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FINITE DIFFERENCE METHODS FOR COUPLED FLOW
INTERACTION TRANSPORT MODELS

SHELLY MCGEE, PADMANABHAN SESHAIYER

Abstract. Understanding chemical transport in blood flow involves coupling

the chemical transport process with flow equations describing the blood and

plasma in the membrane wall. In this work, we consider a coupled two-
dimensional model with transient Navier-Stokes equation to model the blood

flow in the vessel and Darcy’s flow to model the plasma flow through the
vessel wall. The advection-diffusion equation is coupled with the velocities

from the flows in the vessel and wall, respectively to model the transport of

the chemical. The coupled chemical transport equations are discretized by
the finite difference method and the resulting system is solved using the ad-

ditive Schwarz method. Development of the model and related analytical and

numerical results are presented in this work.

1. Introduction

Mathematical modelling of blood flow in the small vessels is a challenging prob-
lem and has been of great interest to many researchers. This problem coupled with
models for the transport of chemicals in the blood stream brings new challenges
in the solution methodology. In this paper, we present and analyze a model that
couples blood flow and chemical transport where a discontinuous solution in the
chemical concentration along one boundary is allowed.

Specifically, we consider a mathematical model for coupling blood flow and chem-
ical transport in the arteries. The Navier-Stokes equation in two-dimensions is used
to model the blood flow in an artery and Darcy’s flow is used to model the plasma
flow through the arterial wall. These respective flow equations are coupled at the
arterial wall boundary through appropriate interface conditions. For the chemi-
cal transport model, the advection-diffusion equation is employed both inside the
artery and the arterial wall, and the velocities are coupled at the arterial wall.
The coupled model is discretized via the finite difference method. In particular,
we employ an explicit finite difference method for the blood flow and an implicit
finite difference method for the advection-diffusion equation. Note that it is also
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important to take into account that the concentration across the boundary from the
vessel to the wall does not have to be continuous; we employ an iterative Schwarz
type algorithm to accomplish this.

2. Background, models, and methods

In this section, we will describe the models that are employed for the blood flow,
plasma flow and chemical transport on a two dimensional domain (figure 1.)
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Figure 1. The domain partitioned into the two domains Ωf and Ωw.

Consider figure 1, where the geometry is partitioned into two subdomains, Ωf

and Ωw, where Ωf denotes the domain for the blood flow and Ωw denotes the
domain for the flow of plasma in the vessel wall. The interface between Ωf and Ωw

is Γ, where the two velocities are coupled as well as the chemical concentrations
from the respective advection-diffusion equatons. Next, we describe the equations
in the respective subdomains.

2.1. Model for blood flow. The Navier-Stokes Equation in two-dimensions that
is employed to model the blood flow can be expressed as

ρ
∂u
∂t

+ ρ(u · ∇)u− ν∆u +∇p = f (2.1)

∇ · u = 0. (2.2)

where u = u(x, t) = (u(x, y, t), v(x, y, t))T where u(x, y, t) (cm/sec) is the velocity
in the x direction at the point (x, y) at time t and v(x, y, t) (cm/sec) is the velocity
in the y direction at the point (x, y) at time t, ρ is the density of the fluid (g/cm3),
ν is the viscosity of the fluid (g/(cm2· sec)), p = p(x, y, t) is the pressure at the
point (x, y) at time t (g/(cm·sec2)), and f is any external forces acting on the fluid
at point (x, y) at time t (g/(cm2sec2)). Equation (2.1) is called the momentum
equation and is derived from the conservation of momentum which describes the
motion of the particles in the fluid. Equation (2.2) is called the continuity equation
which is derived from the conservation of mass.
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Note that (2.1)-(2.2) can be written in component form as

ρ
∂u

∂t
+ ρ

(∂(u2)
∂x

+
∂(uv)

∂y

)
− ν

(∂2u

∂x2
+

∂2u

∂y2

)
+

∂p

∂x
= f1 (2.3)

ρ
∂v

∂t
+ ρ

(
∂(uv)
∂x

+
∂(v2)
∂y

)
− ν

(
∂2v

∂x2
+

∂2v

∂y2

)
+

∂p

∂y
= f2 (2.4)

∂u

∂x
+

∂v

∂y
= 0 (2.5)

where f = (f1(x, y, t), f2(x, y, t))T .
We solve (2.3)-(2.5) on Ωf with boundary conditions

u = uin(0, y, t) = U(t)(R2 − y2) on Ωf,up (2.6)
∂u
∂x

= 0 on Ωf,dw (2.7)

v(x, 0) = 0 on ∂Ωf (2.8)

∂u(0, x)
∂y

= 0 on ∂Ωf (2.9)

u = 0 on Γ (2.10)

where uin(0, y, t) is the prescribed inflow velocity upstream on Ωf,up, R is the width
of the domain in the y direction, and U(t) = (1 − cos((2πt + π)/Tp))/2 or U(t) is
a constant depending on whether the inflow is time varying or constant [2, 3, 7].
Tp is the pulse period. Equation (2.6) is the inflow boundary condition, and (2.7)
is the outflow boundary condition downstream. Equations (2.8) and (2.9) are free
slip boundary conditions. These boundary conditions allow the original domain to
be cut in half during the computations since the flow will be symmetric about ∂Ωf .
Equation (2.10) is the no slip boundary condition. An initial condition u(x, 0) is
also prescribed along with the boundary conditions.

2.2. Model for plasma flow. Since the blood vessel wall is porous as in saturated
ground water flow, we employ Darcy’s Law to describe the flow of plasma through
the vessel wall [3]. This is written as

ufilt = −K∇p (2.11)

∇ · ufilt = 0 (2.12)

where ufilt is the filtration velocity of the fluid (cm/sec), K is the conductivity
of the porous media (cm3sec/g), and p is the pressure. Equation (2.12) can be
interpreted as the filtration velocity is equal over the domain. This is a result of
the porous media being saturated. Applying the gradient operator to (2.11), the
equation becomes [3]

∇ · ufilt = ∇ · (K∇p) (2.13)

which yields

0 = ∆p, (2.14)
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if K is considered to be a constant. Equation (2.14) is solved on Ωw with the
boundary conditions given by

p = p0(x) on Γ (2.15)

p = p1(x) on ∂Ωw (2.16)
∂p

∂n
= 0 on ∂Ωw,up and ∂Ωw,dw (2.17)

and then use the solution p in (2.11) to solve ufilt for a known K.

2.3. Chemical transport in blood flow. The chemical transport for a flow sys-
tem such as blood flow is modelled by the advection-diffusion equation

∂C

∂t
−D∆C + u · ∇C = s (2.18)

with appropriate boundary conditions where C is the concentration at (x, y) in
(g/cm3), D is the diffusivity in (cm2/sec), u is the velocity of the fluid in (cm/sec),
and s is a source term in (g/(cm3sec)). For the flow structure system described
previously, two advection-diffusion equations are needed, one to describe concen-
tration Cf in the fluid domain, Ωf , and the other for the concentration Cw in the
structure domain, Ωw. Since the interface Γ represents a physical barrier that is a
selectively permeable membrane (the blood vessel wall) the concentrations Cf and
Cw do not have to match at Γ (see figure 1). The rate at which the chemical crosses
the membrane is proportional to the gradient between the two concentrations at
the barrier Γ [7]. The resulting system then becomes:

∂Cf

∂t
−Df∆Cf + uf · ∇Cf = sf in Ωf

∂Cw

∂t
−Dw∆Cw + uw · ∇Cw = sw in Ωw

(2.19)

with boundary conditions

Df
∂Cf

∂y
+ ζ(Cf − Cw) = 0 on Γ (2.20)

Dw
∂Cw

∂y
+ ζ(Cw − Cf ) = 0 on Γ (2.21)

Cf = C0 on ∂Ωf,up (2.22)

Df
∂Cf

∂x
= 0 on ∂Ωf,dw (2.23)

Cw = C0 on ∂Ωw,up (2.24)

Dw
∂Cw

∂x
= 0 on ∂Ωw,dw, (2.25)

where Df is the diffusivity in Ωf , Dw is the diffusivity in Ωw, ζ is the permeability
of the membrane that Γ represents, and is calculated from a function of the shear
stress σ̃ exerted by the blood on the wall. Initial conditions are Cf = Cf0 and
Cw = Cw0 at t = 0.

Remark 2.1. The boundary conditions in (2.20) and (2.21), when added together
yield

Df
∂Cf

∂y
= −Dw

∂Cw

∂y
, (2.26)



EJDE-2009/CONF/17 FINITE DIFFERENCE METHODS 175

which says that the flux out of Ωf is equal to the flux into Ωw, and indeed this
makes sense physically.

3. Finite Difference Methods

Next, we describe the discretized equations for the respective models using the
finite difference methods. First, we will present the details of the discretization
and implementation for the flow equations. Then we will present the discretization
of the advection-diffusion equation and details for implementing the discontinuity
in the concetrations at the arterial wall via an Addivite Schwarz type iterative
method.

3.1. Discretization of the flow equations. In this work, an explicit finite differ-
ence method [2, 5] is employed to solve the Navier-Stokes equation. The discretized
system for (2.3)-(2.4) becomes

un+1 − un

∆t
=

ν

ρ

(∂2un

∂x2
+

∂2un

∂y2

)
−

(∂((un)2)
∂x

+
∂(uv)n

∂y

)
− 1

ρ

∂pn+1

∂x
+ gn

1 , (3.1)

vn+1 − vn

∆t
=

ν

ρ

(∂2vn

∂x2
+

∂2vn

∂y2

)
−

(∂(uv)n

∂x
+

∂((vn)2)
∂y

)
− 1

ρ

∂pn+1

∂y
+ gn

2 , (3.2)

where gn
1 = 1

ρf1(un, vn, tn) and g2 = 1
ρf2(un, vn, tn). Here un = u(x, tn), vn =

v(x, tn), tn = t0 + n∆t, t0 is the initial time, n is the number of time steps from
the initial time to tn, and ∆t is the size of the time step. Solving (3.1) for un+1

and (3.2) for vn+1 gives the equations

un+1 = Fn −∆t
1
ρ

∂pn+1

∂x
, (3.3)

vn+1 = Gn −∆t
1
ρ

∂pn+1

∂y
(3.4)

where
Fn = F (un, vn, tn)

= un + ∆t
[ν

ρ

(∂2un

∂x2
+

∂2un

∂y2

)
−

(∂((un)2)
∂x

+
∂(unvn)

∂y

)
+ gn

1

]
,

(3.5)

and
Gn = G(un, vn, tn)

= vn + ∆t
[ν

ρ

(∂2vn

∂x2
+

∂2vn

∂y2

)
−

(∂(unvn)
∂x

+
∂((vn)2)

∂y

)
+ gn

2

]
.

(3.6)

Substituting un+1 and vn+1 from (3.3)-(3.4) into the discretized continuity equation
(2.5) we get

∂un+1

∂x
+

∂vn+1

∂y
=

∂Fn

∂x
− ∆t

ρ

∂2pn+1

∂x2
+

∂Gn

∂y2
− ∆t

ρ

∂2pn+1

∂y2
= 0 (3.7)

which reduces to
∂2pn+1

∂x2
+

∂2pn+1

∂y2
=

ρ

∆t

(
(
∂Fn

∂x
+

∂Gn

∂y

)
. (3.8)

Since an initial condition is required, u(x, y, 0) = u0, v(x, y, 0) = v0, and p(x, y, 0) =
p0 are known, hence F 0 and G0 can be calculated. Thus, the right hand side of
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Figure 2. Staggered grid for the Navier-Stokes discretization.

(3.8) is known, and pn+1 can be calculated. Using (3.3) -(3.4) one can then compute
un+1 and vn+1.

Now the spatial derivatives are discretized also using finite differences. Central
differences are used to approximate first derivative terms ∂pn+1

∂x , ∂pn+1

∂y , ∂F n

∂x , and
∂Gn

∂y . A staggered grid, shown in figure 2, is used to calculate u and v because
oscillations can occur in grids where u and v are calculated at the same point [2].
Bilinear interpolation is used to calculate u, v, and p at points other than node
points [6]. Notice that ∂pn+1

∂x is used in (3.3) to calculate u(xi, yj+1/2, tn+1), where
xi = x0 + i∆x, i = 0, 1, 2, . . . , I, and yj+1/2 = y0 + (j + 1/2)∆y, j = 0, 1, 2, . . . , J ,
x0 and y0 are the smallest values in the domain, ∆x and ∆y are the step sizes in
the x and y direction, respectively, and I and J are the number of steps in the
x and y directions, respectively, and must be integers. The half steps are due to
the staggered grid (see figure 2). Let us use the notation un

i,j = u(xi, yj+1/2, tn)
and un

i+1,j = u(xi+1, yj+1/2, tn) from now on. Simple central differences on convec-
tion terms can cause oscillations in the numerical solution that are not physically
occurring [2, 5]. The solution methodology used here employs a donor-cell scheme.

Now the boundary conditions in (2.6)-(2.10) for the staggered grid will be for-
mulated as follows. The inflow condition given in (2.6) for the velocity in the x
direction is

un
i,j = U(tn)(R2 − y2

j+1/2), for i = 0 and j = 1, . . . , J. (3.9)

The inflow in the y direction is zero so

v(0, y, t) = 0,

but since v is evaluated at the points (x−1/2, yj , tn) and (x1/2, yj , tn), v on the
boundary is calculated by

v(0, yj , t) = v(x−1/2, yj , tn) + v(x1/2, yj , tn) = 0

leading to the boundary condition for the method formulated as

vn
i,j = −vn

i+1,j for i = 0 and j = 0, . . . , J,
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using the numbering scheme shown on the grid in figure 2. The outflow condition
given in (2.7) is

un
i,j = un

i−1,j for i = I and j = 0, . . . , J + 1,

and
vn

i,j = vn
i−1,j for i = I + 1 and j = 0, . . . , J.

The no slip and free slip boundary conditions on the remaining two sides, Γ and
∂Ωf , respectively, (see figure 1) are

un
i,j = −un

i,j−1 for i = 0, . . . , I and j = J + 1, (3.10)

vn
i,j = 0 for i = 0, . . . , I + 1 and j = J, (3.11)

un
i,j = −un

i,j+1 for i = 0, . . . , I and j = 0, (3.12)

vn
i,j = 0 for i = 0, . . . , I + 1 and j = 0. (3.13)

Solving the system starts with the initial condition for u, v, and p, supplied by
the user. Since this is an explicit finite difference scheme, stability conditions must
be met. These conditions can be derived to be

2ν∆t

ρ
<

( 1
∆x2

+
1

∆y2

)−1

|umax|∆t < ∆x

|vmax|∆t < ∆y,

where umax = max |un
i,j | and vmax = max |vn

i,j |. The last two conditions are the
Courant-Friedrichs-Lewy (CFL) conditions and they guarantee that no fluid particle
will travel more than ∆x or ∆y in a single time step ∆t. To ensure that all the
stability conditions are met, ∆t should be chosen so that

∆t < min
( ρ

2ν

( 1
∆x2

+
1

∆y2

)−1

,
∆x

|umax|
,

∆y

|vmax|

)
. (3.14)

After checking the stability condition and adjusting ∆t if needed, F 0 and G0 are
calculated from u0 and v0. The parameter γ should be chosen as [2]

γ = max
i,j

(∣∣un
i,j∆t

∆x

∣∣, ∣∣vn
i,j∆t

∆y

∣∣) (3.15)

Using F 0 and G0, equation (3.8) is solved using the iterative method, successive
over-relaxation (SOR). The latter is used because the operations can be performed
cell wise without ever having to creating a matrix, but other methods to solve
this Poisson equation can also be used. The boundary conditions on p are no
flux boundary conditions except at the downstream boundary Ωf,dn, which has a
Dirichlet boundary condition in order to avoid problems with uniqueness. Now
pn+1 is used in equations (3.3) and (3.4) to calculate u and v for the next time
step. Then all the boundary conditions are updated and the processes is repeated.

On Ωw (see figure 1) the equation for the pressure ∆p = 0 or

∂2p

∂x2
+

∂2p

∂y2
= 0 (3.16)

is solved for p with Dirichlet boundary conditions on the upper and lower boundaries
and no flux boundary conditions on the sides. Using a finite difference discretization
via central differences this equation can be transformed into a matrix system that
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can be solved using several efficient matrix solver routines. Then p is used to solve
for u and v with

u = −K
∂p

∂x
, (3.17)

v = −K
∂p

∂y
, (3.18)

where ∂p
∂x and ∂p

∂y use central differences for first order derivatives.

Remark 3.1. In the coupled system consisting of Ωf and Ωw shown in figure
1, matching flow velocities and pressure at the interface Γ is required. This is
accomplished by using the pressure at Γ from Ωf as the boundary condition at Γ
on Ωw. Then after u and v are calculated for Ωw, u and v at Γ are used for the
boundary conditions at Γ in Ωf as

un
i,j = un

w i,0∆xf − un
i,j−1 for i = 0, . . . , I and j = J + 1, (3.19)

vn
i,j = vn

w i,0 for i = 0, . . . , I + 1 andj = J, (3.20)

where uw i,0 and vw i,0 is velocity from Ωw (which may be interpolated values if the
grids are non-matching) and ∆xf is the step size in the x direction on Ωf .

3.2. Discretization of the coupled problem. The time discretized system for
the advection-diffusion equation system (2.19)-(2.25) can be written using an im-
plicit scheme in time and employing an additive Schwarz technique [8] as:

Cn+1,k+1
f + ∆tLf (Cn+1,k+1

f ) = ∆tsn+1,k+1
f + Cn

f (3.21)

Cn+1,k+1
w + ∆tLw(Cn+1,k+1

w ) = ∆tsn+1,k+1
w + Cn

w (3.22)

Df

∂Cn+1,k+1
f

∂y
+ ζCn+1,k+1

f = ζCn+1,k
w (3.23)

Dw
∂Cn+1,k+1

w

∂y
+ ζCn+1,k+1

w = ζCn+1,k
f (3.24)

Bf (Cn+1,k+1
f ) = gn+1,k+1

f (3.25)

Bw(Cn+1,k+1
w ) = gn+1,k+1

w (3.26)

where n and n + 1 are the time steps, and k and k + 1 are the iteration number.
Cn

f and Cn
w are known from the previous time step, Cn+1,k

f and Cn+1,k
w are known

from the previous iteration, and Cn+1,k+1
f and Cn+1,k+1

w are the unknown values
for which the system will be solved. Bf and Bw are the boundary functions for the
boundaries of Ωf and Ωw, respectively. They do not contain information about the
interface Γ shared by both domains.

Remark 3.2. The additive Schwarz method is a domain decomposition method
that allows the problem on each domain to be solved independently, then the values
common to both domains are exchanged and the solution is calculated again. This
is repeated until the change in the solution in successive iterations is smaller than
a user supplied tolerance [8]. The additive Schwarz method can have a region of
overlap that in two dimensions has a positive area. In these cases the solution on the
two domains is continuous, and in fact, the two domains could quite naturally be
computed as a single domain, but are divided to solve each domain simultaneously
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on separate processors. In the case discussed here, the overlap is only the interface
Γ.

Applying discretizations, the above system can be written in the matrix form

A1C
n+1,k+1
f = fn+1,k+1

1 + B1C
n+1,k
w

A2C
n+1,k+1
w = fn+1,k+1

2 + B2C
n+1,k
f

where fn+1,k+1
1 = sn+1,k+1

f +Cn
f , A1 is the matrix associated Ωf and the boundaries

of Ωf , B1 is associated with the interface Γ on the Ωf side, and the second equation
is analogous for Ωw.

Remark 3.3. One can check that that finite difference scheme presented for the
coupled problem is consistent and stable [4]. One can also derive the following error
estimate: The l∞ error for the two domain system (3.21)-(3.26) can be shown to
be [4]

En+1
f + En+1

w ≤ n∆t
K̄

1− K̂
(Tf + Tw) (3.27)

where

En+1
f = max

i,j∈Ωf

|Cf
n+1
i,j − Cf (xi, yj , tn+1)|

En+1
w = max

i,j∈Ωw

|Cw
n+1
i,j − Cw(xi, yj , tn+1)|

are the respective errors between the exact solution and the finite difference solution
at the time level tn+1 and Tf and Tw are the respective truncation errors in the
fluid and the wall respectively. One can show that [4], as ∆t, ∆x, and ∆y go to
zero, K̄ goes to one and K̂ goes to zero, so that the coefficient in front of the
truncation errors is going to one, and as the truncation errors go the zero the
method is convergent. The details of the proof can be found in [4].

4. Numerical results and discussion

In this section, we present numerical experiments that models the methods de-
veloped in earlier sections. The method is validated by employing exact solutions
to known boundary conditions and evaluating the magnitude of the truncation er-
rors. Several exact solutions are tested and the calculated finite difference solution
is compared with the exact solution. It is shown that the error in the method is
less than the truncation error.

Consider the exact solutions

Cf (x, y, t) = −tx(2− x)y2 on 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Cw(x, y, t) = tx(2− x)y(4− y) on 0 ≤ x ≤ 1, 1 ≤ y ≤ 2

that satisfy the advection-diffusion equation

∂C

∂t
= D

(∂2C

∂x2
+

∂2C

∂y2

)
− u

∂C

∂x
− v

∂C

∂y
+ f (4.1)

where f is a source term. Here, D, u, and v are all set to one (for simplicity), and
the source term on Ωf can be calculated as

ff = −2ty2 + 2tx(2− x)− t(2− 2x)y2 − 2tx(2− x)y − x(2− x)y2, (4.2)
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and the source term on Ωw can be calculated as

fw = 2ty(4−y)+2tx(2−x)+t(2−2x)y(4−y)+tx(2−x)(4−2y)+x(2−x)y(4−y).
(4.3)

The boundary conditions for Cf are given by

Cf (0, y, t) = 0 (4.4)

∂Cf (1, y, t)
∂x

= 0 (4.5)

∂Cf (x, 0, t)
∂y

= 0 (4.6)

∂Cf (x, 1, t)
∂y

+ ζCf (x, 1, t) = ζCw(x, 1, t) (4.7)

with the initial condition
Cf (x, y, 0) = 0,

and the boundary conditions for Cw are given by

Cw(0, y, t) = 0

∂Cw(1, y, t)
∂x

= 0

∂Cw(x, 2, t)
∂y

= 0

∂Cw(x, 1, t)
∂y

+ ζCw(x, 1, t) = ζCf (x, 1, t)

with the initial condition
Cw(x, y, 0) = 0. (4.8)

To satisfy the boundary conditions for Cf and Cw on y = 1, the function ζ is chosen
as ζ = −1/2. One can show that the truncation error for the advection-diffusion
equation is bounded as [4]

|τ | ≤
∣∣∣Cxxxx

∆x2

12
+ Cxxx

∆x2

6
+ Cyyyy

∆y2

12
+ Cyyy

∆y2

6
+ Ctt

∆t

2

∣∣∣. (4.9)

For the exact solution considered, the truncation error is zero. One therefore expects
that the difference between the exact and calculated solution will be small enough
to attribute to round off error. After setting the code parameters to those values
specified above, the maximum absolute error between the exact solution and the
calculated solution was found to be 5.5022 × 10−11, which is indeed small enough
to attribute to round off error.

Next, we consider the exact solution

Cf (x, y, t) = −t2x(2− x)y2 on 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Cw(x, y, t) = t2x(2− x)y(4− y) on 0 ≤ x ≤ 1, 1 ≤ y ≤ 2,

with the boundary and initial conditions shown in (4.4)-(4.8). The parameters D,
u, and v are one, and ζ = −1/2. The source term ff in Ωf is

ff = −2t2y2 + 2t2x(2− x)− t2(2− 2x)y2 − 2t2x(2− x)y − 2tx(2− x)y2 (4.10)

and the source term in Ωw is

fw = 2t2y(4−y)+2t2x(2−x)+t2(2−2x)y(4−y)+t2x(2−x)(4−2y)+2tx(2−x)y(4−y).
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n ∆t max |C − Cexact| T
1 1 .8224 5
10 .1 .0988 .5
100 .01 .0100 .05
1000 .001 .0010 .005
10000 .0001 .0001 .0005

Table 1. Relationship between ∆t, maximum and truncation error

The maximum truncation in Ωf is bounded by

|τf | ≤
∆t

2
max

∣∣∂2Cf

∂t2
∣∣ = ∆t max

∣∣x(2− x)y2
∣∣ = ∆t = Tf

and the maximum truncation in Ωw is bounded by

|τw| ≤
∆t

2
max

∣∣∂2Cw

∂t2
∣∣ = ∆t max |x(2− x)y(4− y)| = 4∆t = Tw.

So the calculated solution should be bounded by T = Tf + Tw = 5∆t. Table 1
shows how the error decreased as ∆t decreased and also shows that the error is less
than the maximum truncation error T . Other test cases have been considered in
[4]. The experiments clearly suggested that the maximum error in the calculated
solution compared to the exact solution was less than the sum of the maximum
truncation errors on each domain as predicted theoretically.

Next, we demonstrate the performance of the numerical method for the coupled
problem. The velocities needed for the advection-diffusion equation are obtained by
solving the fluid equations as described earlier. These equations are run until the
steady-state solution is reached. Then the u and v values at the (x, y) points used
by the advection-diffusion equation are calculated. The diffusivity Df and Dw is
set to 1× 10−5 as in [7]. The domain on which the chemical transport is calculated
is 3 ≤ x ≤ 10 and 0 ≤ y ≤ .31 for Ωf and 3 ≤ x ≤ 10 and .31 ≤ y ≤ .3414 for Ωw.
The initial concentration is zero everywhere except at Ωf,up and Ωw,up, where it is
set to 100 g/cm3. The parameter ζ is calculated by

ζ = 10−4(1 + |σ̃|) (4.11)

where σ̃ is the stress tensor and is calculated as in [7], with

σ̃ = pĨ + ν
[
∇u + (∇u)T

]
(4.12)

as in [1] where p is the pressure, Ĩ is the 2×2 identity matrix, u is the velocity, and
ν is the viscosity calculated on the boundary Γ. Figures 3 and 5 are the chemical
concentrations on Ωf and Ωw, respectively, at final time. The pressure and velocities
used in the chemical transport equations were the solutions to the Navier-Stokes
equation and Darcy’s Law. The initial concentration was set uniformly to zero and
the chemical concentration on ∂Ωf,up and ∂Ωw,up was set to one hundred g/cm3.
Then to illustrate the role of pressure in allowing the chemical to cross the arterial
wall, the pressure was set to zero and the velocities at the final time remained the
same. Figures 4 and 6 suggest that significantly more chemical has entered the
arterial wall in the same amount of time.
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Figure 3. Concentration on Ωf at final time
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Figure 4. Concentration on Ωf at final time for pressure uni-
formly zero.

5. Conclusions and Future Directions

In this paper, chemical transport was coupled with Navier-Stokes and Darcy’s
Law and analyzed computationally. The solution methodology involved an iterative
algorithm that employed the additive Schwarz method applied to two domains
where the interface had mixed boundary conditions and discontinuity in the solution
at the interface was allowed. A numerical software to simulate the coupled process
was developed that employed the finite difference method and several numerical
experiments were performed to validate the method presented herein.

The next step in modelling the chemical transport in blood flow is to allow the
pressure in the vessel to move and change the thickness of the wall. We are cur-
rently studying the coupled system involving the flow and concentration equations
described in this paper in the cylindrical coordinate system. To these we plan to
add equations that model the visco-elastic nature of the arterial wall and study the
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Figure 5. Concentration on Ωw at final time
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Figure 6. Concentration on Ωw at final time for pressure uni-
formly zero.

associated fluid-structure interaction problem. This will help us to understand the
effects of the moving wall on the diffusion of chemicals from the blood stream into
the wall. The problem over other geometeries will also be investigated. Also, we
have considered here that the chemical concentration does not change the proper-
ties of the blood and therefore does not change the velocity. We hope to consider
this effect. Finally, we plan to use the model developed in conjunction with exper-
imental data to estimate parameters. The current model provides a good insight
and motivation to consider all these aspects and study the coupled fluid-structure-
concentration problem which will be the focus of our forthcoming paper.
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