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A MODEL FOR GENE ACTIVATION

SETH F. OPPENHEIMER, RUPING FAN, STEPHAN PRUETT

Abstract. The purpose of this paper is to develop a model for the activation
of the gene responsible for the production of the cytokine interleukin 6, IL-6.

This is motivated by experimental work that indicates that exposure to certain

exogenous chemicals results in changes in cytokine production. In particular,
exposure to both the widely used pesticide atrazine and the legacy pesticide

dieldrin, still very much present in the environment, resulted in the reduction

of the production of IL-6. We develop of model of twelve ordinary differential
equations to model the effect of changes in transcription factor levels on IL-6

production rates and establish basic qualitative properties of solutions.

1. Introduction

The purpose of this paper is to develop a model for the activation of the gene
responsible for the production of the cytokine interleukin 6, IL-6. This is motivated
by experimental work that indicates that exposure to certain exogenous chemicals
results in changes in cytokine production. In particular, exposure to both the widely
used pesticide atrazine and the legacy pesticide dieldrin, still very much present in
the environment, resulted in the reduction of the production of IL-6 [5]. We start
with a description of the biological problem.

We recall that a cytokine is a signaling protein or glycoprotein used in cellular
communication. In particular, IL-6 is important in dealing with immune response to
trauma, the bone formation and breakdown cycle, and, perhaps, response to some
bacterial attacks [1, 5]. The following surprising result motivated the search for a
mathematical model. Doses of dieldrin and Atrazine, which separately produced
roughly 10% drops in IL-6 levels, when combined, produced an 80% drop in IL-6
levels, far greater than the expected additive or subadditive effect [5]:

Treatment IL-6 level post treatment
Dieldrin 0.92
Atrazine 0.88
Both 0.19
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Given that public policy on acceptable exposure levels are based on single exposure
measurements, this is bad news.

Further measurements showed that the exposure to the dieldrin and atrazine
resulted in the reduction of certain transcription factors within the nucleus of the
cell. A transcription factor is a protein that binds to a specific part of the DNA.
called a response element. The transcription factors we consider are named AP −1,
NF − κB, and AP − 1−NF − κB.

The experimental results now look like

Treatment AP − 1 NF − κB AP − 1−NF − κB
Dieldrin 0.7 0.7 0.49
Atrazine 0.65 0.7 0.455
Both 0.35 0.4 0.14

Treatment IL-6 level post treatment
Dieldrin 0.92
Atrazine 0.88
Both 0.19

The desire now was to model IL-6 production in terms of transcription factors.
Thus, we will develop a model that will give the rate of IL-6 production as a function
of transcription factor concentration within the nuclei of the cells. To do this we
will need to also know the what response elements are important. In the each cell
of a mouse there is a gene with two response elements, ARE and NRE. If both
response elements are activated by having the appropriate proteins bind to each
of them, the gene will start the cell producing IL-6. We have AP − 1 binding
reversibly to the ARE response element. We expect competition for the NRE
response element between the NF − κB and the AP − 1−NF − κB [3].

In section 2 of this paper, we will produce a model that gives the fraction of
response elements filled with a particular transcription factor as a function of time.
Section 3 will develop a model showing what fraction of genes are activated and
producing IL-6 and how they are activated. Finally, section 4 will give some basic
mathematical results for the model developed in section 2.

2. The main physical model

Our initial assumptions are as follows.
1. All genes will be treated as being in a single well mixed solution of cyto-

plasm.
2. The likelihood of binding to a response element is independent of the status

of the other response element.
3. We will only consider three chemical species AP − 1, NF − κB, and AP −

1−NF − κB.
In the solution, we assume the following reaction is occurring:

AP − 1 + NF − κB �k1
k2

AP − 1−NF − κB

and that it is governed by mass action. Using the following variable names

Chemical Variable
AP − 1 molarity c1

NF − κB molarity c2

AP − 1−NF − κB molarity c3
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we obtain the three nonlinear differential equations below

dc1

dt
= −k1c1c2 + k2c3,

dc2

dt
= −k1c1c2 + k2c3,

dc3

dt
= k1c1c2 − k2c3.

These equations describe the chemical reactions in solution assuming no other mech-
anisms are in play.

We now consider the other physical processes in isolation as well. These are
AP−1 binding reversibly to the ARE response element and competition for binding
to the NRE response element between the NF − κB and the AP − 1−NF − κB.

We assume that we have a total volume V of cytoplasm, our fluid, and that
there are M moles of cells. The units for the solution concentrations, cj , will be
molarities, and the sorbed concentrations, qj , will be in moles per mole.

We model this as we would a sorption process [4].

Chemical Variable
AP − 1 molarity c1

NF − κB molarity c2

AP − 1−NF − κB molarity c3

Moles of AP − 1
per mole of ARE

q1

Moles of NF − κB
per mole of NRE

q2

Moles of AP − 1−NF − κB
per mole of NRE

q3

We make the assumption that at equilibrium for a fixed set of solution concentra-
tions we have a fixed fraction of response elements filled:

q1 = f1 (c1) ,

q2 = f2 (c1, c3) ,

q3 = f3 (c1, c3) .

Competition for the NRE response element between the NF − κB and the AP −
1 − NF − κB will mean that f2 will be increasing in c2 and decreasing in c3 and
f3 will be increasing in c3 and decreasing in c2. We will assume f1 is an increasing
function and that fj = 0 when cj ≤ 0 and positive otherwise.

Our initial hope was to use the Langmuir model for a single layer sorption process

q1 = f1 (c1) =
c1

β1 + c1
,

q2 = f2 (c2, c3) =
c2

β2 + c2 + γ3c3
,

q3 = f3 (c2, c3) =
c3

β3 + c3 + γ2c2
.

Unfortunately, experimental measurements of equilibrium data [5] did not conform
to our expectations. We will thus use a Langmuir-Freundlich type model that will
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allow for competition.

q1 = f1 (c1) =
cπ1
1

β1 + cπ1
1

,

q2 = f2 (c2, c3) =
cπ2
2

β2 + cπ2
2 + γ3c

π23
3

,

q3 = f3 (c2, c3) =
cπ3
3

β3 + cπ3
3 + γ2c

π32
2

.

However, our analysis will not depend on the functional form. That functional form
was used to fit data in [5].

We assume that rate of change between sorbed concentration and solution con-
centration is proportional to the difference from equilibrium:

dc1

dt
= rc1 (q1 − f1 (c1)) ,

dc2

dt
= rc2 (q2 − f2 (c2, c3)) ,

dc3

dt
= rc3 (q3 − f3 (c2, c3)) ,

dq1

dt
= rq1 (f1 (c1)− q1) ,

dq2

dt
= rq2 (f2 (c2, c3)− q2) ,

dq3

dt
= rq3 (f3 (c2, c3)− q3) .

We observe that the total number of moles of a given transcription factor is

qjM + cjV.

To maintain conservation of mass, we require

rqj =
V

M
rcj .

We will rename
rj = rcj

Our full model (so far) is now

dc1

dt
= r1 (q1 − f1 (c1))− k1c1c2 + k2c3,

dc2

dt
= r2 (q2 − f2 (c2, c3))− k1c1c2 + k2c3,

dc3

dt
= r3 (q3 − f3 (c2, c3)) + k1c1c2 − k2c3,

dq1

dt
=

V

M
r1 (f1 (c1)− q1) ,

dq2

dt
=

V

M
r2 (f2 (c2, c3)− q2) ,

dq3

dt
=

V

M
r3 (f3 (c2, c3)− q3) .

(2.1)
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3. The book keeping equations

We will build a probabilistic model on top of the differential equations model
which will follow the fraction of cells in each state of activation. We have 6 classes
of cells:

Cell type
Moles of cells in class

per mole of cells
No bound

response sites p0

ARE occupied
by AP − 1

but NRE unoccupied
p1

NRE occupied
by NF − κB

but ARE unoccupied
p2

NRE occupied
by NF − κB −AP − 1
but ARE unoccupied

p3

ARE occupied
by AP − 1

and NRE occupied
by NF − κB

p4

ARE occupied
by AP − 1

and NRE occupied
by NF − κB −AP − 1

p5

We now must use this information to find the values of the pj as functions of time.
We will assume that only one change occurs at a time. That is a single site may
become occupied or unoccupied at a time. The diagram below indicates how the
states connect, where the edges indicate reversible transformations.

p4!!!!!!!!

Z
Z

Z
Z

Z
Z

Z
ZZ

p2

aaaaaaaa

p3

!!!!!!!!

p0

p5
aaaaaaaa

�
�

�
�

�
�

�
��

p1

Figure 1. Graph of the activation states of genes

Our model is probabilistic in the sense that the rate of change from one state to
another depends on the proportion of cells in the given state at a given time. We
will use the notation

t+ = max(0, t), t− = (−t)+.
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The charts below will indicate how each state is changing, what state it is changing
to, and at what rate.

Transition rate for p0

Into p1

(
dq1
dt

)+ p0
p0+p2+p3

Into p2

(
dq2
dt

)+ p0
p0+p1

Into p3

(
dq3
dt

)+ p0
p0+p1

Transition rate for p1

Into p0

(
dq1
dt

)− p1
p1+p4+p5

Into p4

(
dq2
dt

)+ p1
p0+p1

Into p5

(
dq3
dt

)+ p1
p0+p1

Transition rate for p2

Into p0

(
dq2
dt

)− p2
p2+p4

Into p4

(
dq1
dt

)+ p2
p0+p2+p3

Transition rate for p3

Into p0

(
dq3
dt

)− p3
p3+p5

Into p5

(
dq1
dt

)+ p3
p0+p2+p3

Transition rate for p4

Into p1

(
dq2
dt

)− p4
p2+p4

Into p2

(
dq1
dt

)− p4
p1+p4p5

Transition rate for p5

Into p1

(
dq3
dt

)− p5
p3+p5

Into p3

(
dq1
dt

)− p5
p1+p4+p5

We can now write out the six additional equations for the fraction of cells in
each state. For brevity, instead of writing

V

M
r1 (f1 (c1)− q1) ,

we will simply write dq1
dt . The equations are:

dp0

dt
= −

(dq1

dt

)+ p0

p0 + p2 + p3
−

(dq2

dt

)+ p0

p0 + p1
−

(dq3

dt

)+ p0

p0 + p1

+
(dq1

dt

)− p1

p1 + p4 + p5
+

(dq2

dt

)− p2

p2 + p4
+

(dq3

dt

)− p3

p3 + p5
,

dp1

dt
=

(dq1

dt

)+ p0

p0 + p2 + p3
−

(dq1

dt

)− p1

p1 + p4 + p5
−

(dq2

dt

)+ p1

p0 + p1

−
(dq3

dt

)+ p0

p0 + p1
+

(dq2

dt

)− p4

p2 + p4
+

(dq3

dt

)− p5

p3 + p5
,

dp2

dt
=

(dq2

dt

)+ p0

p0 + p1
−

(dq2

dt

)− p2

p2 + p4
−

(dq1

dt

)+ p2

p0 + p2 + p3

+
(dq1

dt

)− p5

p1 + p4 + p5
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dp3

dt
=

(dq3

dt

)+ p0

p0 + p1
−

(dq3

dt

)− p3

p3 + p5
−

(dq1

dt

)+ p3

p0 + p2 + p3

+
(dq1

dt

)− p5

p1 + p4 + p5
, (3.1)

dp4

dt
=

(dq2

dt

)+ p1

p0 + p1
+

(dq1

dt

)+ p2

p0 + p2 + p3
−

(dq2

dt

)− p4

p2 + p4

−
(dq1

dt

)− p4

p1 + p4p5

dp5

dt
=

(dq3

dt

)+ p1

p0 + p1
+

(dq1

dt

)+ p3

p0 + p2 + p3
−

(dq3

dt

)− p5

p3 + p5

−
(dq1

dt

)− p5

p1 + p4 + p5
.

The IL-6 production only occurs in cells in class p4 and p5 with the production
rate for class p5 about 5 times as high as for class p4 [3]. So IL-6 production is
proportional to

p4 + 5p5.

The book keeping equations are purely for the short term. After the equilibrium
values for q1, q2, and q3 are reached, we expect the cell classes to equilibrate
according to the expected probability distribution. That is, after a longer period
of time, with the rates of desorption and resorption balancing out, we will expect

p4 = q1q2,

p5 = q1q3.

4. Mathematical results for the model

We start by considering existence and uniqueness for (2.1). If we assume the fj

are Lipschitz, the Picard theorem [2] yields the following.

Theorem 4.1. The system (2.1) has a unique local solution for each set of initial
conditions. Furthermore, if the solutions stay bounded on each interval of existence,
the system (2.1) has a unique global solution.

There will be a difficulty for the Langmuir-Freundlich functions proposed above
at cj = 0 if any of the πj < 1. However, we will show that when the initial conditions
are strictly positive, then the solutions remain bounded and strictly positive, so the
above theorem holds for every choice of positive initial conditions.

If we take the following masses per mole

Transcription factor mass per mole
AP − 1 m1

NF − κB m2

AP − 1−NF − κB m1 + m2

we obtain the following result.

Theorem 4.2. For any solution to (2.1) the quantity

m1V c1 + m2V c2 + (m1 + m2)V c3 + m1Mq1 + m2Mq2 + (m1 + m2)Mq3

is constant in time
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Proof. Multiply the first equation in (2.1) by m1V , the second equation by m2V,
the third equation by (m1 +m2)V , the fourth equation by m1M , the fifth equation
by m2M , and the sixth by (m1 +m2)M and then add all of the equations together
we obtain
d

dt
(m1V c1 + m2V c2 + (m1 + m2)V c3 + m1Mq1 + m2Mq2 + (m1 + m2)Mq3) = 0,

and we are done. We will call that constant value H1. �

We observe that if all of the components of the solution are nonnegative, than
the above result implies each component will be bounded by some positive constant,
G. With this observation, we now obtain positivity of solution for positive initial
conditions.

Theorem 4.3. Assume that there is are positive constant K and p ∈ (0, 1] so that
for positive cj in a neighborhood of 0, fj ≤ Kcp

j . For any solution to (2.1), if all
of the initial conditions are positive, then the solutions will remain positive. Given
the previous result, any such solution will be confined to a bounded region in the
positive cone of R6.

Proof. We start with the observation that for each j,
dqj

dt
≥ − V

M
rjqj ,

Thus

qj(t) ≥ exp
(
− V

M
rjt

)
qj(0) > 0.

Because any solution will be continuous on its interval of existence, there will be a
interval on which all components are nonnegative. Let [0, T ] be the maximum such
interval. Let t ∈ [0, T ]; then

dc1

dt
= r1 (q1 − f1 (c1))− k1c1c2 + k2c3

≥ r1 exp
(
− V

M
rt

)
q1(0)− r1Kcp

1 − k1Gc1.

Thus, if r1 exp
(
− V

M rt
)
q1(0) > r1Kcp

1 + k1Gc1,

dc1

dt
> 0

and c1 has a positive lower bound on the entire interval. A similar argument
provides positive lower bounds for c2 and c3 on the whole interval [0, T ]. Therefore,
the interval is actually infinite and the solutions components are strictly positive
for all positive t. �

We will now obtain two more conservation relationships that will allow us to
state what the unique equilibrium will be for a given set of positive initial values.

Theorem 4.4. For any solution to (2.1) the quantities

V c1 + Mq1 + V c3 + Mq3

and
V c2 + Mq2 + V c3 + Mq3

are constant. We will call these constants H2 and H3 respectively
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Proof. To obtain the first, multiply the first equation in (2.1) by V the third equa-
tion by V , the fourth equation by M ,and the sixth by M and then add all of the
equations together we obtain

d

dt
(V c1 + V c3 + Mq1 + Mq3) = 0.

The second sum is analyzed the same way. �

We now see that we have an equilibrium if the following equations are satisfied
m1V c1 + m2V c2 + (m1 + m2)V c3

+ m1Mq1 + m2Mq2 + (m1 + m2)Mq3 = H1,

V c1 + Mq1 + V c3 + Mq3 = H2,

V c2 + Mq2 + V c3 + Mq3 = H3,

q1 = f (c1) ,

q2 = f2 (c2, c3) ,

q3 = f3 (c2, c3) ,

c3 =
k1

k2
c1c2,

The monotonicity properties of the fj should guarantee a unique positive equilib-
rium point.

Turning to the book keeping equations, (3.1) the observation that the forcing
functions are Lipschitz in the pj and continuous in t will allow the application of
the Picard theorem again to guarantee unique local solutions. Simply adding the
equations up will yield

d

dt
(p0 + p1 + p2 + p3 + p4 + p5) = 0;

i.e., the total number of cells is conserved by the model. Similar arguments as the
ones used for (2.1) will give us that the cell classes stay nonnegative.
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