Seventh Mississippi State - UAB Conference on Differential Equations and Computational Simulations, *Electronic Journal of Differential Equations*, Conf. 17 (2009), pp. 159–170. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BOUNDED SOLUTIONS: DIFFERENTIAL VS DIFFERENCE EQUATIONS

JEAN MAWHIN

ABSTRACT. We compare some recent results on bounded solutions (over \mathbb{Z}) of nonlinear difference equations and systems to corresponding ones for nonlinear differential equations. Bounded input-bounded output problems, lower and upper solutions, Landesman-Lazer conditions and guiding functions techniques are considered.

1. INTRODUCTION

In this paper, we survey some recent results on bounded solutions (over \mathbb{Z}) of nonlinear difference equations or systems, and compare them to the corresponding situations for bounded solutions (over \mathbb{R}) of nonlinear differential equations or systems.

We first give some maximum and anti-maximum principles for bounded solutions of linear differential equations of the form

$$u'(t) + \lambda u(t) = f(t)$$

and of corresponding linear difference equations of the form

$$\Delta u_m + \lambda u_m = f_m \quad (m \in \mathbb{Z})$$

Then we compare Landesman-Lazer conditions for bounded solutions of Duffing's differential equations

$$x'' + cx' + g(x) = p(t),$$

with those for bounded solutions of Duffing's difference equations

$$\Delta^2 x_{m-1} + c\Delta x_m + g(x_m) = p_m \quad (m \in \mathbb{Z})$$

or

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + g(x_m) = p_m \quad (m \in \mathbb{Z}).$$

Finally, we compare the method of guiding functions for systems of ordinary differential equations

x' = f(t, x)

²⁰⁰⁰ Mathematics Subject Classification. 39A11, 39A12.

Key words and phrases. Difference equations; bounded solutions; lower-upper solutions;

Landesman-Lazer conditions; guiding functions.

^{©2009} Texas State University - San Marcos.

Published April 15, 2009.

J. MAWHIN

and for systems of difference equations

$$\Delta x_m = f_m(x_m),$$

or corresponding discrete dynamical systems

$$x_{m+1} = g_m(x_m).$$

2. Bounded input-bounded output problem for first order linear equations

2.1. Bounded solutions of linear ordinary differential equations. The bounded input-bounded output (BIBO) problem for the linear ordinary differential equation

$$u'(t) + \lambda u(t) = f(t) \tag{2.1}$$

consists in finding conditions upon λ under which, for each $f \in L^{\infty}(\mathbb{R})$, (2.1) has a unique solution $u \in AC(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. We denote the usual norm of $v \in L^{\infty}(\mathbb{R})$ by $|u|_{\infty}$. Such a solution is simply called a *bounded solution* of (2.1). The BIBO problem was essentially solved as follows by Perron in 1930 [14]. If $\lambda = 0$, we have no uniqueness for $f \equiv 0$, and no existence for $f(t) \equiv 1$. If $\lambda \neq 0$, the homogeneous problem

$$u'(t) + \lambda u(t) = 0 \tag{2.2}$$

only has the trivial bounded solution. For $\lambda > 0$,

$$u(t) = \int_{-\infty}^{t} e^{-\lambda(t-s)} f(s) \, ds \tag{2.3}$$

is a bounded solution of (2.1), and hence the unique one. For $\lambda < 0$,

$$u(t) = -\int_{t}^{+\infty} e^{-\lambda(t-s)} f(s) \, ds \tag{2.4}$$

is a bounded solution of (2.1), and hence the unique one. We summarize the results in the following

Proposition 2.1. Equation (2.1) has a unique solution $u \in AC(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ for each $f \in L^{\infty}(\mathbb{R})$ if and only if $\lambda \in \mathbb{R} \setminus \{0\}$.

2.2. A maximum principle for bounded solutions of differential equations. The following definition is modelled upon the one given in [5] in a different context.

Definition 2.2. Given $\lambda \in \mathbb{R} \setminus \{0\}$, the linear operator $d/dt + \lambda I : AC(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \to L^{\infty}(\mathbb{R})$ satisfies a maximum principle (MP) if, for each $f \in L^{\infty}(\mathbb{R})$, (2.1) has a unique solution u and if $f(t) \geq 0$ ($t \in \mathbb{R}$) implies that $\lambda u(t) \geq 0$ ($t \in \mathbb{R}$). The MP is strong if, furthermore, $f(t) \geq 0$ ($t \in \mathbb{R}$) and $\int_{\mathbb{R}} f > 0$ imply that $\lambda u(t) > 0$ ($t \in \mathbb{R}$)).

A direct consideration of formulas (2.3) and (2.4) immediately implies the following

Proposition 2.3. If $f \in L^{\infty}(\mathbb{R})$, the BIBO problem for (2.1) has a MP if and only if $\lambda \in] -\infty, 0[\cup]0, +\infty[$, and the MP is not strong.

 $\rm EJDE\text{-}2009/CONF/17$

2.3. Bounded solutions of linear difference equations. Let $l^{\infty}(\mathbb{Z}) = \{u = (u_m)_{m \in \mathbb{Z}} : \sup_{m \in \mathbb{Z}} |u_m| < \infty\}$. Endowed with the norm $|u|_{\infty} := \sup_{m \in \mathbb{Z}} |u_m|$, $l^{\infty}(\mathbb{Z})$ is a Banach space. We denote by $\Delta u_m = u_{m+1} - u_m$ $(m \in \mathbb{Z})$ the forward difference operator acting on sequences $(u_m)_{m \in \mathbb{Z}}$. The bounded input-bounded output (BIBO) problem we address is to find the values of λ such that, for each $(f_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$, the linear difference equation

$$\Delta u_m + \lambda u_m = f_m \quad (m \in \mathbb{Z}) \tag{2.5}$$

has a unique solution $(u_m)_{m\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z})$. We refer those solutions as bounded solutions.

Easy computations show that, for $\lambda = 0$, existence or uniqueness may fail. Namely, for $f_m = 0$ $(m \in \mathbb{Z})$, any constant sequence is a solution in $l^{\infty}(\mathbb{Z})$, and, for $f_m = 1$ $(m \in \mathbb{Z})$, the solutions given by $u_m = u_0 + m$ $(m \in \mathbb{Z})$ are all unbounded. Similarly, for $\lambda = 2$, any alternating sequence $(-1)^m c$ is a solution of (2.5) with $f_m = 0$ $(m \in \mathbb{Z})$, and, for $f_m = (-1)^m$ $(m \in \mathbb{Z})$ none of the solutions $u_m = (-1)^m u_0 + m(-1)^{m+1}$ $(m \in \mathbb{Z})$ is bounded.

Now, for $\lambda \in \mathbb{R} \setminus \{0, 2\}$, it is easy to see that the homogeneous difference equation

$$\Delta u_m + \lambda u_m = 0 \tag{2.6}$$

only has the trivial solution in $l^{\infty}(\mathbb{Z})$. On the other hand, if $\lambda \in [0, 2[$,

$$u_m = \sum_{k=-\infty}^{m-1} (1-\lambda)^{m-k-1} f_k \quad (m \in \mathbb{Z})$$
 (2.7)

is a solution of (2.5) belonging to $l^{\infty}(\mathbb{Z})$, and hence the unique one. Similarly, if $\lambda \in]-\infty, 0[\cup]2, +\infty[$,

$$u_m = -\sum_{k=m}^{\infty} (1-\lambda)^{m-k-1} f_k \quad (m \in \mathbb{Z})$$
(2.8)

is the unique solution of (2.5) belonging to $l^{\infty}(\mathbb{Z})$. We summarize the results in the following proposition.

Proposition 2.4. Equation (2.5) has a unique solution $(u_m)_{m\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ for each $(f_m)_{m\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $\lambda \in \mathbb{R} \setminus \{0,2\}$.

2.4. A maximum principle for bounded solutions of difference equations. The following definition is modelled upon the one given in [5] in a different context.

Definition 2.5. Given $\lambda \in \mathbb{R} \setminus \{0\}$, the linear operator $\Delta + \lambda I : l^{\infty}(\mathbb{Z}) \to l^{\infty}(\mathbb{Z})$ satisfies a maximum principle (MP) if for each $(f_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$, the equation (2.5) has a unique solution and if $f_m \geq 0$ $(m \in \mathbb{Z})$ implies that $\lambda u_m \geq 0$ $(m \in \mathbb{Z})$. The maximum principle is said to be *strong* if, in addition, $f_m \geq 0$ $(m \in \mathbb{Z})$, and $\sup_{m \in \mathbb{Z}} f_m > 0$ imply that $\lambda u_m > 0$ $(m \in \mathbb{Z})$).

Notice that, in the more classical terminology modelled on the one for second order elliptic operators, the above definition corresponds to a maximum principle when $\lambda < 0$, and to an anti-maximum principle in the sense of Clément-Pelletier [6] when $\lambda > 0$. The following result can be read directly upon formulas (2.7) and (2.8).

Proposition 2.6. The BIBO problem for (2.5) has a MP if and only if $\lambda \in] - \infty, 0[\cup]0, 1]$, and this MP is not strong;

2.5. **BIBO problem: linear differential vs linear difference equations.** It follows from Propositions 2.3 and 2.6 that the ranges of values for which a maximum principle hold are different in the differential and the difference cases. The following simple propositions help to understand the reason of this difference. Given a linear operator L between Banach spaces, let $\sigma(L)$ denotes its (complex) spectrum and $\mathcal{R}(L) = \mathbb{C} \setminus \sigma(L)$ denote its resolvent set. The following propositions are analogous to those proved in [5] is a different context.

Proposition 2.7. If the BIBO problem for $L + \lambda I$, with $L = \Delta$ or d/dt has a MP for some $\lambda \neq 0$, then

$$|u|_{\infty} \le \frac{|f|_{\infty}}{|\lambda|}.\tag{2.9}$$

Proof. If $u \in L^{\infty}(\mathbb{R})$ is the solution of (2.1) and $v = \frac{|f|_{\infty}}{\lambda} \in L^{\infty}(\mathbb{R})$ the solution of $Lv + \lambda v = |f|_{\infty}$,

then $v - u \in L^{\infty}(\mathbb{R})$ is the solution of

$$L(v-u) + \lambda(v-u) = |f|_{\infty} - f$$

and the MP implies that $\lambda(v-u) \ge 0$, i.e. that

$$\lambda u \le |f|_{\infty}.$$

Similarly, we have

$$L(v+u) + \lambda(v+u) = |f|_{\infty} + f$$

and hence, by the MP, $\lambda(v+u) \ge 0$, i.e. $\lambda u \ge -|f|_{\infty}$.

In the ordinary differential equation case, the estimate (2.9) can also be obtained directly for any $\lambda \in \mathbb{R} \setminus \{0\}$. Indeed, it follows from (2.3) that if $\lambda > 0$, then

$$|u(t)| \le |f|_{\infty} \int_{-\infty}^{t} e^{-\lambda(t-s)} \, ds = \frac{1}{\lambda} |f|_{\infty}.$$

Similarly, if $\lambda < 0$, we get

$$|u(t)| \le |f|_{\infty} \int_{t}^{+\infty} e^{-\lambda(t-s)} \, ds = -\frac{1}{\lambda} |f|_{\infty}.$$

In the DE case, the following estimates can be obtained directly from the formulas (2.7) and (2.8)

$$\begin{split} |u|_{\infty} &\leq \frac{|f|_{\infty}}{|\lambda|} \quad \text{if } \lambda < 0, \quad |u|_{\infty} \leq \frac{|f|_{\infty}}{|\lambda|} \quad \text{if } 0 < \lambda \leq 1, \\ |u|_{\infty} &\leq \frac{|f|_{\infty}}{2-\lambda} \quad \text{if } 1 < \lambda < 2, \quad |u|_{\infty} \leq \frac{|f|_{\infty}}{\lambda-2} \quad \text{if } 2 < \lambda. \end{split}$$

Proposition 2.8. If the BIBO problem for $L + \lambda I$, with $L = \Delta$ or d/dt has a MP for some $\lambda \neq 0$, then

$$\mathcal{R}(L) \supset \{\mu \in \mathbb{C} : |\mu - \lambda| < |\lambda|\}.$$
(2.10)

Proof. We have, for $\mu \in \mathbb{C}$,

$$Lu + \mu u = f \Leftrightarrow Lu + \lambda u + (\mu - \lambda)u = f$$
$$\Leftrightarrow u + (\mu - \lambda)(L + \lambda)^{-1}u = (L + \lambda)^{-1}f,$$

EJDE-2009/CONF/17

and, using Proposition 2.7,

$$|(\mu - \lambda)(L + \lambda)^{-1}u|_{\infty} \le |\mu - \lambda| \frac{|u|_{\infty}}{|\lambda|},$$

so that, for $\frac{|\mu-\lambda|}{|\lambda|} < 1$, equation $Lu + \mu u = f$ has a unique bounded solution. \Box

It is easy to check that, for the BIBO problem in the ordinary differential equation case, the spectrum $\sigma(L)$ of $L: AC(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \to L^{\infty}(\mathbb{R})$ is equal to $i\mathbb{R}$.

FIGURE 1. ODE spectrum

Therefore, for any $\lambda \in \mathbb{R}$, the set $\{\mu \in \mathbb{C} : |\mu - \lambda| < |\lambda|\}$ is always contained in the resolvent set $\mathcal{R}(L)$.

Similarly, for the BIBO problem in the difference equation case, the spectrum $\sigma(L)$ of $L: l^{\infty}(\mathbb{Z}) \to l^{\infty}(\mathbb{Z})$ is the circle $\{1 + e^{i\theta} : \theta \in [0, 2\pi]\}$. Hence, for any $\lambda < 0$, the set $\{\mu \in \mathbb{C} : |\mu - \lambda| < |\lambda|\}$ is contained in $\mathcal{R}(L)$, but, for $\lambda > 0$, this is only true for $\lambda \in]0, 1]$. This, together with Proposition 2.8, sheds some light on the fact that the maximum principle for the BIBO problem in the difference case only holds for $\lambda \in]-\infty, 0[\cup]0, 1]$. Notice also that the estimate $|u|_{\infty} \leq \frac{|f|_{\infty}}{|\lambda|}$ only holds for those values of λ .

FIGURE 2. DE spectrum

3. Bounded input-bounded output problems for some Duffing's Equations

3.1. Linear equations. It is a standard result that the second order linear ordinary differential equation

$$x'' + cx' + ax = f(t)$$
(3.1)

has a unique solution $x \in AC^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ for any $f \in L^{\infty}(\mathbb{R})$ if and only if a < 0.

3.2. **Duffing's equations.** Duffing's differential equations are nonlinear second order differential equations of the form

J. MAWHIN

$$x'' + cx' + g(x) = p(t), (3.2)$$

where $c \in \mathbb{R}, g : \mathbb{R} \to \mathbb{R}$ and $p : \mathbb{R} \to \mathbb{R}$ are continuous.

Correspondingly, we call *Duffing difference equations* the second order nonlinear difference equations of the form

$$\Delta^2 x_{m-1} + c\Delta x_m + g(x_m) = p_m \quad (m \in \mathbb{Z})$$
(3.3)

or

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + g(x_m) = p_m \quad (m \in \mathbb{Z})$$
(3.4)

where

$$\Delta^2 x_{m-1} = x_{m+1} - 2x_m + x_{m-1} \quad (m \in \mathbb{Z}),$$

 $g \in C(\mathbb{R}, \mathbb{R})$, and $c \in \mathbb{R}$.

The bounded input-bounded output (BIBO) problem for (3.2) consists, for given g, in determining the inputs $p \in L^{\infty}(\mathbb{R})$ for which equation (3.2) has at least one solution $u \in AC^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. This problem was first considered by Ahmad [1], and then by Ortega [12], Ortega-Tineo [13], and Mawhin-Ward [10].

Similarly, the bounded input-bounded output (BIBO) problem for (3.3) or (3.4) consists, for given g, in determining the inputs $(p_m)_{m\in\mathbb{Z}}\in l^{\infty}(\mathbb{Z})$ for which (3.3) or (3.4) has at least one solution $(x_m)_{m\in\mathbb{Z}}\in l^{\infty}(\mathbb{Z})$. See [3, 9].

3.3. Bounded lower and upper solutions. We develop a method of lower and upper solutions for the bounded solutions of (3.3) and (3.4). We first need a limiting lemma [9].

Lemma 3.1. Let $f_m \in C(\mathbb{R}, \mathbb{R})$ $(m \in \mathbb{Z})$, $c \in \mathbb{R}$ Assume that, for each $n \in \mathbb{N}^*$, there exists $(x_m^n)_{-n-1 \leq m \leq n+1}$ such that

$$\Delta^2 x_{m-1}^n + c\Delta x_m^n + f_m(x_m^n) = 0 \quad (-n \le m \le n)$$

and such that $\alpha_m \leq x_m^n \leq \beta_m$ ($|m| \leq n+1$) for some $(\alpha_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$, $(\beta_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$. Then there exists $(\widehat{x}_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ such that

$$\Delta^2 \widehat{x}_{m-1} + c \Delta \widehat{x}_m + f_m(\widehat{x}_m) = 0, \ \alpha_m \le \widehat{x}_m \le \beta_m \quad (m \in \mathbb{Z}).$$

The same result for

$$\Delta^2 \widehat{x}_{m-1} + c \Delta \widehat{x}_{m-1} + f_m(\widehat{x}_m) = 0 \ (m \in \mathbb{Z}).$$

The proof is based upon Borel-Lebesgue lemma and Cantor diagonalization process.

We now define the concept of bounded lower and upper solutions for second order difference equations [9]. Let $f_m \in C(\mathbb{R}, \mathbb{R})$ $(m \in \mathbb{Z}), c \in \mathbb{R}$.

Definition 3.2. $(\alpha_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ (resp. $(\beta_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$) is a bounded lower solution (resp. upper solution) for

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

if

$$\Delta^2 \alpha_{m-1} + c\Delta \alpha_m + f_m(\alpha_m) \ge 0$$

(resp. $\Delta^2 \beta_{m-1} + c\Delta \beta_m + f_m(\beta_m) \le 0$) $(m \in \mathbb{Z})$

 $\rm EJDE\text{-}2009/CONF/17$

A similar definition holds for

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + f_m(x_m) = 0 \quad (m \in \mathbb{Z}).$$

We have the associated existence theorem.

Theorem 3.3. If $c \ge 0$ (resp. $c \le 0$) and

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

(resp. $\Delta^2 x_{m-1} + c\Delta x_{m-1} + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$)

has a lower solution $(\alpha_m)_{m\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ and an upper solution $(\beta_m)_{m\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ such that $\alpha_m \leq \beta_m$ $(m \in \mathbb{Z})$, then it has a solution $(x_m)_{m\in\mathbb{Z}}$ such that $\alpha_m \leq x_m \leq \beta_m (m \in \mathbb{Z})$

Proof. The proof is based upon the existence theorem for lower and upper solutions for the Dirichlet problem

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (-n \le m \le n)$$
$$x_{-n-1} = \alpha_{-n-1}, \quad x_{n+1} = \alpha_{n+1}$$

for each n and the limiting Lemma 3.1.

An important special case is that of constant lower and upper solutions.

Corollary 3.4. If $c \ge 0$ and if $\exists \alpha \le \beta$ such that $f_m(\beta) \le 0 \le f_m(\alpha) \ (m \in \mathbb{Z})$, then

$$\Delta^2 x_{m-1} + c\Delta x_m + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

has a solution $(x_m)_{m\in\mathbb{Z}}$ such that $\alpha \leq x_m \leq \beta \ (m\in\mathbb{Z})$.

Example 3.5. If $c \ge 0$ and a > 0, then for each $(p_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$

$$\Delta^2 x_{m-1} + c\Delta x_m - ax_m = p_m \quad (m \in \mathbb{Z})$$

has a unique solution $(u_m)_{m\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.

Similar results hold if $c \leq 0$ for the equations

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + f_m(x_m) = 0 \quad (m \in \mathbb{Z})$$

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} - ax_m = p_m \quad (m \in \mathbb{Z}).$$

In the ordinary differential equation case, a similar result holds for all $c \in \mathbb{R}$ for the equations

$$\begin{aligned} x'' + cx' + f(t,x) &= 0\\ x'' + cx' - ax &= p(t) \quad (a > 0, \quad p \in L^\infty(\mathbb{R})) \end{aligned}$$

(see [4, 11]).

3.4. Second order linear equations. The following result can be proved like Proposition 2.4.

Proposition 3.6. *If* $c \notin \{-2, 0\}$

 $\Delta x_{m-1} + cx_m = h_m \quad (m \in \mathbb{Z})$

has a unique solution $(x_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ for each $(h_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.

Before dealing with second order difference equations, we introduce some notions and results for sequences with bounded primitive. The corresponding concepts for functions upon \mathbb{R} were introduced in [12].

Definition 3.7. The Δ -primitive $(H_m^{\Delta})_{m \in \mathbb{Z}}$ of $(h_m)_{m \in \mathbb{Z}}$ is any sequence $(H_m^{\Delta})_{m \in \mathbb{Z}}$ such that $\Delta H_m^{\Delta} = h_m \ (m \in \mathbb{Z}).$

Such a Δ -primitive is for example given by

$$H_m^{\Delta} = \begin{cases} \sum_{k=0}^{m-1} h_k & \text{if } m \ge 1\\ 0 & \text{if } m = 0\\ -\sum_{k=m}^{-1} h_k & \text{if } m \le -1 \end{cases} \quad (m \in \mathbb{Z})$$

We define the space $BP(\mathbb{Z})$ as the set

$$\{(h_m)_{m\in\mathbb{Z}}: (H_m^{\Delta})_{m\in\mathbb{Z}}\in l^{\infty}(\mathbb{Z})\}.$$

It is easy to check that $BP(\mathbb{Z}) \subsetneq l^{\infty}(\mathbb{Z})$. The situation is different in the continuous case, where $BP(\mathbb{R}) \not\subset BC(\mathbb{R})$, and $BC(\mathbb{R}) \not\subset BP(\mathbb{R})$.

We have now the following result for the BIBO problem for some linear second order difference equations.

Proposition 3.8. *If* $c \notin \{-2, 0\}$ *,*

$$\Delta^2 x_{m-1} + c\Delta x_m = h_m \quad (m \in \mathbb{Z})$$

has a solution $(x_m)_{m\in\mathbb{Z}}\in l^{\infty}(\mathbb{Z})$ if and only if $h\in BP(\mathbb{Z})$.

Proposition 3.9. If $c \notin \{0, 2\}$,

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} = h_m \quad (m \in \mathbb{Z})$$

has a solution $(x_m)_{m\in\mathbb{Z}}\in l^{\infty}(\mathbb{Z})$ if and only if $h\in BP(\mathbb{Z})$.

The corresponding results for ordinary differential equations were proved by Ortega in [12].

Proposition 3.10. If $c \neq 0$, equation

$$x'' + cx' = h(t)$$

has a solution $x \in AC(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ if and only if $h \in BP(\mathbb{R})$.

We now introduce concepts of generalized mean values to bounded sequences.

Definition 3.11. The *lower (resp. upper) mean value* of $(p_j)_{j \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ is the real number defined by

$$\widehat{p} := \lim_{n \to \infty} \inf_{m-k \ge n} \left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_j \right)$$
(resp. $\widetilde{p} := \lim_{n \to \infty} \sup_{m-k \ge n} \left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_j \right)$)

Lemma 3.12. The following statements are equivalent :

- (i) $\alpha < \widehat{p} \leq \widetilde{p} < \beta$.
- (ii) there exists $(p_m^*)_{m\in\mathbb{Z}} \in BP(\mathbb{Z}), \ (p_m^{**})_{m\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ such that $p_m = p_m^* + p_m^{**}$ $(m\in\mathbb{Z})$ and $\alpha < \inf_{k\in\mathbb{Z}} p_k^{**} \le \sup_{k\in\mathbb{Z}} p_k^{**} < \beta.$

Corollary 3.13. If $\widehat{p} = \widetilde{p} = 0$, then, for each $\epsilon > 0$ there exists $(p_m^*)_{m \in \mathbb{Z}} \in BP(\mathbb{Z})$, $(p_m^{**})_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ such that $p_m = p_m^* + p_m^{**}$ $(m \in \mathbb{Z})$, $\sup_{k \in \mathbb{Z}} |p_k^{**}| < \epsilon$.

In the continuous case those results and concepts are due to Ortega-Tineo [13].

3.5. **Duffing difference equations.** We can now prove the following result for the existence of bounded solutions of Duffing difference equations.

Theorem 3.14. Assume that the following conditions hold.

(1) $c > 0, g \in C(\mathbb{R}, \mathbb{R}), (p_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ (2) There exists $r_0 > 0$ and $\delta_{-} < \delta_{+}$ such that $g(y) \ge \delta_{+}$ for $y \le -r_0, g(y) \le \delta_{-}$ for $y \ge r_0.$ (3) $\delta_{-} < \widehat{p} \le \widetilde{p} < \delta_{+}.$

Then

$$\Delta^2 x_{m-1} + c\Delta x_m + g(x_m) = p_m \quad (m \in \mathbb{Z})$$

has at least one solution $(x_m)_{m\in\mathbb{Z}}\in l^{\infty}(\mathbb{Z})$.

Proof. Write $p_m = p_m^* + p_m^{**}$ $(m \in \mathbb{Z})$ with $(p_m^*)_{m \in \mathbb{Z}} \in BP(\mathbb{Z}), (p_m^{**})_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ and $\delta_- < \inf_{k \in \mathbb{Z}} p_k^{**} \le \sup_{k \in \mathbb{Z}} p_k^{**} < \delta_+$. By Proposition 3.8,

$$\Delta^2 x_{m-1} + c\Delta x_m = p_m^* \quad (m \in \mathbb{Z})$$

has a solution $(u_m)_{m\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z})$. Letting $x_m = u_m + z_m$ $(m \in \mathbb{Z})$, we obtain the equivalent problem

$$\Delta^2 z_{m-1} + c\Delta z_m + g(u_m + z_m) - p_m^{**} = 0 \quad (m \in \mathbb{Z}).$$
(3.5)

Then $\alpha = -r_0 - \sup_{k \in \mathbb{Z}} u_k$ is a lower solution and $\beta = r_0 - \inf_{k \in \mathbb{Z}} u_k$ an upper solution for (3.5), and we conclude using Corollary 3.4.

3.6. Landesman-Lazer condition. Theorem 3.14 gives existence conditions of the Landesman-Lazer type.

Corollary 3.15. If
$$c > 0$$
, $g \in C(\mathbb{R}, \mathbb{R})$, $(p_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$, and

$$\overline{\lim}_{y \to +\infty} g(y) < \widehat{p} \le \widetilde{p} < \underline{\lim}_{y \to -\infty} g(y)$$
(3.6)

then

$$\Delta^2 x_{m-1} + c\Delta x_m + g(x_m) = p_m \quad (m \in \mathbb{Z})$$

has a solution $(x_m)_{m\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.

Remark 3.16. If, for all $x \in \mathbb{R}$,

$$-\infty < \overline{\lim}_{y \to +\infty} g(y) < g(x) < \underline{\lim}_{y \to -\infty} g(y) < +\infty$$

then $(p_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ and (3.6) is necessary for the existence of a bounded solution.

Similar results hold for

$$\Delta^2 x_{m-1} + c\Delta x_{m-1} + g(x_m) = p_m \quad (c < 0) \quad (m \in \mathbb{Z})$$

In the ordinary differential equation case, similar results hold for

$$x'' + cx' + g(x) = p(t) \quad (c \neq 0)$$

(see [10]).

Example 3.17. 1. If c > 0, b > 0,

$$\Delta^2 x_{m-1} + c\Delta x_m - b \frac{x_m}{1+|x_m|} = p_m \quad (m \in \mathbb{Z})$$

has a solution $(x_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $(p_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ and $-b < \widehat{p} \leq \widetilde{p} < b$.

2. If c > 0, b > 0, and $0 \le a < 1$,

$$\Delta^2 x_{m-1} + c\Delta x_m - b\frac{x_m}{1+|x_m|^a} = p_m \quad (m \in \mathbb{Z})$$

has a solution $(x_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $(p_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.

J. MAWHIN

It remains an open problem to prove or disprove that if c > 0 and b > 0,

$$\Delta^2 x_{m-1} + c\Delta x_m + \frac{bx_m}{1+|x_m|} = p_m \quad (m \in \mathbb{Z})$$

has a solution $(x_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $(p_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ and $-b < \widehat{p} \leq \widetilde{p} < b$.

Similarly it is an open problem to prove or disprove that if c > 0, b > 0, and $0 \le a < 1$,

$$\Delta^2 x_{m-1} + c\Delta x_m + \frac{bx_m}{1 + |x_m|^a} = p_m \quad (m \in \mathbb{Z})$$

has a solution $(x_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $(p_m)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.

The corresponding results are true in the ordinary differential equation case [1, 12, 13].

4. Guiding functions for bounded solutions of systems of difference equations

4.1. Guiding functions for ordinary differential equations. Consider the system

$$x' = f(t, x) \tag{4.1}$$

where $f \in C(\mathbb{R} \times \mathbb{R}^n, \mathbb{R}^n)$.

Definition 4.1. A guiding function for (4.1) is a function $V \in C^1(\mathbb{R}^n, \mathbb{R})$ such that, for some $\rho_0 > 0$,

$$\langle \nabla V(x), f(t,x) \rangle \le 0$$

when $||x|| \ge \rho_0$.

The following theorem was first proved by Krasnosel'skii-Perov in 1958 [8]. A simpler proof has been given by Alonso-Ortega in 1995 [2].

Theorem 4.2. If (4.1) has a guiding function V such that $\lim_{\|x\|\to\infty} V(x) = +\infty$, then (4.1) has a solution x bounded over \mathbb{R} .

A natural question is to know if a corresponding result holds for a difference system

$$x_{n+1} - x_n = f_n(x_n) \quad (n \in \mathbb{Z})$$

or, equivalently for a discrete dynamical system

$$x_{n+1} = g_n(x_n) \quad (n \in \mathbb{Z}).$$

EJDE-2009/CONF/17

$$x_{m+1} = g_m(x_m) \quad (m \in \mathbb{Z}) \tag{4.2}$$

where $g_m \in C(\mathbb{R}^n, \mathbb{R}^n)$ $(m \in \mathbb{Z})$.

Definition 4.3. A guiding function for (4.2) is a function $V \in C(\mathbb{R}^n, \mathbb{R})$, such that, for some $\rho_0 > 0$, $V(g_m(x)) \leq V(x)$ when $||x|| \geq \rho_0$ $(m \in \mathbb{Z})$.

The result corresponding to Theorem 4.2 would be : if $x_{m+1} = g_m(x_m)$ $(m \in \mathbb{Z})$ has a guiding function V such that $\lim_{\|x\|\to\infty} V(x) = +\infty$, then it has a bounded solution.

The following example, given in [3], shows that this result is *false*. Consider the maps $g_m \in C(\mathbb{R}, \mathbb{R})$ defined by

FIGURE 3. Graph of $g_m(x)$

Notice that $g_0(x) = 1$ $(x \in \mathbb{R})$, and hence $x_1 = g_0(x_0) = 1$, $x_2 = g_1(1) = 2$, $x_3 = g_2(3) = 1$, $x_4 = g_3(1) = 4$, ..., $x_{2k-1} = 1$, $x_{2k} = 2k$ $(k \in \mathbb{N}_0, x_0 \in \mathbb{R})$. Hence, all the solutions of

$$x_{m+1} = g_m(x_m) \quad (m \in \mathbb{Z}) \tag{4.3}$$

are unbounded in the future, and no bounded solution exists. On the other hand, V(x) = |x| with $\rho_0 = 3$ is a coercive guiding function for (4.3).

But the following existence theorem can be proved [3]. It uses another limiting lemma, due, for ordinary differential equations, to Krasnosel'skii [7], and whose proof is similar to that of Lemma 3.1.

Lemma 4.4. Assume that $g_m \in C(\mathbb{R}^n, \mathbb{R}^n)$ $(m \in \mathbb{Z})$ and that there exists $\rho > 0$ such that, for each $k \in \mathbb{N}^*$

$$x_{m+1} = g_m(x_m) \quad (-k \le m \le k)$$

has a solution $(x_m^k)_{-k < m < k+1}$, satisfying

$$\max_{-k \le m \le k+1} \|x_m^k\| \le \rho$$

Then there exists a solution $(\widehat{x}_m)_{m\in\mathbb{Z}}$ of (4.2) such that $\sup_{m\in\mathbb{Z}} \|\widehat{x}_m\| \leq \rho$.

Theorem 4.5. Let $g_m \in C(\mathbb{R}^n, \mathbb{R}^n)$ $(m \in \mathbb{Z})$. If (4.2) has a guiding function V with constant ρ_0 such that $\lim_{\|x\|\to\infty} V(x) = +\infty$ and such that

$$\sup_{m\in\mathbb{Z}}\max_{\|x\|\leq\rho_0}\|g_m(x)\|<\infty,\tag{4.4}$$

then (4.2) has a solution $(x_m)_{m\in\mathbb{Z}}\in (l^{\infty}(\mathbb{Z}))^n$.

Proof. Take $\rho_1 > \max\{\rho_0, \sup_{m \in \mathbb{Z}} \max_{\|x\| \le \rho_0} \|g_m(x)\|\}$. Define

$$V_1 := \max_{\|x\| \le \rho_1} V(x).$$

Take $\rho_2 > \rho_1$ such that

$$B_{\rho_0} \subset B_{\rho_1} \subset S_1 := \{ x \in \mathbb{R}^n : V(x) \le V_1 \} \subset B_{\rho_2}$$

Then it is easy to show that S_1 is positively invariant under the flow (4.2). For $n \in \mathbb{N}$ fixed and $(x^n)_{m \geq -n}$ the solution such that $x_{-n}^n = 0$ is such that

$$x_m^n \in S_1 \subset B_{\rho_2} \quad (m \ge -n, \ n \in \mathbb{N}).$$

Finally, use Lemma 4.4 to obtain a solution $(x_m)_{m\in\mathbb{Z}} \in (l^{\infty}(\mathbb{Z}))^n$.

Remark 4.6. Inequality (4.4) trivially holds if $g_m = g \ (m \in \mathbb{Z})$.

References

- S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc. 323 (1991), 857-875.
- [2] J.M. Alonso and R. Ortega, Global asymptotic stability of a forced Newtonian system with dissipation, J. Math. Anal. Appl. 196 (1995), 965-986.
- [3] J.B. Baillon, J. Mawhin, Bounded solutions of some nonlinear difference equations, in preparation.
- [4] I. Barbalat, Applications du principe topologique de T. Wazewski aux équations différentielles du second ordre, Ann. Polon. Math. 5 (1958), 303-317.
- [5] J. Campos, J. Mawhin, and R. Ortega, *Maximum principles around an eigenvalue with constant eigenfunctions*, Communic. Contemporary Math., to appear.
- [6] Ph. Clément, L.A. Peletier, An anti-maximum principle for second-order elliptic operators, J. Differential Equations 34 (1979), 218–229.
- [7] M.A. Krasnosel'skii, Translation along trajectories of differential equations, (Russian), Nauka, Moscow, 1966. English translation Amer. Math. Soc., Providence, 1968.
- [8] M.A. Krasnosel'skii and A.I. Perov, On a certain principle of existence of bounded, periodic and almost periodic solutions of systems of ordinary differential equations, (Russian), Dokl. Akad. Nauk SSSR 123 (1958), 235-238.
- [9] J. Mawhin, Bounded solutions of some second order difference equations, Georgian Math. J. 14 (2007), 315-324.
- [10] J. Mawhin and J.R. Ward Jr., Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc. (2) 58 (1998), 733-747.
- [11] Z. Opial, Sur les intégrales bornées de l'équation u'' = f(t, u, u'), Ann. Polon. Math. 4 (1958), 314-324.
- [12] R. Ortega, A boundedness result of Landesman-Lazer type, J. Differential Integral Equations 8 (1995), 729-734.
- [13] R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc. 124 (1996), 2089–2096.
- [14] O. Perron, Die Stabilitätfrage bei Differentialgleichungen, Math. Z. 32 (1930), 703-728.

Jean Mawhin

Département de mathématique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

E-mail address: jean.mawhin@uclouvain.be