,
21, 37]). One of the main tools used in these studies is the method of sub-super
solutions. By a subsolution of (1.1) we mean a function ψ ∈ C2(Ω) ∩ C(Ω) that
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satisfies

−∆ψ ≤ λf(ψ) in Ω
ψ ≤ 0 on ∂Ω,

and by a supersolution of (1.1) we mean a function Z ∈ C2(Ω)∩C(Ω) that satisfies

−∆Z ≥ λf(Z) in Ω
Z ≥ 0 on ∂Ω.

Then it is well known (see Amman [4]) that if there exists a subsolution ψ and
a supersolution Z such that ψ ≤ Z in Ω then (1.1) has a solution u such that
ψ ≤ u ≤ Z. In applying this method to obtain positive solutions, it is essential that
we are able to construct non-negative strict subsolutions. By a strict subsolution we
mean a subsolution that is not a solution. In the case when f(0) > 0, it is trivial to
see that ψ = 0 is a strict subsolution for every λ > 0. More on positone problems
will be discussed in Section 2. But the real challenge occurs in the case when
f(0) < 0 (semipositone problems). Here our test functions for positive subsolutions
must come from positive functions ψ such that −∆ψ < 0 near ∂Ω while −∆ψ > 0
in a large part of the interior of Ω. We will discuss more on semipositone problems
in Section 3. The case when f(0) = 0 does cause considerable problems in the
construction of positive subsolutions, specially in the case when we have no other
information at the origin. We will address this later in Section 4. Finally in Section
5, we will establish new results for the case when lims→0+f(s) = −∞ (infinite
semipositone problems). We note that once strict non-negative subsolutions ψ are
constructed, with appropriate assumptions on f(s) for s� 1 one can obtain large
positive supsolutions Z such that Z ≥ ψ on Ω, hence establishing positive solutions
to (1.1).

2. f(0) > 0: Positone Problems

In this section, we consider the problem (1.1) under the following assumption

(F0) f(0) > 0.
(F1) lims→∞

f(s)
s = 0.

We have the following result

Theorem 2.1. Assume (F0), (F1). Then (1.1) has a positive solution for all λ > 0.

Proof. It is clear that ψ = 0 is a strict subsolution since f(0) > 0. Let f̃(s) :=

maxt∈[0,s] f(t). Then f(s) ≤ f̃(s), f̃ is nondecreasing and lims→∞
ef(s)
s = 0. Hence

we can choose m(λ) � 1 such that

1
‖e‖∞λ

≥ f̃(m(λ)‖e‖∞)
m(λ)‖e‖∞

where e is the solution of −∆e = 1 in Ω, e = 0 on ∂Ω. Let Z := m(λ)e. Then

−∆Z = m(λ) ≥ λf̃(m(λ)‖e‖∞) ≥ λf̃(m(λ)e) ≥ λf(m(λ)e).

Thus Z is a supersolution. Hence (1.1) has a positive solution. �
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3. f(0) < 0: Semipositone Problems

In this section, we discuss two results for the problem (P ). First, we assume
that

(F2) There exists K0 > 0 such that f(s) ≥ −K0 for all s > 0.
(F3) lims→∞ f(s) = ∞.
Note that (F2) includes the case f(0) < 0.

Theorem 3.1. Assume (F1), (F2), (F3). Then (1.1) has a positive solution for
λ� 1.

Proof. Let λ1 > 0 be the first eigenvalue of the operator −∆ with Dirichlet bound-
ary condition and φ be the corresponding eigenfunction satisfying φ > 0 in Ω and
∂φ
∂ν < 0 on ∂Ω, where ν is outward normal vector on ∂Ω and ‖φ‖∞ = 1. Note that
λ1 and φ satisfy:

−∆φ = λ1φ in Ω
φ = 0 on ∂Ω.

Let δ > 0, µ > 0, m > 0 be such that |∇φ|2 − λ1φ
2 ≥ m in Ωδ and µ ≤ φ ≤ 1 in

Ω \ Ωδ where Ωδ := {x ∈ Ω : d(x, ∂Ω) ≤ δ}. This is possible since |∇φ| 6= 0 on ∂Ω.
Let ψ := K0λ

2m φ2. Then

∇ψ =
K0λ

m
φ∇φ

and

−∆ψ = −div(∇ψ) = −K0λ

m
{φ∆φ+ |∇φ|2} = −K0λ

m
{|∇φ|2 − λ1φ

2}

Then in Ωδ,
−∆ψ ≤ −K0λ ≤ λf(ψ). (3.1)

From (F3), we know that for λ� 1

K0λ1

m
≤ f(

K0λ

2m
µ2).

Thus in Ω \ Ωδ,

−∆ψ ≤ K0λλ1

m
≤ λf(

K0λ

2m
φ2) = λf(ψ). (3.2)

Combining (3.1) and (3.2), if λ� 1 we see that

−∆ψ ≤ λf(ψ) in Ω.

Thus ψ is a positive subsolution of (1.1). Next constructing a supersolution Z as
in the proof of Theorem 2.1, we can also choose m(λ) large enough so that Z ≥ ψ
in Ω. This is possible since e > 0 in Ω and ∂e

∂ν < 0 on ∂Ω, where ν is outward
normal vector on ∂Ω. Thus we know that (1.1) has a positive solution u ∈ [ψ,Z]
for λ� 1. �

We next discuss a semipositone problem where f(u) < 0 for u � 1. (Hence in
this case (F3) will not be satisfied.) In particular, we recall the example

−∆u = au− bu2 − c in Ω
u = 0 on ∂Ω,

(3.3)
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studied in [30]. This equation arises in the study of population dynamics of one
species with u representing the concentration of the species and c representing
the rate of harvesting. To get a positive subsolution, in [30] the authors use the
anti-maximum principle by Clement and Peletier [18], and establish the following
result:

Theorem 3.2. Suppose that a > λ1 and b > 0. Then there exists c1 = c1(a, b)
such that for 0 < c < c1, (3.3) has a positive solution.

Proof. Consider the boundary-value problem

−∆z − λz = −1 in Ω
z = 0 on ∂Ω.

(3.4)

By the anti-maximum principle in [18], there exist a δ1 = δ1(Ω) > 0 such that if
λ ∈ (λ1, λ1 +δ1) then (3.4) has a solution z = zλ which is positive in Ω and ∂zλ

∂ν < 0
on ∂Ω. Fix λ∗ ∈ (λ1,min{a, λ1 +δ1}). Let zλ∗ be the solution of (3.4) when λ = λ∗

and α := ‖zλ∗‖∞. Define ψ = Kczλ∗ , where K ≥ 1 is to be determined later. We
will choose K ≥ 1 and c > 0 properly so that ψ is a subsolution. We know

−∆ψ = Kc(−∆zλ∗) = Kc(λ∗zλ∗)−Kc.

Thus if we prove

(a− λ∗)Kzλ∗ − bc(Kzλ∗)2 +K − 1 ≥ 0, (3.5)

then
−∆ψ = Kc(λ∗zλ∗)−Kc ≤ a(Kczλ∗)− b(Kczλ∗)2 − c.

Thus ψ = Kczλ∗ can be a subsolution of (3.3). To show (3.5), define H(y) := (a−
λ∗)y−bcy2+(K−1). IfH(y) ≥ 0 for all y ∈ [0,Kα], then (3.5) is true. Since a > λ∗,
if K ≥ 1, then it suffice to show that H(Kα) = (a−λ∗)Kα−bc(Kα)2+(K−1) ≥ 0,
which is equivalent to

c ≤ (a− λ∗)Kα+ (K − 1)
b(Kα)2

Thus if we define

c1 = c1(a, b) := sup
K≥1

(a− λ∗)Kα+ (K − 1)
b(Kα)2

,

then we know that when 0 < c < c1, there exist K̃ ≥ 1 such that ψ = K̃czλ∗ is a
subsolution. It is obvious that Z = M where M is sufficiently large constant is a
supersolution of (3.3) with Z ≥ ψ. Thus Theorem 3.2 is proven. �

4. f(0) = 0

In this section, we consider the problem (1.1) for the case f(0) = 0. Since (F2)
includes the case f(0) = 0, we’ve already discussed this case in Theorem 3.1. We
now discuss a more precise result under the additional assumption

(F4) f(0) = 0 and f ′(0) > 0.

Theorem 4.1. Assume (F1), (F4). Then (1.1) has a positive solution for λ >
λ1/f

′(0).
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Proof. Since f ′(0) > λ1/λ we know that there exist m = m(λ) > 0 such that

f(s) >
λ1

λ
s for all s ∈ (0,m). (4.1)

Let ψ := mφ where φ is as defined in the proof of Theorem 3.1. Then

−∆ψ = λ1mφ ≤ λf(mφ) = λf(ψ).

Thus ψ is a positive subsolution of (1.1). By the same argument as in the proof of
Theorem 3.1, we can find a supersolution Z of (1.1) with Z ≥ ψ. Thus we know
that (1.1) has a positive solution u ∈ [ψ,Z] for λ > λ1

f ′(0) . �

For the case f(0) = 0, we can also study (1.1) when f does not satisfy (F1) but
satisfies

(F5) There exists r0 > 0 such that f(s) > 0 for s ∈ (0, r0) and f(r0) = 0.

Theorem 4.2. Assume (F5). Then (1.1) has a positive solution for λ� 1.

Proof. Fix σ ∈ (0, r0) and let ψ := σ
2φ

2 where φ is as defined in the proof of
Theorem 3.1. Then

−∆ψ = −σ{|∇φ|2 − λ1φ
2}.

Let δ > 0, µ > 0, m > 0 and Ωδ be as before (see the proof of Theorem 3.1). We
can choose λ� 1 such that

σλ1 < λ min
s∈[ σ

2 µ2,σ]
f(s).

Thus in Ω \ Ωδ for λ� 1,

−∆ψ ≤ σλ1 < λ min
s∈[ σ

2 µ2,σ]
f(s) ≤ λf(ψ). (4.2)

On the other hand, in Ωδ,

−∆ψ < −σm ≤ λf(ψ), (4.3)

since λf(ψ) ≥ 0. Combining (4.2) and (4.3), if λ � 1 we see that ψ is a positive
subsolution of (1.1). Next, it is easy to check that constant function Z := r0 is a
supersolution of (1.1) with Z ≥ ψ. Hence for λ � 1, (1.1) has a positive solution
and Theorem 4.2 is proven. �

5. lims→0+ f(s) = −∞: Infinite Semipositone Problems

We discuss the existence of positive solutions to the following infinite semiposi-
tone problem:

−∆u = λ
g(u)
uα

in Ω

u = 0 on ∂Ω,
(5.1)

where λ > 0, α ∈ (0, 1), g(0) < 0 and g is continuous. We introduce the following
hypotheses:

(G1) There exists γ > 0 and B > 0 such that α ≤ γ < α+ 1 and g(s) ≤ Bsγ for
s ≥ 0.

(G2) There exists β > 0 and A > 0 such that g(s) ≥ Asβ for s� 1.
We establish the following result.

Theorem 5.1. Assume (G1), (G2). Then (5.1) has a positive solution for λ� 1.
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We prove our result by finding sub-super solutions to our singular equation. By
a subsolution of (5.1) we mean a function ψ : Ω → R such that ψ ∈ C2(Ω) ∩ C(Ω)
and satisfies:

−∆ψ ≤ λ
g(ψ)
ψα

in Ω

ψ > 0 in Ω
ψ = 0 on ∂Ω

and by a supersolution of (5.1) we mean a function Z : Ω → R such that Z ∈
C2(Ω) ∩ C(Ω) and satisfies:

−∆Z ≥ λ
g(Z)
Zα

in Ω

Z > 0 in Ω
Z = 0 on ∂Ω.

Then we have the following Lemma.

Lemma 5.2 ([23]). If there exist a subsolution ψ and a supersolution Z of (5.1)
such that ψ ≤ Z on Ω, then (5.1) has at least one solution u ∈ C2(Ω) ∩ C(Ω)
satisfying ψ ≤ u ≤ Z on Ω.

Proof. Let φ be the eigenfunction as defined in the proof of Theorem 3.1. Let
ψ := λrφ

2
1+α , r ∈ ( 1

1+α ,
1

1+α−β ). Then

∇ψ = λr(
2

1 + α
)φ

1−α
1+α∇φ

and

−∆ψ = −λr(
2

1 + α
){φ

1−α
1+α ∆φ+

(1− α

1 + α

)
φ−

2α
1+α |∇φ|2}

= λr(
2

1 + α
)

1

(φ
2

1+α )α
{λ1φ

2 −
(1− α

1 + α

)
|∇φ|2}.

Let δ > 0, µ > 0, m > 0 be such that

(
2

1 + α
){(1− α

1 + α
)|∇φ|2 − λ1φ

2} ≥ m in Ωδ,

and φ ∈ [µ, 1] in Ω \Ωδ, where Ωδ := {x ∈ Ω : d(x, ∂Ω) ≤ δ}. Then in Ωδ, if λ� 1
then

(
2

1 + α
){λ1φ

2 − (
1− α

1 + α
)|∇φ|2} ≤ −m ≤ λg(0)

λrλrα
= λ[1−r−rα]g(0)

since g(0) < 0 and 1− r − rα < 0. Hence in Ωδ, if λ� 1 then

−∆ψ = λr(
2

1 + α
)

1

(φ
2

1+α )α
{λ1φ

2 −
(1− α

1 + α

)
|∇φ|2} ≤ λ

g(λrφ
2

1+α )

(λrφ
2

1+α )α
. (5.2)

Next in Ω \ Ωδ, since φ ≥ µ, from (G2),

g(λrφ
2

1+α ) ≥ A(λrφ
2

1+α )β ,

for λ� 1. Also since 0 < µ ≤ φ < 1 and 1 + r(β − α)− r > 0,

(
2λ1

1 + α
)[λrφ

2
1+α ] ≤ λA(λrφ

2
1+α )β−α = λ

A(λrφ
2

1+α )β

(λrφ
2

1+α )α
,
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for λ� 1. Hence in Ω \ Ωδ, for λ� 1,

−∆ψ ≤ λr(
2

1 + α
)λ1φ

2
1+α ≤ λ

A(λrφ
2

1+α )β

(λrφ
2

1+α )α
≤ λ

g(λrφ
2

1+α )

(λrφ
2

1+α )α
. (5.3)

Combining (5.2) and (5.3), we see that

−∆ψ ≤ λ
g(ψ)
ψα

in Ω

for λ� 1. Thus ψ is a positive subsolution.
Now we construct a supersolution Z ≥ ψ. Since 1 + α − γ > 0 and γ − α ≥ 0,

we can choose m(λ) � 1 such that

m(λ)1+α−γ ≥ λBeγ−α

where e is the unique positive solution of −∆e = 1 in Ω, e = 0 on ∂Ω. Hence for
m(λ) � 1

m(λ) ≥ λB(m(λ)e)γ

(m(λ)e)α
.

Let Z := m(λ)e. Then by (G1) we have

−∆Z = m(λ) ≥ λg(m(λ)e)
(m(λ)e)α

.

Thus Z is a supersolution. Further m(λ) can be chosen large enough so that Z ≥ ψ
on Ω. This is possible since e > 0 in Ω and ∂e

∂ν < 0 on ∂Ω, where ν is outward
normal vector on ∂Ω. Hence for λ� 1, (5.1) has a positive solution and the proof
is complete. �
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