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EXISTENCE AND NONEXISTENCE RESULTS FOR
QUASILINEAR SEMIPOSITONE DIRICHLET PROBLEMS

MATTHEW RUDD

Abstract. We use the sub/supersolution method to analyze a semipositone

Dirichlet problem for the p-Laplacian. To find a positive solution, we therefore
focus on a related problem that produces positive subsolutions. We establish

a new nonexistence result for this subsolution problem on general domains,

discuss the existence of positive radial subsolutions on balls, and then apply
our results to problems involving particular semipositone nonlinearities.

1. Introduction

A model problem in nonlinear analysis is the Dirichlet problem
−∆pu = f(u) in Ω,
u = 0 on ∂Ω ,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, p > 1, ∆pu :=
div

(
|∇u|p−2∇u

)
is the p-Laplacian, and f : R → R is a continuous function. We

make no attempt to review the many solvability and multiplicity results for (1.1)
when the nonlinearity f is nonnegative; we are concerned, instead, with the fact
that far less is known when f satisfies the semipositone condition

f(0) < 0 , (1.2)

which we henceforth assume. This condition arises naturally in resource manage-
ment models, for example [1], leading to a problem of the form (1.1) for which only
positive solutions are meaningful. In a similar vein, this note focuses on determin-
ing when the semipositone problem (1.1) has at least one positive solution, i.e., a
positive function u ∈W 1,p

0 (Ω) such that∫
Ω

|∇u|p−2∇u · ∇ϕdx =
∫

Ω

f(u)ϕdx

for all test functions ϕ ∈ C∞0 (Ω).
To answer this question, we rely on the well-known sub/supersolution method

(see, for instance, the seminal paper [5] or the more recent [3]). We therefore seek
positive functions u ∈W 1,p

0 (Ω) and u ∈W 1,p
0 (Ω) such that
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• u is a subsolution : ∆p (u) + f(u) ≥ 0,
• u is a supersolution : ∆p (u) + f(u) ≤ 0, and
• u ≤ u.

With such an ordered pair of sub- and supersolutions in hand, it follows that prob-
lem (1.1) has a positive solution.

Finding a positive subsolution u is the real difficulty in semipositone problems
([2],[7]), since the semipositone condition (1.2) precludes the constant function 0
from being a subsolution. As shown below, a positive solution of

−∆pu = σ(u) in Ω,
u = 0 on ∂Ω

(1.3)

will be a positive subsolution of (1.1) for certain nonlinearities f , where σ : R → R
is the step function

σ(t) :=

{
K, for t > 1 ,
L, for t ≤ 1 ,

defined by constants K > 0 and L ≤ 0; in [4], Drábek and Robinson used an aux-
iliary problem of this form to analyze positone problems. These constants cannot
be given indiscriminately, so we must first determine those values of K and L such
that (1.3) has a positive solution.

2. A nonexistence result: Auxiliary problem

We begin with a new nonexistence result for problem (1.3). Since Ω is a smooth
domain, it is well-known that −∆p has a simple principal eigenvalue λ1 > 0 on Ω.
A direct calculation shows that λ1 provides a lower bound on admissible values of
K in problem (1.3).

Proposition 2.1. Equation (1.3) cannot have a positive solution if K < λ1.

Proof. If u is a positive solution of (1.3), then multiplying both sides of the equation
by u and integrating yields∫

Ω

|∇u|p dx =
∫
{u>1}

Kudx+
∫
{0≤u≤1}

Ludx

≤ K

∫
Ω

|u|p dx

≤ K

λ1

∫
Ω

|∇u|p dx ,

where we have used the definition of σ(u), the fact that L ≤ 0, and the Poincaré
inequality with its optimal constant. It follows, as claimed, that K cannot be less
than λ1. �

A natural problem, then, is to determine the smallest value of K ≥ λ1 corre-
sponding to a given L ≤ 0 such that (1.3) does have a positive solution. Having
found such a value of K, a subsequent question is to determine or estimate the
number of positive solutions of (1.3).
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3. Existence results: Auxiliary problem

There seem to be no existence results for problem (1.3) on general domains Ω;
one inherent difficulty is the free boundary {u = 1}. When Ω is a ball, however,
conditions on L and K can be found that guarantee the existence of a positive
radial solution u = u(r), where r = |x|.

3.1. Positive radial subsolutions. Looking for radial solutions of (1.3) on the
unit ball, Ω = B1(0) ⊂ RN , leads to consideration of the boundary value problem

r−γ
(
rα|u′|βu′

)′
+ σ(u) = 0, 0 < r < 1 ,

u′(0) = u(1) = 0,
(3.1)

for parameters α ≥ 0, γ + 1 > α, and β > −1. This framework includes the radial
versions of operators other than the p-Laplacian, as indicated in the following table
[6]:

α β γ Operator

N − 1 0 N − 1 Laplacian

N − 1 p− 2 N − 1 p-Laplacian

N − k k − 1 N − 1 k-Hessian

It is not difficult to show that u solves (3.1) if and only if it is a fixed point of
the operator T : C[0, 1] → C[0, 1] defined by

(T (v))(r) :=
∫ 1

r

(
t−α

∫ t

0

sγσ(v(s)) ds
) 1

β+1
dt . (3.2)

By analyzing this explicit operator carefully, [9] established the following existence
result.

Theorem 3.1. Given any µ ∈ (0, 1), suppose that L < 0 and K > 0 satisfy

(µK − L

K − L

) 1
γ+1

+
(γ + 1
µK

) 1
β+1 ≤ 1 . (3.3)

Then (3.1) has at least one positive solution.

In short, the proof of Theorem 3.1 in [9] proceeds by finding ρ ∈ (0, 1) such that
Cρ is invariant under T , where Cρ ⊂ C[0, 1] is the set

Cρ := {v : v ≥ 1on[0, ρ], 0 ≤ v < 1on(ρ, 1]} .
Working with the set Cρ therefore simplifies the problem by specifying the free
boundary from the outset (at the point ρ). It is important here to note that, for a
fixed value of ρ, T maps all of Cρ onto a single function.

We next outline an alternative approach to proving an existence result along the
lines of Theorem 3.1. This technique can be applied in other situations, as shown
in detail in [10] where it yields existence results for singular problems of the form

r−γ
(
rα|u′|βu′

)′
+ σ(u)u−δ = 0, 0 < r < 1 ,

u′(0) = 0, u(1) = 0
(3.4)

for exponents δ ∈ (0, 1). As in the present paper, positive solutions of (3.4) serve
as positive subsolutions of related boundary value problems.
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Returning to problem (3.1), suppose that L < 0 has been given. We first deter-
mine ρ ∈ (0, 1) such that

r−γ
(
rα|u′1|βu′1

)′
+ L = 0, ρ < r < 1 ,

u1(ρ) = 1, u1(1) = 0
(3.5)

has a positive solution u1; solutions are of the form

u1(r) =
∫ 1

r

( L

γ + 1
sγ+1−α + cs−α

) 1
β+1

ds , for c ≥ −L
γ + 1

,

and the value of ρ follows from choosing the constant c. In particular, the smallest
possible value of ρ corresponds to c = (−L)/(γ + 1), and increasing c increases ρ.

Having found ρ, we identify K = K(L) > 0 such that the solution u2 of

r−γ
(
rα|u′2|βu′2

)′
+K = 0, 0 < r < ρ ,

u′2(0) = 0, u2(ρ) = 1

matches the solution of (3.5) at ρ; i.e., satisfies u′2(ρ) = u′1(ρ) ; the solution is

u2(r) = 1 +
∫ ρ

r

( K

γ + 1
sγ+1−α

) 1
β+1

ds .

As noted above, increasing the choice of c increases ρ and thereby increases K as
well. Combining these solutions produces a solution of (3.1), namely

u(r) :=

{
u2(r), for 0 ≤ r ≤ ρ ,

u1(r), for ρ ≤ r ≤ 1 .

Letting K∗ > 0 denote the value of K corresponding to the choice c = (−L)/(γ+1),
we have thus sketched the proof.

Theorem 3.2. Let L < 0 be given. There is a corresponding K∗ > 0 such that
problem (3.1) has a positive, strictly decreasing solution for any K ≥ K∗, and this
value of K∗ increases as |L| increases.

This approach of piecing together solutions of subproblems to solve (3.1) deter-
mines an admissible region of pairs (L,K) such that (3.1) has a positive solution;
the resulting region has the same qualitative shape as that described by the inequal-
ity (3.3). (This region can be described explicitly in the semilinear case; see [8].)
A benefit of this new approach is that it clarifies the relationship between L, K,
and the free boundary ρ. It would be very interesting to implement this technique
on more general domains Ω, for which problem (1.3) does not reduce to the simple
form (3.1).

4. Applications

The pair (L,K) is an admissible point if the corresponding problem (1.3) has
a positive solution. Having determined a region of admissible points in the pre-
vious section, the following theorems illustrate how to use a positive solution of
(1.3) to solve the original problem (1.1) when Ω is the unit ball. Although these
theorems only concern radial solutions, their proofs are intentionally written in a
form that would apply on a more general domain if a positive subsolution were
available. This highlights the fact stated earlier that finding such a subsolution is
the central difficulty. Finally, we emphasize that, modulo the bounds stated below,
the nonlinearity f can behave arbitrarily.
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Theorem 4.1. Let (L,K) be an admissible point, let ψ be a positive solution of the
corresponding problem (1.3), and let M be its maximum value. If 0 < a < bp−1 <
c/K, Ω = B1(0), and f : R → R is a continuous function such that

• f(t) > bp−1K for b ≤ t ≤Mb and
• aL < f(t) < c for all t,

then (1.1) has a positive radial solution.

Proof. Define u := bψ; this function is clearly positive. Since

∆pu+ f(u) = bp−1∆pψ + f(bψ) = −bp−1σ(ψ) + f(bψ) ,

it follows from the definition of σ and the given bounds on f that

∆pu+ f(u) ≥ 0 .

Thus, u is a positive subsolution of (1.1).
Now let u be the (radial) solution of

−∆pu = C in Ω,
u = 0 on ∂Ω .

If C > c, it is easy to see that u is a supersolution of (1.1). Moreover, u ≤ u when
C is large enough that u(0) ≥ bψ(0), so applying the sub/supersolution theorem
completes the proof. �

Imposing further conditions on f yields a multiplicity result.

Theorem 4.2. Let (L,K) be an admissible point, let ψ be a positive solution of the
corresponding problem (1.3), and let M be its maximum value. If 0 < a < bp−1 <
c/K, Ω = B1(0), and f : R → R is a continuous function such that

• f(t) < 0 for t ≤ 0,
• f(t) > bp−1K for b ≤ t ≤Mb, and
• aL < f(t) < c for all t,

then (1.1) has at least three distinct radial solutions, one of which is positive and
one of which is negative.

Proof. Let u1 and u2 solve

−∆pu1 = C, −∆pu2 = C in Ω,

respectively, with u1 = u2 = 0 on ∂Ω,

C < aL, and C > c .

Finally, define u1 ≡ 0 and u2 := bψ. Calculating directly shows that u1 and u2

are subsolutions and that u1 and u2 are supersolutions, with u1 < u1 < u2 < u2.
The sub/supersolution theorem immediately yields two distinct solutions, and a
standard argument (cf. [11]) guarantees the existence of a distinct third solution.

�
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[4] P. Drábek and S. Robinson, Multiple positive solutions for elliptic boundary value problems,

Rocky Mountain J. Math 36 (2006), no. 1, pp. 97–113.
[5] P. Hess, On the solvability of nonlinear elliptic boundary value problems, Indiana Univ. Math

J. 25 (1976), pp. 461–466.

[6] J. Jacobsen and K. Schmitt, Radial solutions of quasilinear elliptic differential equations,
Handbook of Differential Equations, Vol. 1 (2004), pp. 359–435.

[7] S. Oruganti and R. Shivaji, Existence results for classes of p-Laplacian semipositone equa-

tions, Boundary Value Problems (2006), pp. 1–7.
[8] S. Robinson and M. Rudd, Multiplicity results for semipositone problems on balls, Dynam.

Systems Appl. 15 (2006), pp. 133–146.

[9] M. Rudd, Radial solutions of quasilinear semipositone boundary-value problems, Comm.
Appl. Nonlinear Anal. 14 (2007), no. 1, 113–119.

[10] M. Rudd and C. C. Tisdell, Positive symmetric solutions of singular semipositone boundary

value problems, Preprint.
[11] R. Shivaji, A remark on the existence of three solutions via sub–super solutions, vol. 109 of

Lecture Notes in Pure and Applied Mathematics, 1987, pp. 561–566.

Matthew Rudd
Department of Mathematics, University of Idaho, Moscow, ID 83844, USA

E-mail address: mrudd@uidaho.edu


	1. Introduction
	2. A nonexistence result: Auxiliary problem
	3. Existence results: Auxiliary problem
	3.1. Positive radial subsolutions

	4. Applications
	References

