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ODDNESS OF LEAST ENERGY NODAL SOLUTIONS ON
RADIAL DOMAINS

CHRISTOPHER GRUMIAU, CHRISTOPHE TROESTLER

Abstract. In this article, we consider the Lane-Emden problem

∆u(x) + |u(x)|p−2u(x) = 0, for x ∈ Ω,

u(x) = 0, for x ∈ ∂Ω,

where 2 < p < 2∗ and Ω is a ball or an annulus in RN , N > 2. We show

that, for p close to 2, least energy nodal solutions are odd with respect to
an hyperplane – which is their nodal surface. The proof ingredients are a

constrained implicit function theorem and the fact that the second eigenvalue
is simple up to rotations.

1. Introduction

Let N > 2. We consider the Lane-Emden problem

−∆u(x) = |u(x)|p−2
u(x), for x ∈ Ω,

u(x) = 0, for x ∈ ∂Ω,
(1.1)

where Ω is a ball or an annulus and 2 < p < 2∗ is a subcritical exponent (where
2∗ := 2N/(N − 2) if N > 3 and 2∗ = +∞ if N = 2). In 2004, Aftalion and Pacel-
la [2] showed that least energy nodal solutions cannot be radial. However, as proved
by Bartsch, Weth and Willem [3], they have a residual symmetry, namely they
possess the Schwarz foliated symmetry; i.e., there exists a direction d (depending
on the solution) such that the solution is invariant under the subgroup of rotations
leaving d fixed and is non-increasing in the angle with d. Such symmetry however
does not imply that the zero set of the solution is an hyperplane passing through
the origin as is widely believed.

In this article, we show that this is true for p close to 2. Actually, we prove
more: least energy nodal solutions are unique, up to rotations and a multiplicative
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constant ±1, and odd with respect to an hyperplane (depending on the solution)
that passes through the origin. This hyperplane is their zero set.

This article is inspired by work of Smets, Su and Willem [11] who showed that,
for the Henon problem, the ground states are radial for p close to 2. Another
approach to the oddness of solutions of (1.1) was written at the same time as this
article by Bonheure, Bouchez, Grumiau and Van Schaftingen [4] (with one author
in common). For any domain Ω, they establish that, when p is close enough to 2,
least energy nodal solutions possess the same symmetries as their projections on
the eigenspace E2 corresponding to the second eigenvalue λ2 of −∆. (Here and in
the rest of this paper ∆ denotes the Laplacian with Dirichlet boundary conditions
on Ω.) Since we show in section 2 that, on a ball or an anulus, all eigenfunctions
in E2 are odd with respect to some hyperplane, we could use their result to obtain
the oddness of solutions of (1.1). In our case however, because we are able to
show that the degeneration of the second eigenspace is solely due to the invariance
of (1.1) under the group rotations, we can use the implicit function theorem. That
enables us to establish uniqueness (up to symmetries) in addition to oddness (see
theorem 4.2).

The paper is organised as follows. The next section is devoted to the second
eigenspace E2 of −∆. Thanks to the interlacing properties of zeros of (cross-
products of) Bessel functions and results by H. Kalf on the symmetries of spherical
harmonics [7], we show that all eigenfunctions of eigenvalue λ2 have an hyperplane
as nodal set with respect to which the function is odd. Moreover E2 =

{
αe2(g · )

∣∣
α ∈ R, g ∈ O(N)

}
for any e2 ∈ E2 \ {0}. These results follow from well know

formulae for dimensions 2 and 3 (see e.g. the book of Y. Pinchover and J. Ruben-
stein [10]) but we could not find a ready-to-use reference for higher dimensions, so
we (re)prove them here for the reader convenience.

For the rest of the paper, we deal with the equation

−∆u(x) = λ2|u(x)|p−2
u(x), in Ω,

u(x) = 0, on ∂Ω,
(1.2)

instead of (1.1). Clearly u is a solution of (1.1) if and only if λ1/(2−p)
2 u is a solution

of (1.2). Weak solutions of (1.2) (in fact strong solutions by regularity) are critical
points of the following energy functional:

ϕp : H1
0 (Ω) → R : u 7→ 1

2‖u‖
2 − λ2

1
p |u|

p
p,

where | · |p denotes the norm in Lp(Ω) and ‖ · ‖ := |∇ · |2 is the usual norm in H1
0 (Ω).

Recall that the Nehari manifold is

Np :=
{
u ∈ H1

0 (Ω) \ {0}
∣∣ ∂uϕp(u)(u) = 0

}
,

where ∂uϕp(u) denotes the Frechet derivative of ϕp at u. The nodal Nehari set is
defined as

N 1
p :=

{
u ∈ H1

0 (Ω)
∣∣ u+ ∈ Np and u− ∈ Np

}
,

where u+ := max{u, 0} and u− := min{u, 0}. Notice that N 1
p ⊆ Np. Least energy

nodal solutions of (1.2) are minimizers of ϕp on N 1
p [6].

In sections 3 and 4, we consider a family (up)p>2 of least energy nodal solutions
of (1.2). Let SN−1 be the unit sphere of RN and d ∈ SN−1 be a direction fixed for
the rest of this paper. The subgroup of rotations leaving d fixed will be denoted
G ⊆ O(N). It acts on H1

0 (Ω) by means of the usual action (Tg)g∈G. Let Fix(G)
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be the subspace of functions of H1
0 (Ω) which are invariant under this action. As

said, the solutions up possess the Schwarz foliated symmetry, so one can assume,
rotating up if necessary, that up ∈ Fix(G).

In section 3, we show that the accumulation points of the family (up)p>2 must
be non-zero functions of E2.

Section 4 details how we circumvent the degeneration of the limit problem (when
p = 2) in order to use the implicit function theorem and deduce the uniqueness and
oddness of least energy nodal solutions.

2. Symmetries of the functions in the second eigenspace

In this section, we gather some symmetry properties of the eigenfunctions for the
second eigenvalue λ2 on radial domains. More precisely, we will prove the following:

Proposition 2.1. Let Ω ⊆ RN , N > 2 be a ball or an annulus and let d ∈ SN−1 be
a direction. The subspace of eigenfunctions for the second eigenvalue λ2 of −∆ on Ω
with Dirichlet boundary conditions which are rotationally invariant under rotations
around d has dimension 1. Moreover, these eigenfunctions are odd in the direction
d.

Eigenfunctions u : Ω → R of −∆ are the solutions of

−∆u(x) = λu(x), for x ∈ Ω,

u(x) = 0, for x ∈ ∂Ω.

In (hyper)spherical coordinates x = rθ with r ∈ [0,+∞[ and θ ∈ SN−1, the equation
−∆u = λu reads (see for example [9, p. 38], [8], or reprove it using a local orthogonal
parametrisation of SN−1):

∂2
ru+

N − 1
r

∂ru−
1
r2

(
−∆SN−1u

)
= −λu,

where ∆SN−1 denotes the Laplace-Beltrami operator on the unit sphere SN−1. By
the method of separation of variables, we search functions u(r, θ) = R(r)S(θ) sat-
isfying

∂2
rR+

N − 1
r

∂rR+
(
λ− µ

r2

)
R = 0

−∆SN−1S = µS.
(2.1)

The eigenvalues µk of the Laplace-Beltrami operator −∆SN−1 are well known (see
for example [12] or [8]):

µk = k(k +N − 2), for k ∈ N.

The corresponding eigenfunctions are called spherical harmonics. These are restric-
tions to the unit sphere, S = P �SN−1 , of homogeneous polynomials P : RN → R
satisfying ∆P = 0. The eigenfunctions of eigenvalue µk are the restrictions of the
homogeneous polynomials of degree k among those [9, p. 39].

In order for R(r) =: r−
N−2

2 B(
√
λ r) to be solution of the first equation of (2.1)

with µ = µk, it is necessary and sufficient that the function s 7→ B(s) satisfies:

∂2
sB +

1
s
∂sB +

(
1− ν2

s2

)
B = 0 (2.2)
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where ν2 := µk + (N−2)2

4 =
(
k + N−2

2

)2
, for k ∈ N. Solutions of equation (2.2) are

linear combinations of the Bessel functions of the first kind Jν and of the second
kind Yν . Therefore, the solutions of the first equation of (2.1) with µ = µk are

R(r) = r−
N−2

2

(
aJν

(√
λ r

)
+ bYν

(√
λ r

))
, a, b ∈ R, (2.3)

where ν = k + N−2
2 .

Let us now distinguish two cases.
If Ω is a ball—which can be assumed to be of radius one without loss of

generality—, the function Yν cannot appear in (2.3) because limr→0 Yν(r) = −∞
and R(0) must be finite. Imposing the Dirichlet boundary condition R(1) = 0, we
obtain that the eigenvalue λ must be the square of a positive root of Jν . As is
customary, let us denote 0 < jν,1 < jν,2 < . . . the infinitely many positive roots of
Jν . The interlacing property of the roots (see e.g. M. Abramowitz and A. Segun [1,
§ 9.5.2, p. 370]) says,

∀ν > 0, jν,1 < jν+1,1 < jν,2 < jν+1,2 < . . . (2.4)

So, in particular, we obtain that j2N−2
2 ,1

is the first eigenvalue of −∆ and j2N
2 ,1

its
second. Therefore, the eigenfunctions for the second eigenvalue of −∆ are given
by:

r−
N−2

2 JN/2

(√
λ r

)
S(θ)

where S is a spherical harmonic of eigenvalue µ1. (It is well known [1, § 9.1.7,
p. 360] that Jµ(r) ∼ ( 1

2r)
ν/Γ(ν + 1) as r → 0 and therefore the eigenfunction has

no singularity at 0.)
To conclude it suffices to use the fact that, for all directions d ∈ SN−1 and k ∈ N,

there exists exactly one (apart from a multiplicative constant) homogeneous poly-
nomial S of degree k, solution to ∆S = 0 and invariant under rotations around d
(see [7, p. 365] and [9, p. 8]). Therefore, there exists one and only one spherical
harmonic of eigenvalue µ1 that is invariant under rotations around a given direction
d. Moreover, this spherical harmonic is the restriction to the sphere of an homoge-
neous polynomial of degree 1 — i.e. a linear functional — and is consequently odd
in the direction d.

Now let us turn to the second case where Ω is an annulus. Without loss of
generality, one can assume that its internal radius is 1 and its external radius is
ρ ∈ ]1,+∞[. Imposing the Dirichlet boundary conditions on (2.3) leads to the
system

aJν(
√
λ) + bYν(

√
λ) = 0

aJν(
√
λρ) + bYν(

√
λρ) = 0

A non-trivial solution (a, b) of this system exists if and only if
√
λ is a root of the function s 7→ Jν(s)Yν(sρ)− Yν(s)Jν(sρ).

It is known that this function possesses infinitely many positive zeros that we will
note 0 < χν,1 < χν,2 < . . . Again an interlacing theorem for these zeros holds
[5, p. 1736]: for all ν > 0, χν,1 < χν+1,1 < χν,2 < χν+1,2 < . . . As before, we
deduce that the first eigenvalue happens for k = 0 (constant spherical harmonic)
and ν = (N−2)/2, while the second is when k = 1 and ν = N/2. We then conclude
in the same way as for the ball.
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3. Convergence to a non-zero second eigenfunction

Let (up)p>2 ⊆ Fix(G) be a family of least energy nodal solutions of (1.2). In
this section, we show that the accumulation points of up as p → 2 are non-zero
functions of the second eigenspace of −∆.

Let e2 ∈ Fix(G) be one of the two second eigenfunctions such that ‖e2‖ = 1
(whose existence was shown in proposition 2.1).

Lemma 3.1. For any q ∈ ]2, 2∗[, sup2<p<q t
∗
p is finite, where t∗p is the unique

positive real such that t∗pe2 belongs to the Nehari manifold Np (i.e. belongs to N 1
p ).

Proof. First of all, since v := t∗pe2 is odd, ∂ϕp(v)v+ = −∂ϕp(v)v− = 1
2∂ϕp(v)v and

thus v ∈ Np ⇔ v ∈ N 1
p .

Let q ∈ ]2, 2∗[. For all p ∈ ]2, q[, the fact that t∗pe2 ∈ Np reads (t∗p)
2‖e2‖2 =(

t∗p
)p
λ2|e2|pp. So,

t∗p =
( ‖e2‖2

λ2|e2|pp

)1/(p−2)

> 0.

Because p 7→ t∗p is continuous, it is enough to show that t∗p converges as p→ 2. We
have,

lim
p→2

ln
( ‖e2‖2

λ2|e2|pp

)1/(p−2)

= lim
p→2

1
p− 2

(
ln(1)− ln(λ2|e2|pp)

)
= lim

p→2
−

ln(λ2|e2|pp)
p− 2

.

Note that |e2|22 = 1/λ2. In order to be able to apply l’Hospital rule, set B := Ω\{x ∈
Ω : e2(x) = 0} (which makes sense because e2 is continuous in Ω) and notice that
∂p|u2|pp = ∂p

∫
B
|e2|p =

∫
B

ln |e2||e2|p by Lebesque dominated convergence theorem
and the fact that ln |t| |t| = o(1) as t→ 0. Thus,

lim
p→2

−
ln(λ2|e2|pp)
p− 2

= lim
p→2

−
∫

B
ln |e2| |e2|p∫
B
|e2|p

= −
∫

B
ln |e2| |e2|2∫
B
|e2|2

and so t∗p converges to exp
(
−

∫
B

ln |e2| |e2|2
/ ∫

B
|e2|2

)
as p→ 2. �

Lemma 3.2. For any q ∈ ]2, 2∗[, the family (up)p∈]2,q[ is bounded in H1
0 (Ω).

Proof. Let us start by remarking that, for any v ∈ Np,
(

1
2 −

1
p

)
‖v‖2 = ϕp(v).

Therefore, as up ∈ N 1
p ⊆ Np, one has(1

2
− 1
p

)
‖up‖2 = ϕp(up,2) = inf

u∈N 1
p

ϕp(u)

6 ϕp(t∗pe2) =
(1

2
− 1
p

)
‖t∗pe2‖

2,
(3.1)

where the inequality and the last equality result from the fact that t∗pe2 ∈ N 1
p .

Using (3.1) and lemma 3.1, we conclude that (up)p∈]2,q[ is bounded in H1
0 (Ω). �

Proposition 3.3. All weak accumulation points of the family (up)p>2 as p→ 2 are
invariant under rotations leaving d fixed and have the form αe2 for some α ∈ R.

Proof. Let u∗ be a weak accumulation point of (up). Thus, there exists a sequence
(pn)n∈N such that pn → 2 and upn ⇀ u∗. Since, for all g ∈ G and p, Tgup = up, it
is clear that the same is true for u∗. In view of proposition 2.1, it remains to justify
that ∂ϕ2(u∗) = 0 to conclude.
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For all v ∈ H1
0 (Ω) and all n ∈ N, one has

∂ϕpn
(upn

)(v) =
∫

Ω

∇upn
∇v − λ2

∫
Ω

|upn
|pn−2

upn
v = 0.

On one side, as (upn)n∈N weakly converges in H1
0 (Ω) to u∗,

∫
Ω
∇upn∇v converges

to
∫
Ω
∇u∗∇v. On the other side, by Rellich embedding theorem, upn converges to

u∗ in Lq(Ω) with q := max{pn : n ∈ N} ∈ ]2, 2∗[, and thus, taking if necessary a
subsequence still denoted upn , upn converges almost everywhere to u∗ and there
exists a function f ∈ Lq(Ω) such that, for all n ∈ N, |upn | 6 f almost everywhere
(see for example [13]). We conclude using Lebesgue dominated convergence theorem
and the fact that, for all n, we have∣∣|upn |

pn−2
upnv

∣∣ 6 |f |pn−1|v| 6
∣∣max{f, 1}

∣∣q−1|v| ∈ L1(Ω). �

To conclude this section, we show that the accumulation points stay away from
zero.

Lemma 3.4. For any p ∈ ]2, 2∗[ and u ∈ H1
0 (Ω) \ {0} such that u+ 6= 0 and

u− 6= 0, there exist t+ > 0 and t− > 0 such that t+u+ + t−u− belongs to Np and is
orthogonal to e1 in L2(Ω) where e1 > 0 is a first eigenfunction of −∆.

Proof. We consider the line segment

T : [0, 1] → H1
0 (Ω) \ {0} : α 7→ (1− α)u+ + αu−.

We project it on Np: for all α ∈ [0, 1], there exists a unique tα > 0 such that
tαT (α) ∈ Np. For α = 0, we have

∫
Ω
tαu

+e1 > 0 and, for α = 1, we have∫
Ω
tαu

−e1 < 0. So, by continuity, there exists α∗ ∈ ]0, 1[ such that
∫
Ω
tα∗T (α∗)e1 =

0 and tα∗T (α∗) ∈ Np. We just set t+ := tα∗(1− α∗) and t− := tα∗α
∗ to conclude.

�

Proposition 3.5. All weak accumulation points of up as p → 2 are non-zero
functions.

Proof. By the preceding lemma, for all p ∈ ]2, 2∗[, there exist t±p > 0 such that
vp := t+p u

+
p + t−p u

−
p belongs to Np and is orthogonal to e1 in L2(Ω).

We claim that |vp|p 6 |up|p. As up ∈ N 1
p , u+

p ∈ Np maximizes the energy
functional ϕp in the direction of u+

p and, similarly, u−p ∈ Np maximizes ϕp in the
direction of u−p . As the energy is the sum of the energy of the positive and negative
parts, up maximizes the energy in the cone K := {t+u+

p + t−u−p : t+ > 0 and t− >
0}. Since v ∈ Np implies λ2

(
1
2 −

1
p

)
|v|pp = ϕp(v) and given that vp ∈ Np ∩K, we

deduce

λ2

(1
2
− 1
p

)
|vp|2p = ϕp(vp) 6 ϕp(up) = λ2

(1
2
− 1
p

)
|up|2p.

Thus the claim is proved.
Let us now prove that vp stays away from zero. By Hölder inequality, we have

|vp|2p 6 |vp|2−2λ
2 |vp|2λ

2∗ ,

where λ := 2∗

2∗−2
p−2

p . (In dimension 2, 2∗ = +∞. In this case, we can replace 2∗ by
a sufficiently large q in the last inequality and use the same argument as below.)
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As vp is orthogonal to e1 in L2(Ω), λ2

∫
Ω
v2

p 6
∫
Ω
|∇vp|2. By Sobolev embedding

theorem, there exists a constant S > 0 such that

|vp|2p 6
(
λ−1

2 ‖vp‖2
)1−λ(

S−1‖vp‖2
)λ
.

As vp belongs to Np, ‖vp‖2 = λ2|vp|pp and so

|vp|2p 6
(
|vp|pp

)1−λ(
|vp|pp

)λ(S−1λ2)λ

or, equivalently,

|vp|p >
(
Sλ−1

2

)λ/(p−2) =
(
Sλ−1

2

) 2∗
2∗−2

1
p .

Therefore, if u∗ is the weak limit of a sequence (upn) in H1
0 (Ω) for some sequence

pn
>−→ 2, by using Rellich embedding theorem, |u∗|2 = lim

n→∞
|upn |pn

> lim inf
n→∞

|vpn |pn

> 0. �

4. Oddness

Lemma 4.1. In dimension N > 2, in Fix(G)× R, the problem

−∆u(x) = λ|u(x)|p−2
u(x), in Ω,

u(x) = 0, on ∂Ω,

‖u‖ = 1.

(4.1)

possesses a single curve of solutions p 7→ (p, u∗p, λ
∗
p) defined for p close to 2 and

starting from (2, e2, λ2). It also possesses a single curve of solutions starting from
(2,−e2, λ2) which is given by p 7→ (p,−u∗p, λ∗p) .

Proof. Let us define
ψ : [2, 2∗[× Fix(G)× R → Fix(G)× R

(p, u, λ) 7→
(
u− λ(−∆)−1(|u|p−2

u), ‖u‖2 − 1
)
.

The first component is the H1
0 -gradient of the following energy functional

ϕp,λ : Fix(G) → R : u 7→ 1
2‖u‖

2 − λ 1
p |u|

p
p .

The function ψ is well defined, thanks to the symmetric criticality principle.
The existence and local uniqueness of a branch emanating from (2, e2, λ2) follows

from the implicit function theorem and the closed graph theorem if we prove that the
Frechet derivative of ψ w.r.t. (u, λ) at the point (2, e2, λ2) is bijective on Fix(G)×R.
We have,

∂(u,λ)ψ(2, e2, λ2)(v, t) =
(
v − λ2(−∆)−1v − t(−∆)−1e2, 2

∫
Ω

∇e2∇v
)
. (4.2)

For the injectivity, let us start by showing that ∂(u,λ)ψ(2, e2, λ2)(v, t) = 0 if and
only if

v − λ2(−∆)−1v = 0,
t = 0,

v is orthogonal to e2 in H1
0 (Ω).

(4.3)

It is clear that (4.3) is sufficient. For its necessity, remark that the nullity of
second component of (4.2) implies that e2 is orthogonal to v in H1

0 (Ω) and thus
also in L2(Ω) because e2 is an eigenfunction. Taking the L2-inner product of the
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first component of (4.2) with e2 yields t = 0, hence the equivalence is complete.
Now, the only solution of (4.3) is (v, t) = (0, 0) because the first equation and the
dimention 1 of the trace of the second eigenspace in Fix(G) (proposition 2.1) imply
v ∈ span{e2} and then the third property implies v = 0. This concludes the proof
of the injectivity of ∂(u,λ)ψ(2, e2, λ2).

Let us now show that, for any (w, s) ∈ Fix(G)× R, the equation

∂(u,λ)ψ(2, e2, λ2)(v, t) = (w, s)

always possesses at least one solution (v, t) ∈ Fix(G)×R. One can write w = w̄e2+w̃
for some w̄ ∈ R and w̃ orthogonal to e2 in H1

0 . Of course, w̃ ∈ Fix(G) since w and
e2 both are. Similarly, one can decompose v = v̄e2 + ṽ. Arguing as for the first
part, the equation can be written

ṽ − λ2(−∆)−1ṽ = w̃,

t = λ2w̄,

v̄ = s/2.
(4.4)

Thanks to the principle of symmetric criticality, the solution ṽ is the minimizer of
the functional

X → R : ṽ 7→
∫

Ω

|∇ṽ|2 − λ2|ṽ|2 −
∫

Ω

∇w̃∇ṽ

where X is the subspace of Fix(G) orthogonal to e2. This concludes the proof that
∂(u,λ)ψ(2, e2, λ2) is onto and thus of the existence and uniqueness of the branch
emanating from (2, e2, λ2).

It is clear that p 7→ (p,−u∗p, λ∗p) is a branch emanating from (2,−e2, λ2) and,
using as above the implicit function theorem at that point, we know it is the only
one. �

Theorem 4.2. For p close to 2, least energy nodal solutions on a ball or an annulus
are unique (up to a rotation and their sign) and odd with respect to a direction.

Proof. Let (up)p>2 be a family of solutions of (1.2). Up to a rotation, we can assume
that the solution up ∈ Fix(G). Thanks to lemma 3.2, for any sequence pn

>−→ 2,
there exists a subsequence, still denoted pn, such that upn

weakly converges in H1
0

to some u∗ ∈ Fix(G). The Rellich embedding theorem and

0 = ∂ϕpn(upn)(upn − u∗)− ∂ϕ2(u∗)(upn − u∗)

= ‖upn − u∗‖2 − λ2

∫
Ω

|upn |
pn−2

upn(upn − u∗) + λ2

∫
Ω

u∗(upn − u∗)

imply that upn
→ u∗ in H1

0 (Ω). Therefore, propositions 3.3 and 3.5, yield u∗ = αe2
for some α ∈ R \ {0}.

On the other hand, notice that u is a solution of (1.2) if and only if
(
u/‖u‖ ,

λ2‖u‖p−2) is a solution of (4.1). Because (upn
) stays away from 0, one has( upn

‖upn
‖
, λ2‖upn‖

pn−2
)
−→
n

(
sign(α)e2, λ2

)
.

Then, when pn is close enough to 2, lemma 4.1 implies that
upn

‖upn‖
= sign(α)u∗pn

.
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Hence, the claimed uniqueness of up up to its sign. This also implies that upn
is

odd in the direction d. To show that, let us consider u′pn
the anti-symmetric of upn

— defined by u′pn
(x) := −upn

(
x− 2(x · d)d

)
where x · d is the inner product in RN .

Because e2 is odd in the direction d, u′pn
→ αe2 with the same α as for u∗. Arguing

as before, we conclude that

upn

‖upn
‖

= sign(α)u∗pn
=

u′pn

‖u′pn
‖

and therefore that upn
is odd in the direction d. �
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