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BOUNDED SOLUTIONS: DIFFERENTIAL VS DIFFERENCE
EQUATIONS

JEAN MAWHIN

Abstract. We compare some recent results on bounded solutions (over Z) of
nonlinear difference equations and systems to corresponding ones for nonlinear

differential equations. Bounded input-bounded output problems, lower and

upper solutions, Landesman-Lazer conditions and guiding functions techniques
are considered.

1. Introduction

In this paper, we survey some recent results on bounded solutions (over Z) of
nonlinear difference equations or systems, and compare them to the correspond-
ing situations for bounded solutions (over R) of nonlinear differential equations or
systems.

We first give some maximum and anti-maximum principles for bounded solutions
of linear differential equations of the form

u′(t) + λu(t) = f(t)

and of corresponding linear difference equations of the form

∆um + λum = fm (m ∈ Z).

Then we compare Landesman-Lazer conditions for bounded solutions of Duffing’s
differential equations

x′′ + cx′ + g(x) = p(t),
with those for bounded solutions of Duffing’s difference equations

∆2xm−1 + c∆xm + g(xm) = pm (m ∈ Z)

or
∆2xm−1 + c∆xm−1 + g(xm) = pm (m ∈ Z).

Finally, we compare the method of guiding functions for systems of ordinary
differential equations

x′ = f(t, x)
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and for systems of difference equations

∆xm = fm(xm),

or corresponding discrete dynamical systems

xm+1 = gm(xm).

2. Bounded input–bounded output problem for first order linear
equations

2.1. Bounded solutions of linear ordinary differential equations. The
bounded input-bounded output (BIBO) problem for the linear ordinary differential
equation

u′(t) + λu(t) = f(t) (2.1)

consists in finding conditions upon λ under which, for each f ∈ L∞(R), (2.1) has
a unique solution u ∈ AC(R) ∩ L∞(R). We denote the usual norm of v ∈ L∞(R)
by |u|∞. Such a solution is simply called a bounded solution of (2.1). The BIBO
problem was essentially solved as follows by Perron in 1930 [14]. If λ = 0, we have
no uniqueness for f ≡ 0, and no existence for f(t) ≡ 1. If λ 6= 0, the homogeneous
problem

u′(t) + λu(t) = 0 (2.2)

only has the trivial bounded solution. For λ > 0,

u(t) =
∫ t

−∞
e−λ(t−s)f(s) ds (2.3)

is a bounded solution of (2.1), and hence the unique one. For λ < 0,

u(t) = −
∫ +∞

t

e−λ(t−s)f(s) ds (2.4)

is a bounded solution of (2.1), and hence the unique one. We summarize the results
in the following

Proposition 2.1. Equation (2.1) has a unique solution u ∈ AC(R) ∩ L∞(R) for
each f ∈ L∞(R) if and only if λ ∈ R \ {0}.

2.2. A maximum principle for bounded solutions of differential equations.
The following definition is modelled upon the one given in [5] in a different context.

Definition 2.2. Given λ ∈ R \ {0}, the linear operator d/dt + λI : AC(R) ∩
L∞(R) → L∞(R) satisfies a maximum principle (MP) if, for each f ∈ L∞(R), (2.1)
has a unique solution u and if f(t) ≥ 0 (t ∈ R) implies that λu(t) ≥ 0 (t ∈ R). The
MP is strong if, furthermore, f(t) ≥ 0 (t ∈ R) and

∫
R f > 0 imply that λu(t) > 0

(t ∈ R)).

A direct consideration of formulas (2.3) and (2.4) immediately implies the fol-
lowing

Proposition 2.3. If f ∈ L∞(R), the BIBO problem for (2.1) has a MP if and
only if λ ∈ ]−∞, 0[∪ ]0,+∞[, and the MP is not strong.
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2.3. Bounded solutions of linear difference equations. Let l∞(Z) = {u =
(um)m∈Z : supm∈Z |um| < ∞}. Endowed with the norm |u|∞ := supm∈Z |um|,
l∞(Z) is a Banach space. We denote by ∆um = um+1 − um (m ∈ Z) the forward
difference operator acting on sequences (um)m∈Z. The bounded input-bounded
output (BIBO) problem we address is to find the values of λ such that, for each
(fm)m∈Z ∈ l∞(Z), the linear difference equation

∆um + λum = fm (m ∈ Z) (2.5)

has a unique solution (um)m∈Z ∈ l∞(Z). We refer those solutions as bounded
solutions.

Easy computations show that, for λ = 0, existence or uniqueness may fail.
Namely, for fm = 0 (m ∈ Z), any constant sequence is a solution in l∞(Z), and,
for fm = 1 (m ∈ Z), the solutions given by um = u0 + m (m ∈ Z) are all un-
bounded. Similarly, for λ = 2, any alternating sequence (−1)mc is a solution of
(2.5) with fm = 0 (m ∈ Z), and, for fm = (−1)m (m ∈ Z) none of the solutions
um = (−1)mu0 + m(−1)m+1 (m ∈ Z) is bounded.

Now, for λ ∈ R\{0, 2}, it is easy to see that the homogeneous difference equation

∆um + λum = 0 (2.6)
only has the trivial solution in l∞(Z). On the other hand, if λ ∈ ]0, 2[ ,

um =
m−1∑

k=−∞

(1− λ)m−k−1fk (m ∈ Z) (2.7)

is a solution of (2.5) belonging to l∞(Z), and hence the unique one. Similarly, if
λ ∈ ]−∞, 0[∪ ]2,+∞[ ,

um = −
∞∑

k=m

(1− λ)m−k−1fk (m ∈ Z) (2.8)

is the unique solution of (2.5) belonging to l∞(Z). We summarize the results in the
following proposition.

Proposition 2.4. Equation (2.5) has a unique solution (um)m∈Z ∈ l∞(Z) for each
(fm)m∈Z ∈ l∞(Z) if and only if λ ∈ R \ {0, 2}.

2.4. A maximum principle for bounded solutions of difference equations.
The following definition is modelled upon the one given in [5] in a different context.

Definition 2.5. Given λ ∈ R \ {0}, the linear operator ∆ + λI : l∞(Z) → l∞(Z)
satisfies a maximum principle (MP) if for each (fm)m∈Z ∈ l∞(Z), the equation
(2.5) has a unique solution and if fm ≥ 0 (m ∈ Z) implies that λum ≥ 0 (m ∈ Z).
The maximum principle is said to be strong if, in addition, fm ≥ 0 (m ∈ Z), and
supm∈Z fm > 0 imply that λum > 0 (m ∈ Z)).

Notice that, in the more classical terminology modelled on the one for second
order elliptic operators, the above definition corresponds to a maximum principle
when λ < 0, and to an anti-maximum principle in the sense of Clément-Pelletier
[6] when λ > 0. The following result can be read directly upon formulas (2.7) and
(2.8).

Proposition 2.6. The BIBO problem for (2.5) has a MP if and only if λ ∈ ] −
∞, 0[∪ ]0, 1], and this MP is not strong;
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2.5. BIBO problem: linear differential vs linear difference equations. It
follows from Propositions 2.3 and 2.6 that the ranges of values for which a maximum
principle hold are different in the differential and the difference cases. The following
simple propositions help to understand the reason of this difference. Given a linear
operator L between Banach spaces, let σ(L) denotes its (complex) spectrum and
R(L) = C \σ(L) denote its resolvent set. The following propositions are analogous
to those proved in [5] is a different context.

Proposition 2.7. If the BIBO problem for L + λI, with L = ∆ or d/dt has a MP
for some λ 6= 0, then

|u|∞ ≤ |f |∞
|λ|

. (2.9)

Proof. If u ∈ L∞(R) is the solution of (2.1) and v = |f |∞
λ ∈ L∞(R) the solution of

Lv + λv = |f |∞,

then v − u ∈ L∞(R) is the solution of

L(v − u) + λ(v − u) = |f |∞ − f

and the MP implies that λ(v − u) ≥ 0, i.e. that

λu ≤ |f |∞.

Similarly, we have
L(v + u) + λ(v + u) = |f |∞ + f

and hence, by the MP, λ(v + u) ≥ 0, i.e. λu ≥ −|f |∞. �

In the ordinary differential equation case, the estimate (2.9) can also be obtained
directly for any λ ∈ R \ {0}. Indeed, it follows from (2.3) that if λ > 0, then

|u(t)| ≤ |f |∞
∫ t

−∞
e−λ(t−s) ds =

1
λ
|f |∞.

Similarly, if λ < 0, we get

|u(t)| ≤ |f |∞
∫ +∞

t

e−λ(t−s) ds = − 1
λ
|f |∞.

In the DE case, the following estimates can be obtained directly from the formulas
(2.7) and (2.8)

|u|∞ ≤ |f |∞
|λ|

if λ < 0, |u|∞ ≤ |f |∞
|λ|

if 0 < λ ≤ 1,

|u|∞ ≤ |f |∞
2− λ

if 1 < λ < 2, |u|∞ ≤ |f |∞
λ− 2

if 2 < λ.

Proposition 2.8. If the BIBO problem for L + λI, with L = ∆ or d/dt has a MP
for some λ 6= 0, then

R(L) ⊃ {µ ∈ C : |µ− λ| < |λ|}. (2.10)

Proof. We have, for µ ∈ C,

Lu + µu = f ⇔ Lu + λu + (µ− λ)u = f

⇔ u + (µ− λ)(L + λ)−1u = (L + λ)−1f,
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and, using Proposition 2.7,

|(µ− λ)(L + λ)−1u|∞ ≤ |µ− λ| |u|∞
|λ|

,

so that, for |µ−λ|
|λ| < 1, equation Lu + µu = f has a unique bounded solution. �

It is easy to check that, for the BIBO problem in the ordinary differential equa-
tion case, the spectrum σ(L) of L : AC(R) ∩ L∞(R) → L∞(R) is equal to iR.

Figure 1. ODE spectrum

Therefore, for any λ ∈ R, the set {µ ∈ C : |µ− λ| < |λ|} is always contained in
the resolvent set R(L).

Similarly, for the BIBO problem in the difference equation case, the spectrum
σ(L) of L : l∞(Z) → l∞(Z) is the circle {1+eiθ : θ ∈ [0, 2π]}. Hence, for any λ < 0,
the set {µ ∈ C : |µ−λ| < |λ|} is contained in R(L), but, for λ > 0, this is only true
for λ ∈ ]0, 1]. This, together with Proposition 2.8, sheds some light on the fact that
the maximum principle for the BIBO problem in the difference case only holds for
λ ∈ ]−∞, 0[∪ ]0, 1]. Notice also that the estimate |u|∞ ≤ |f |∞

|λ| only holds for those
values of λ.

Figure 2. DE spectrum

3. Bounded input–bounded output problems for some Duffing’s
equations

3.1. Linear equations. It is a standard result that the second order linear ordi-
nary differential equation

x′′ + cx′ + ax = f(t) (3.1)
has a unique solution x ∈ AC1(R)∩L∞(R) for any f ∈ L∞(R) if and only if a < 0.
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3.2. Duffing’s equations. Duffing’s differential equations are nonlinear second
order differential equations of the form

x′′ + cx′ + g(x) = p(t), (3.2)

where c ∈ R, g : R → R and p : R → R are continuous.
Correspondingly, we call Duffing difference equations the second order nonlinear

difference equations of the form

∆2xm−1 + c∆xm + g(xm) = pm (m ∈ Z) (3.3)

or
∆2xm−1 + c∆xm−1 + g(xm) = pm (m ∈ Z) (3.4)

where
∆2xm−1 = xm+1 − 2xm + xm−1 (m ∈ Z),

g ∈ C(R, R), and c ∈ R.
The bounded input-bounded output (BIBO) problem for (3.2) consists, for given

g, in determining the inputs p ∈ L∞(R) for which equation (3.2) has at least one
solution u ∈ AC1(R) ∩ L∞(R). This problem was first considered by Ahmad [1],
and then by Ortega [12], Ortega-Tineo [13], and Mawhin-Ward [10].

Similarly, the bounded input-bounded output (BIBO) problem for (3.3) or (3.4)
consists, for given g, in determining the inputs (pm)m∈Z ∈ l∞(Z) for which (3.3) or
(3.4) has at least one solution (xm)m∈Z ∈ l∞(Z). See [3, 9].

3.3. Bounded lower and upper solutions. We develop a method of lower and
upper solutions for the bounded solutions of (3.3) and (3.4). We first need a limiting
lemma [9].

Lemma 3.1. Let fm ∈ C(R, R) (m ∈ Z), c ∈ R Assume that, for each n ∈ N∗,
there exists (xn

m)−n−1≤m≤n+1 such that

∆2xn
m−1 + c∆xn

m + fm(xn
m) = 0 (−n ≤ m ≤ n)

and such that αm ≤ xn
m ≤ βm (|m| ≤ n+1) for some (αm)m∈Z ∈ l∞(Z), (βm)m∈Z ∈

l∞(Z). Then there exists (x̂m)m∈Z ∈ l∞(Z) such that

∆2x̂m−1 + c∆x̂m + fm(x̂m) = 0, αm ≤ x̂m ≤ βm (m ∈ Z).

The same result for

∆2x̂m−1 + c∆x̂m−1 + fm(x̂m) = 0 (m ∈ Z).

The proof is based upon Borel-Lebesgue lemma and Cantor diagonalization process.

We now define the concept of bounded lower and upper solutions for second
order difference equations [9]. Let fm ∈ C(R, R) (m ∈ Z), c ∈ R.

Definition 3.2. (αm)m∈Z ∈ l∞(Z) (resp. (βm)m∈Z ∈ l∞(Z)) is a bounded lower
solution (resp. upper solution) for

∆2xm−1 + c∆xm + fm(xm) = 0 (m ∈ Z)

if

∆2αm−1 + c∆αm + fm(αm) ≥ 0

(resp. ∆2βm−1 + c∆βm + fm(βm) ≤ 0) (m ∈ Z)
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A similar definition holds for

∆2xm−1 + c∆xm−1 + fm(xm) = 0 (m ∈ Z).

We have the associated existence theorem.

Theorem 3.3. If c ≥ 0 (resp. c ≤ 0) and

∆2xm−1 + c∆xm + fm(xm) = 0 (m ∈ Z)

(resp. ∆2xm−1 + c∆xm−1 + fm(xm) = 0 (m ∈ Z))

has a lower solution (αm)m∈Z ∈ l∞(Z) and an upper solution (βm)m∈Z ∈ l∞(Z)
such that αm ≤ βm (m ∈ Z), then it has a solution (xm)m∈Z such that αm ≤ xm ≤
βm(m ∈ Z)

Proof. The proof is based upon the existence theorem for lower and upper solutions
for the Dirichlet problem

∆2xm−1 + c∆xm + fm(xm) = 0 (−n ≤ m ≤ n)
x−n−1 = α−n−1, xn+1 = αn+1

for each n and the limiting Lemma 3.1. �

An important special case is that of constant lower and upper solutions.

Corollary 3.4. If c ≥ 0 and if ∃α ≤ β such that fm(β) ≤ 0 ≤ fm(α) (m ∈ Z),
then

∆2xm−1 + c∆xm + fm(xm) = 0 (m ∈ Z)
has a solution (xm)m∈Z such that α ≤ xm ≤ β (m ∈ Z).

Example 3.5. If c ≥ 0 and a > 0, then for each (pm)m∈Z ∈ l∞(Z)

∆2xm−1 + c∆xm − axm = pm (m ∈ Z)

has a unique solution (um)m∈Z ∈ l∞(Z).

Similar results hold if c ≤ 0 for the equations

∆2xm−1 + c∆xm−1 + fm(xm) = 0 (m ∈ Z)

∆2xm−1 + c∆xm−1 − axm = pm (m ∈ Z).

In the ordinary differential equation case, a similar result holds for all c ∈ R for the
equations

x′′ + cx′ + f(t, x) = 0

x′′ + cx′ − ax = p(t) (a > 0, p ∈ L∞(R))

(see [4, 11]).

3.4. Second order linear equations. The following result can be proved like
Proposition 2.4.

Proposition 3.6. If c 6∈ {−2, 0}
∆xm−1 + cxm = hm (m ∈ Z)

has a unique solution (xm)m∈Z ∈ l∞(Z) for each (hm)m∈Z ∈ l∞(Z).

Before dealing with second order difference equations, we introduce some notions
and results for sequences with bounded primitive. The corresponding concepts for
functions upon R were introduced in [12].
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Definition 3.7. The ∆-primitive (H∆
m)m∈Z of (hm)m∈Z is any sequence (H∆

m)m∈Z
such that ∆H∆

m = hm (m ∈ Z).

Such a ∆-primitive is for example given by

H∆
m =


∑m−1

k=0 hk if m ≥ 1
0 if m = 0
−

∑−1
k=m hk if m ≤ −1

(m ∈ Z)

We define the space BP (Z) as the set

{(hm)m∈Z : (H∆
m)m∈Z ∈ l∞(Z)}.

It is easy to check that BP (Z) ( l∞(Z). The situation is different in the continuous
case, where BP (R) 6⊂ BC(R), and BC(R) 6⊂ BP (R).

We have now the following result for the BIBO problem for some linear second
order difference equations.

Proposition 3.8. If c 6∈ {−2, 0},
∆2xm−1 + c∆xm = hm (m ∈ Z)

has a solution (xm)m∈Z ∈ l∞(Z) if and only if h ∈ BP (Z).

Proposition 3.9. If c 6∈ {0, 2},
∆2xm−1 + c∆xm−1 = hm (m ∈ Z)

has a solution (xm)m∈Z ∈ l∞(Z) if and only if h ∈ BP (Z).

The corresponding results for ordinary differential equations were proved by
Ortega in [12].

Proposition 3.10. If c 6= 0, equation

x′′ + cx′ = h(t)

has a solution x ∈ AC(R) ∩ L∞(R) if and only if h ∈ BP (R).

We now introduce concepts of generalized mean values to bounded sequences.

Definition 3.11. The lower (resp. upper) mean value of (pj)j∈Z ∈ l∞(Z) is the
real number defined by

p̂ := lim
n→∞

inf
m−k≥n

( 1
m− k

m∑
j=k+1

pj

)
(
resp. p̃ := lim

n→∞
sup

m−k≥n

( 1
m− k

m∑
j=k+1

pj

))
Lemma 3.12. The following statements are equivalent :

(i) α < p̂ ≤ p̃ < β.
(ii) there exists (p∗m)m∈Z ∈ BP (Z), (p∗∗m )m∈Z ∈ l∞(Z) such that pm = p∗m + p∗∗m

(m ∈ Z) and α < infk∈Z p∗∗k ≤ supk∈Z p∗∗k < β.

Corollary 3.13. If p̂ = p̃ = 0, then, for each ε > 0 there exists (p∗m)m∈Z ∈ BP (Z),
(p∗∗m )m∈Z ∈ l∞(Z) such that pm = p∗m + p∗∗m (m ∈ Z), supk∈Z |p∗∗k | < ε.

In the continuous case those results and concepts are due to Ortega-Tineo [13].
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3.5. Duffing difference equations. We can now prove the following result for
the existence of bounded solutions of Duffing difference equations.

Theorem 3.14. Assume that the following conditions hold.
(1) c > 0, g ∈ C(R, R), (pm)m∈Z ∈ l∞(Z)
(2) There exists r0 > 0 and δ− < δ+ such that

g(y) ≥ δ+ for y ≤ −r0, g(y) ≤ δ− for y ≥ r0.

(3) δ− < p̂ ≤ p̃ < δ+.
Then

∆2xm−1 + c∆xm + g(xm) = pm (m ∈ Z)
has at least one solution (xm)m∈Z ∈ l∞(Z).

Proof. Write pm = p∗m + p∗∗m (m ∈ Z) with (p∗m)m∈Z ∈ BP (Z), (p∗∗m )m∈Z ∈ l∞(Z)
and δ− < infk∈Z p∗∗k ≤ supk∈Z p∗∗k < δ+. By Proposition 3.8,

∆2xm−1 + c∆xm = p∗m (m ∈ Z)

has a solution (um)m∈Z ∈ l∞(Z). Letting xm = um + zm (m ∈ Z), we obtain the
equivalent problem

∆2zm−1 + c∆zm + g(um + zm)− p∗∗m = 0 (m ∈ Z). (3.5)

Then α = −r0 − supk∈Z uk is a lower solution and β = r0 − infk∈Z uk an upper
solution for (3.5), and we conclude using Corollary 3.4. �

3.6. Landesman-Lazer condition. Theorem 3.14 gives existence conditions of
the Landesman-Lazer type.

Corollary 3.15. If c > 0, g ∈ C(R, R), (pm)m∈Z ∈ l∞(Z), and

limy→+∞g(y) < p̂ ≤ p̃ < limy→−∞g(y) (3.6)

then
∆2xm−1 + c∆xm + g(xm) = pm (m ∈ Z)

has a solution (xm)m∈Z ∈ l∞(Z).

Remark 3.16. If, for all x ∈ R,

−∞ < limy→+∞g(y) < g(x) < limy→−∞g(y) < +∞

then (pm)m∈Z ∈ l∞(Z) and (3.6) is necessary for the existence of a bounded solution.

Similar results hold for

∆2xm−1 + c∆xm−1 + g(xm) = pm (c < 0) (m ∈ Z)

In the ordinary differential equation case, similar results hold for

x′′ + cx′ + g(x) = p(t) (c 6= 0)

(see [10]).

Example 3.17. 1. If c > 0, b > 0,

∆2xm−1 + c∆xm − b
xm

1 + |xm|
= pm (m ∈ Z)

has a solution (xm)m∈Z ∈ l∞(Z) if and only if (pm)m∈Z ∈ l∞(Z) and −b < p̂ ≤ p̃ <
b.
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2. If c > 0, b > 0, and 0 ≤ a < 1,

∆2xm−1 + c∆xm − b
xm

1 + |xm|a
= pm (m ∈ Z)

has a solution (xm)m∈Z ∈ l∞(Z) if and only if (pm)m∈Z ∈ l∞(Z).

It remains an open problem to prove or disprove that if c > 0 and b > 0,

∆2xm−1 + c∆xm +
bxm

1 + |xm|
= pm (m ∈ Z)

has a solution (xm)m∈Z ∈ l∞(Z) if and only if (pm)m∈Z ∈ l∞(Z) and −b < p̂ ≤ p̃ <
b.

Similarly it is an open problem to prove or disprove that if c > 0, b > 0, and
0 ≤ a < 1,

∆2xm−1 + c∆xm +
bxm

1 + |xm|a
= pm (m ∈ Z)

has a solution (xm)m∈Z ∈ l∞(Z) if and only if (pm)m∈Z ∈ l∞(Z).
The corresponding results are true in the ordinary differential equation case

[1, 12, 13].

4. Guiding functions for bounded solutions of systems of difference
equations

4.1. Guiding functions for ordinary differential equations. Consider the sys-
tem

x′ = f(t, x) (4.1)

where f ∈ C(R× Rn, Rn).

Definition 4.1. A guiding function for (4.1) is a function V ∈ C1(Rn, R) such
that, for some ρ0 > 0,

〈∇V (x), f(t, x)〉 ≤ 0

when ‖x‖ ≥ ρ0.

The following theorem was first proved by Krasnosel’skii-Perov in 1958 [8]. A
simpler proof has been given by Alonso-Ortega in 1995 [2].

Theorem 4.2. If (4.1) has a guiding function V such that lim‖x‖→∞ V (x) = +∞,
then (4.1) has a solution x bounded over R.

A natural question is to know if a corresponding result holds for a difference
system

xn+1 − xn = fn(xn) (n ∈ Z)

or, equivalently for a discrete dynamical system

xn+1 = gn(xn) (n ∈ Z).
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4.2. Guiding function for difference equations. Let us consider the system

xm+1 = gm(xm) (m ∈ Z) (4.2)

where gm ∈ C(Rn, Rn) (m ∈ Z).

Definition 4.3. A guiding function for (4.2) is a function V ∈ C(Rn, R), such
that, for some ρ0 > 0, V (gm(x)) ≤ V (x) when ‖x‖ ≥ ρ0 (m ∈ Z).

The result corresponding to Theorem 4.2 would be : if xm+1 = gm(xm) (m ∈ Z)
has a guiding function V such that lim‖x‖→∞ V (x) = +∞, then it has a bounded
solution.

The following example, given in [3], shows that this result is false. Consider the
maps gm ∈ C(R, R) defined by

gm(x) =



1 if x ≤ −2,

mx + 2m + 1 if − 2 < x < −1,

m + 1 if − 1 ≤ x ≤ 1, (m ∈ Z)
−mx + 2m + 1 if 1 < x < 2,

1 if x ≥ 2.

Figure 3. Graph of gm(x)

Notice that g0(x) = 1 (x ∈ R), and hence x1 = g0(x0) = 1, x2 = g1(1) = 2,
x3 = g2(3) = 1, x4 = g3(1) = 4, . . . , x2k−1 = 1, x2k = 2k (k ∈ N0, x0 ∈ R). Hence,
all the solutions of

xm+1 = gm(xm) (m ∈ Z) (4.3)
are unbounded in the future, and no bounded solution exists. On the other hand,
V (x) = |x| with ρ0 = 3 is a coercive guiding function for (4.3).

But the following existence theorem can be proved [3]. It uses another limiting
lemma, due, for ordinary differential equations, to Krasnosel’skii [7], and whose
proof is similar to that of Lemma 3.1.

Lemma 4.4. Assume that gm ∈ C(Rn, Rn) (m ∈ Z) and that there exists ρ > 0
such that, for each k ∈ N∗

xm+1 = gm(xm) (−k ≤ m ≤ k)

has a solution (xk
m)−k≤m≤k+1, satisfying

max
−k≤m≤k+1

‖xk
m‖ ≤ ρ.

Then there exists a solution (x̂m)m∈Z of (4.2) such that supm∈Z ‖x̂m‖ ≤ ρ.
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Theorem 4.5. Let gm ∈ C(Rn, Rn) (m ∈ Z). If (4.2) has a guiding function V
with constant ρ0 such that lim‖x‖→∞ V (x) = +∞ and such that

sup
m∈Z

max
‖x‖≤ρ0

‖gm(x)‖ < ∞, (4.4)

then (4.2) has a solution (xm)m∈Z ∈ (l∞(Z))n.

Proof. Take ρ1 > max{ρ0, supm∈Z max‖x‖≤ρ0 ‖gm(x)‖}. Define

V1 := max
‖x‖≤ρ1

V (x).

Take ρ2 > ρ1 such that

Bρ0 ⊂ Bρ1 ⊂ S1 := {x ∈ Rn : V (x) ≤ V1} ⊂ Bρ2 .

Then it is easy to show that S1 is positively invariant under the flow (4.2). For
n ∈ N fixed and (xn)m≥−n the solution such that xn

−n = 0 is such that

xn
m ∈ S1 ⊂ Bρ2 (m ≥ −n, n ∈ N).

Finally, use Lemma 4.4 to obtain a solution (xm)m∈Z ∈ (l∞(Z))n. �

Remark 4.6. Inequality (4.4) trivially holds if gm = g (m ∈ Z).
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