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ON THE NUMBER OF NODAL SOLUTIONS FOR A
NONLINEAR ELLIPTIC PROBLEM ON SYMMETRIC

RIEMANNIAN MANIFOLDS

MARCO GHIMENTI, ANNA MARIA MICHELETTI

Abstract. We consider the problem

−ε2∆gu + u = |u|p−2u

in a symmetric Riemannian manifold (M, g). We give a multiplicity result for

antisymmetric changing sign solutions.

1. Introduction

Let (M, g) be a smooth connected compact Riemannian manifold of finite di-
mension n ≥ 2 embedded in RN . We consider the problem

−ε2∆gu + u = |u|p−2u in M, u ∈ H1
g (M) (1.1)

where 2 < p < 2∗ = 2N
N−2 , if N ≥ 3.

Here H1
g (M) is the completion of C∞(M) with respect to

‖u‖2
g =

∫
M

|∇gu|2 + u2dµg (1.2)

It is well known that the problem (1.1) has a mountain pass solution uε. In [3]
the authors showed that uε has a spike layer and its peak point converges to the
maximum point of the scalar curvature of M as ε goes to 0.

Recently there have been some results on the influence of the topology and the
geometry of M on the number of solutions of the problem. In [1] the authors proved
that, if M has a rich topology, problem (1.1) has multiple solutions. More precisely
they show that problem (1.1) has at least cat(M) + 1 positive nontrivial solutions
for ε small enough. Here cat(M) is the Lusternik-Schnirelmann category of M . In
[17] there is the same result for a more general nonlinearity. Furthermore in [9] it
was shown that the number of solution is influenced by the topology of a suitable
subset of M depending on the geometry of M . To point out the role of the geometry
in finding solutions of problem (1.1), in [13] it was shown that for any stable critical

2000 Mathematics Subject Classification. 35J60, 58G03.

Key words and phrases. Riemannian manifolds; nodal solutions; topological methods.
c©2010 Texas State University - San Marcos.
Published July 10, 2010.

15



16 M. GHIMENTI, A. M. MICHELETTI EJDE/CONF/18

point of the scalar curvature it is possible to build positive single peak solutions.
The peak of these solutions approaches such a critical point as ε goes to zero.

Successively in [6] the authors build positive k-peak solutions whose peaks col-
lapse to an isolated local minimum point of the scalar curvature as ε goes to zero.

The first result on sign changing solution is in [12] where it is showed the existence
of a solution with one positive peak ηε

1 and one negative peak ηε
2 such that, as ε

goes to zero, the scalar curvature Sg(ηε
1) (respectively Sg(ηε

2)) goes to the minimum
(resp. maximum) of the scalar curvature when the scalar curvature of (M, g) is non
constant. Here we give a multiplicity result for changing sign solutions when the
Riemannian manifold (M, g) is symmetric.

We look for solutions of the problem

−ε2∆gu + u = |u|p−2u u ∈ H1
g (M);

u(τx) = −u(x) ∀x ∈ M,
(1.3)

where τ : RN → RN is an orthogonal linear transformation such that τ 6= Id,
τ2 = Id, Id being the identity of RN . Here M is a compact connected Riemannian
manifold of dimension n ≥ 2 and M is a regular submanifold of RN which is
invariant with respect to τ . Let Mτ := {x ∈ M : τx = x} be the set of the fixed
points with respect to the involution τ ; in the case Mτ 6= ∅ we assume that Mτ is
a regular submanifold of M .

We obtain the following result.

Theorem 1.1. The problem 1.3 has at least Gτ − cat(M −Mτ ) pairs of solutions
(u,−u) which change sign (exactly once) for ε small enough

Here Gτ − cat is the Gτ -equivariant Lusternik Schnirelmann category for the
group Gτ = {Id, τ}.

In [4] the authors prove a result of this type for the Dirichlet problem

−∆u− λu− |u|2
∗−2u = 0 u ∈ H1

0 (Ω);

u(τx) = −u(x).
(1.4)

Here Ω is a bounded smooth domain invariant with respect to τ and λ is a positive
parameter.

We point out that in the case of the unit sphere SN−1 ⊂ RN (with the metric g
induced by the metric of RN ) the theorem of existence of changing sign solutions
of [12] can not be used because it holds for manifold of non constant curvature.
Instead, we can apply Theorem 1.1 to obtain sign changing solutions because we
can consider τ = − Id, and we have Gτ − cat SN−1 = N .

Equation like (1.1) has been extensively studied in a flat bounded domain Ω ⊂
RN . In particular, we would like to compare problem (1.1) with the following
Neumann problem

−ε2∆u + u = |u|p−2u in Ω;
∂u

∂ν
= 0 in ∂Ω.

(1.5)

Here Ω is a smooth bounded domain of RN and ν is the unit outer normal to Ω.
Problems (1.1) and (1.5) present many similarities. We recall some classical results
about the Neumann problem.

In the fundamental papers [11, 14, 15], Lin, Ni and Takagi established the exis-
tence of least-energy solution to (1.5) and showed that for ε small enough the least
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energy solution has a boundary spike, which approaches the maximum point of the
mean curvature H of ∂Ω, as ε goes to zero. Later, in [16, 18] it was proved that
for any stable critical point of the mean curvature of the boundary it is possible
to construct single boundary spike layer solutions, while in [7, 19, 10] the authors
construct multiple boundary spike solutions at multiple stable critical points of H.
Finally, in [5, 8] the authors proved that for any integer K there exists a boundary
K-peaks solutions, whose peaks collapse to a local minimum point of H.

2. Setting

We consider the functional defined on H1
g (M)

Jε(u) =
1

εN

∫
M

(1
2
ε2|∇gu|2 +

1
2
|u|2 − 1

p
|u|p

)
dµg. (2.1)

It is well known that the critical points of Jε(u) constrained on the Nehari manifold

Nε =
{
u ∈ H1

g \ {0} : J ′ε(u)u = 0
}

(2.2)

are non trivial solution of problem (1.1).
The transformation τ : M → M induces a transformation on H1

g we define the
linear operator τ∗ as

τ∗ :H1
g (M) → H1

g (M)

τ∗(u(x)) = −u(τ(x))

and τ∗ is a selfadjoint operator with respect to the scalar product on H1
g (M)

〈u, v〉ε =
1

εN

∫
M

(
ε2∇gu · ∇gv + u · v

)
dµg. (2.3)

Moreover, ‖τ∗u‖Lp(M) = ‖u‖Lp(M), and ‖τ∗u‖ε = ‖u‖ε, thus Jε(τ∗u) = Jε(u).
Then, for the Palais principle, the nontrivial solutions of (1.3) are the critical points
of the restriction of Jε to the τ -invariant Nehari manifold

N τ
ε = {u ∈ Nε : τ∗u = u} = Nε ∩Hτ . (2.4)

Here Hτ = {u ∈ H1
g : τ∗u = u}.

In fact, since Jε(τ∗u) = Jε(u) and τ∗ is a selfadjoint operator we have

〈∇Jε(τ∗u), τ∗ϕ〉ε = 〈∇Jε(u), ϕ〉ε ∀ϕ ∈ H1
g (M). (2.5)

Then ∇Jε(u) = τ∗∇Jε(τ∗u) = τ∗∇Jε(u) if τ∗u = u. We set

m∞ = infR
RN |∇u|2+u2=

R
RN |u|p

1
2

∫
RN

|∇u|2 + u2 − 1
p

∫
RN

|u|p; (2.6)

mε = inf
u∈Nε

Jε; (2.7)

mτ
ε = inf

u∈N τ
ε

Jε. (2.8)

Remark 2.1. It is easy to verify that Jε satisfies the Palais Smale condition on N τ
ε .

Then there exists vε minimizer of mτ
ε and vε is a critical point for Jε on H1

g (M).
Thus v+

ε and v−ε belong to Nε, then Jε(vε) ≥ 2mε.
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We recall some facts about equivariant Lusternik-Schnirelmann theory. If G is
a compact Lie group, then a G-space is a topological space X with a continuous
G-action G×X → X, (g, x) 7→ gx. A G-map is a continuous function f : X → Y
between G-spaces X and Y which is compatible with the G-actions, i.e. f(gx) =
gf(x) for all x ∈ X, g ∈ G. Two G-maps f0, f1 : X → Y are G-homotopic if
there is a homotopy θ : X × [0, 1] → Y such that θ(x, 0) = f0(x), θ(x, 1) = f1(x)
and θ(gx, t) = gθ(x, t) for allx ∈ X, g ∈ G, t ∈ [0, 1]. A subset A of a X is G-
invariant if ga ∈ A for every a ∈ A, g ∈ G. The G-orbit of a point x ∈ X is the set
Gx = {gx : g ∈ G}.
Definition 2.2. The G-category of a G-map f : X → Y is the smallest number
k = G − cat(f) of open G-invariant subsets X1, . . . , Xk of X which cover X and
which have the property that, for each i = 1, . . . , k, there is a point yi ∈ Y and a
G-map αi : Xi → Gyi ⊂ Y such that the restriction of f to Xi is G-homotopic to
αi. If no such covering exists we define G− cat(f) = ∞.

In our applications, G will be the group with two elements, acting as Gτ = {Id, τ}
on Ω, and as Z/2 = {1,−1} by multiplication on the Nehari manifold N τ

ε . We
remark the following result on the equivariant category.

Theorem 2.3. Let φ : M → R be an even C1 functional on a complete C1,1

submanifold M of a Banach space which is symmetric with respect to the origin.
Assume that φ is bounded below and satisfies the Palais Smale condition (PS)c for
every c ≤ d. Then φ has at least Z/2 − cat(φd) antipodal pairs {u,−u} of critical
points with critical values φ(±u) ≤ d.

3. Sketch of the proof of main theorem

In our case we consider the even positive C2 functional Jε on the C2 Nehari
manifold N τ

ε which is symmetric with respect to the origin. As claimed in Remark
2.1, Jε satisfies Palais Smale condition on N τ

ε . Then we can apply Theorem 2.3
and our aim is to get an estimate of this lower bound for the number of solutions.
For d > 0 we consider

Md = {x ∈ RN : dist(x, M) ≤ d};
M−

d = {x ∈ M : dist(x,Mτ ) ≥ d}.
We choose d small enough such that

Gτ − catMd
Md = Gτ − catM M

Gτ − catM M−
d = Gτ − catM (M −Mτ )

Now we build two continuous operator

Φτ
ε : M−

d → N τ
ε ∩ J2(m∞+δ)

ε ;

β : N τ
ε ∩ J2(m∞+δ)

ε → Md,

such that Φτ
ε (τq) = −Φτ

ε (q), τβ(u) = β(−u) and β ◦ Φτ
ε is Gτ homotopic to the

inclusion M−
d → Md.

By equivariant category theory we obtain

Gτ − catM (M −Mτ ) = Gτ − cat(M−
d ↪→ Md)

= Gτ − cat β ◦ Φτ
ε

≤ Z2 − catN τ
ε ∩ J2(m∞+δ)

ε

(3.1)
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4. Technical lemmas

First of all, we recall that there exists a unique positive spherically symmetric
function U ∈ H1(Rn) such that

−∆U + U = Up−1 in Rn (4.1)

It is well known that Uε(x) = U
(

x
ε

)
is a solution of

−ε2∆Uε + Uε = Up−1
ε in Rn. (4.2)

Secondly, let us introduce the exponential map exp : TM → M defined on
the tangent bundle TM of M which is a C∞ map. Then, for ρ sufficiently small
(smaller than the injectivity radius of M and smaller than d/2), the Riemannian
manifold M has a special set of charts {expx : B(0, ρ) → M}. Throughout the
paper we will use the following notation: Bg(x, ρ) is the open ball in M centered in
x with radius ρ with respect to the distance given by the metric g. Corresponding
to this chart, by choosing an orthogonal coordinate system (x1, . . . , xn) ⊂ Rn and
identifying TxM with Rn for x ∈ M , we can define a system of coordinates called
normal coordinates.

Let χρ be a smooth cut off function such that

χρ(z) = 1 if z ∈ B(0, ρ/2);

χρ(z) = 0 if z ∈ Rn \B(0, ρ);

|∇χρ(z)| ≤ 2 for all x.

Fixed a point q ∈ M and ε > 0, let us define the function wε,q(x) on M as

wε,q(x) =

{
Uε(exp−1

q (x))χρ(exp−1
q (x)) if x ∈ Bg(q, ρ)

0 otherwise
(4.3)

For each ε > 0 we can define a positive number t(wε,q) such that

Φε(q) = t(wε,q)wε,q ∈ H1
g (M) ∩Nε for q ∈ M. (4.4)

Namely, t(wε,q) turns out to verify

t(wε,q)p−2 =

∫
M

ε2|∇gwε,q|2 + |wε,q|2dµg∫
M
|wε,q|pdµg

(4.5)

Lemma 4.1. Given ε > 0 the application Φε(q) : M → H1
g (M)∩Nε is continuous.

Moreover, given δ > 0 there exists ε0 = ε0(δ) such that, if ε < ε0(δ) then Φε(q) ∈
Nε ∩ Jm∞+δ

ε .

For the proof see [1, Proposition 4.2]. Now, fixed a point q ∈ M−
d , let us define

the function
Φτ

ε (q) = t(wε,q)wε,q − t(wε,τq)wε,τq (4.6)

Lemma 4.2. Given ε > 0 the application Φτ
ε (q) : M−

d → H1
g (M) ∩ N τ

ε is contin-
uous. Moreover, given δ > 0 there exists ε0 = ε0(δ) such that, if ε < ε0(δ) then
Φτ

ε (q) ∈ N τ
ε ∩ J

2(m∞+δ)
ε .

Proof. Since Uε(z)χρ(z) is radially symmetric we set Uε(z)χρ(z) = Ũε(|z|). We
recall that

| exp−1
τq τx| = dg(τx, τq) = dg(x, q) = | exp−1

q x|;
| exp−1

q τx| = dg(τx, q) = dg(x, τq).
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We have

τ∗Φτ
ε (q)(x) = −t(wε,q)wε,q(τx) + t(wε,τq)wε,τq(τx)

= −t(wε,q)Ũε(| exp−1
q (τx)|) + t(wε,τq)Ũε(| exp−1

τq (τx)|)

= t(wε,τq)Ũε(| exp−1
q (x)|)− t(wε,q)Ũε(| exp−1

q (τx)|)

= t(wε,q)Ũε(| exp−1
q (x)|)− t(wε,q)Ũε(| exp−1

τq (x)|),

because by the definition we have t(wε,q) = t(wε,τq).
Moreover by definition the support of the function Φτ

ε is Bg(q, ρ) ∪ Bg(τq, ρ),
and Bg(q, ρ) ∩Bg(τq, ρ) = ∅ because ρ < d/2 and q ∈ M−

d . Finally, because∫
M

|wε,q|αdµg =
∫

M

|wε,τq|αdµg for α = 2, p;∫
M

|∇wε,q|2dµg =
∫

M

|∇wε,τq|2dµg,

we have

Jε(Φτ
ε (q)) =

(1
2
− 1

p

) 1
εn

∫
M

|Φτ
ε (q)|pdµg = 2Jε(Φε(q)). (4.7)

Then by previous lemma we have the claim. �

Lemma 4.3. We have limε→0 mτ
ε = 2m∞

Proof. By the previous lemma and by Remark 2.1 we have that for any δ > 0 there
exists ε0(δ) such that, for ε < ε0(δ)

2mε ≤ mτ
ε ≤ 2Jε(Φε(q)) ≤ 2(m∞ + δ). (4.8)

Since limε→0 mε = m∞ (see [1, Remark 5.9]) we get the claim. �

For any function u ∈ N τ
ε we can define a point β(u) ∈ RN by

β(u) =

∫
M

x|u+(x)|pdµg∫
M
|u+(x)|pdµg

(4.9)

Lemma 4.4. There exists δ0 such that, for any 0 < δ < δ0 and any 0 < ε < ε0(δ)
(as in Lemma 4.2) and for any function u ∈ N τ

ε ∩ J
2(m∞+δ)
ε , it holds β(u) ∈ Md.

Proof. Since τ∗u = u we set

M+ = {x ∈ M : u(x) > 0}, M− = {x ∈ M : u(x) < 0}.
It is easy to see that τM+ = M−. Then we have

Jε(u) =
(1

2
− 1

p

) 1
εn

∫
M

|u|pdµg

=
(1

2
− 1

p

) 1
εn

[ ∫
M+

|u+|pdµg +
∫

M−
|u−|pdµg

]
= 2Jε(u+)

By the assumption Jε(u) ≤ 2(m∞+δ) we have Jε(u+) ≤ m∞+δ then by Proposition
5.10 of [1] we get the claim. �

Lemma 4.5. There exists ε0 > 0 such that for any 0 < ε < ε0 the composition

Iε = β ◦ Φτ
ε : M−

d → Md ⊂ RN (4.10)

is well defined, continuous, homotopic to the identity and Iε(τq) = τIε(q).
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Proof. It is easy to check that

Φτ
ε (τq) = −Φτ

ε (q), β(−u) = τβ(u).

Moreover, by Lemma 4.2 and by Lemma 4.4, for any q ∈ M−
d we have β ◦Φτ

ε (q) =
β(Φε(q)) ∈ Md, and Iε is well defined.

In order to show that Iε is homotopic to identity, we evaluate the difference
between Iε and the identity as follows.

Iε(q)− q =

∫
M

(x− q)|w+
ε,q|pdµg∫

M
|w+

ε,q|pdµg

=

∫
B(0,ρ)

z
∣∣U (

z
ε

)
χρ(|z|)

∣∣p ∣∣gq(z)
∣∣1/2∫

B(0,ρ)

∣∣U (
z
ε

)
χρ(|z|)

∣∣p ∣∣gq(z)
∣∣1/2

=
ε
∫

B(0,ρ/ε)
z
∣∣U(z)χρ(|εz|)

∣∣p∣∣gq(εz)
∣∣1/2∫

B(0,ρ/ε)

∣∣U(z)χρ(|εz|)
∣∣p∣∣gq(εz)

∣∣1/2
,

hence |Iε(q)− q| < εc(M) for a constant c(M) that does not depend on q. �

Now, by previous lemma and by Theorem 2.3 we can prove Theorem 1.1. In
fact, we know that, if ε is small enough, there exist Gτ − cat(M −Mτ ) minimizers
which change sign, because they are antisymmetric. We have only to prove that any
minimizer changes sign exactly once. Let us call ω = ωε one of these minimizers.
Suppose that the set {x ∈ M : ωε(x) > 0} has k connected components M1, . . . ,Mk.
Set

ωi =

{
ωε(x) x ∈ Mi ∪ τMi;
0 elsewhere

(4.11)

For all i, ωi ∈ N τ
ε . Furthermore we have

Jε(ω) =
∑

i

Jε(ωi), (4.12)

thus

mτ
ε = Jε(ω) =

k∑
i=1

Jε(ωi) ≥ k ·mτ
ε , (4.13)

so k = 1, that concludes the proof.
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