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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR THE
NONCOERCIVE NEUMANN P-LAPLACIAN

NIKOLAOS S. PAPAGEORGIOU, EUGENIO M. ROCHA

Abstract. We consider a nonlinear Neumann problem driven by the p-La-
placian differential operator with a nonsmooth potential (hemivariational in-

equality). Using variational techniques based on the smooth critical point

theory and the second deformation theorem, we prove an existence theorem
and a multiplicity theorem, under hypothesis that in general do not imply the

coercivity of the Euler functional.

1. Introduction

Let Z ⊆ RN be a bounded domain with C2 boundary, ∂Z. This article concerns
the existence and multiplicity of nontrivial solutions for the following nonlinear
Neumann problem with a nonsmooth potential (hemivariational inequality):

−∆p x(z) ∈ ∂j(z, x(z)) a.e. in Z,

∂x

∂n
= 0 on ∂Z.

(1.1)

Here ∆p x = div(‖Dx‖p−2
RN Dx) (1 < p < ∞) is the p-Laplacian differential operator,

j is a measurable potential function, and for almost all z ∈ Z the function x 7→
j(z, x) is locally Lipschitz and in general nonsmooth. By ∂j(z, x) we denote the
generalized (Clarke) subdifferential of the locally Lipschitz function x 7→ j(z, x).
Our aim, in this work, is to prove existence and multiplicity results for (1.1), under
hypotheses which do not guarantee the coercivity of the Euler functional.

The question of existence of multiple nontrivial solutions has been studied exten-
sively in the context of Dirichlet problems driven by the p-Laplacian and there are
several such papers in the literature, using a variety of hypotheses and techniques.
In contrast, the Neumann p-Laplacian case, in some sense, is lagging behind. Re-
cently there have been some multiplicity results within the Neumann setting. We
mention the works [1, 4, 13, 17]. In these works, the authors establish the existence
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of infinitely many solutions for certain nonlinear elliptic Neumann problems, by
imposing a kind of oscillatory behavior on the nonlinear term. In all these works,
it is crucial the assumption that p > N (low dimensional problems). It is well-
known that this dimensionality condition implies that the Sobolev space W 1,p(Z)
is embedded compactly in C(Z̄) and this fact is used extensively by the authors,
in the aforementioned works. The works [3] and [9], consider nonlinear Neumann
eigenvalue problems and prove a “three solutions theorem”, using an abstract mul-
tiplicity result of Ricceri [16]. Again the condition p > N is present in these works,
as it is in the recent work of Wu-Tan [18], but their approach is based on min-
imax techniques from critical point theory. In all the aforementioned works, the
potential function is smooth; i.e., j(z, ·) ∈ C1(R). Neumann problems involving
the p-Laplacian and a nonsmooth potential were investigated in [2, 10, 14]. In
these works, the assumptions on the potential j imply that the Euler functional,
or a suitable truncation of it, is coercive. In [2], it is assumed that p ≥ 2 and the
approach is degree theoretic. In [10] and [14], the approach is variational based on
the nonsmooth critical point theorem (e.g., see [5, 11, 15]). Here, our hypotheses
on the nonsmooth potential j do not necessarily imply the coercivity of the Euler
functional and our method of proof is based on the nonsmooth second deformation
theorem, due to Corvellec [8].

This paper is organized as follows. In Section 2, we recall various notions and
results which will be used later. In Section 3, we prove an existence theorem for a
generalized version of (1.1). Finally, in Section 4, by strengthening our hypotheses
on j, we establish a multiplicity result for (1.1).

2. Mathematical Background

The nonsmooth critical point theory, which we will use in the variational ar-
guments of this paper, is based mainly on the subdifferential theory for locally
Lipschitz functions. So, we start by recalling some basic notions from this theory.
Details can be found in [7].

Let X be a Banach space. By X∗ we denote the topological dual of X and
by 〈·, ·〉 we denote the duality brackets for the pair (X∗, X). If ϕ : X → R is a
locally Lipschitz function, then the generalized directional derivative ϕ0(x;h) of ϕ
at x ∈ X, in the direction of h ∈ X, is defined by

ϕ0(x;h) = lim sup
x′→x, λ↓0

ϕ(x′ + λh)− ϕ(x′)
λ

.

It is easy to see that h 7→ ϕ0(x;h) is sublinear continuous and so, it is the support
function of a nonempty, convex and w∗-compact set ∂ϕ(x) ⊂ X∗ defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x;h) for all h ∈ X}.

If ϕ ∈ C1(X), then ϕ is locally Lipschitz and ∂ϕ(x) = {ϕ′(x)}. Similarly, if
ϕ : X → R is continuous convex, then ϕ is locally Lipschitz and the generalized
subdifferential of ϕ, coincides with the subdifferential in the sense of convex analysis,
given by

∂cϕ(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ϕ(y)− ϕ(x) for all y ∈ X}.

We say that x ∈ X is a critical point of the locally Lipschitz function ϕ : X → R,
if 0 ∈ ∂ϕ(x). In this case, c = ϕ(x) is a critical value of ϕ. It is easy to check
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that, if x ∈ X is a local extremum of ϕ (i.e., x ∈ X is a local minimum or a local
maximum), then x ∈ X is a critical point of ϕ.

Given a locally Lipschitz function ϕ : X → R, we say that ϕ satisfies the Palais-
Smale condition at the level c ∈ R (the “PSc-condition” for short), if every sequence
{xn}n≥1 ⊆ X such that ϕ(xn) → c and m(xn) → 0 as n → +∞, with m(xn) =
inf{‖x∗‖ : x∗ ∈ ∂ϕ(xn)}, has a strongly convergent subsequence. We say that ϕ
satisfies the “PS-condition”, if it satisfies the PSc-condition at every level c ∈ R.

For a locally Lipschitz function ϕ : X → R and c ∈ R, we define the sets:

ϕ̇c = {x ∈ X : ϕ(x) < c}, ϕc = {x ∈ X : ϕ(x) ≤ c},
Kc = {x ∈ X : 0 ∈ ∂ϕ(x), ϕ(x) = c}.

The next theorem, due to Corvellec [8], is a partial extension to a nonsmooth
setting of the so-called “second deformation theorem” (see [6, p.23] and [12, p.628])
In fact, the result of Corvellec is formulated in a more general framework, namely,
for continuous (or even lower semicontinuous) functions on a metric space, using
the notion of weak slope (see [8], [12, Section 1.3.5], and [15, Section 2.3]). For our
purposes, the following particular version of the result suffices.

Theorem 2.1. If X is a Banach space, ϕ : X → R is locally Lipschitz, −∞ <
a < b < +∞, ϕ satisfies the PSc-condition for every c ∈ [a, b), ϕ has no critical
values in [a, b), and Ka is a finite set consisting of local minima, then there exists
a continuous deformation h : [0, 1]× ϕ̇b → ϕ̇b such that:

(a) h(t, ·)
∣∣
Ka

= id
∣∣
Ka

for all t ∈ [0, 1];
(b) h(1, ϕ̇b) ⊆ ϕ̇a ∪Ka;
(c) ϕ(h(t, x)) ≤ ϕ(x) for all t ∈ [0, 1] and all x ∈ ϕ̇b.

In particular, this theorem implies that the set ϕ̇a ∪ Ka is a weak deforma-
tion retract of ϕ̇b. In the smooth version of the second deformation theorem, the
conclusion is that ϕa is a strong deformation retract of ϕb\Kb.

3. Existence Theorem

We shall prove an existence theorem, for the following more general version of
problem (1.1),

−∆p x(z) ∈ ∂j(z, x(z)) + h(z) a.e. in Z,

∂x

∂n
= 0 on ∂Z,

(3.1)

where h ∈ L∞(Z) satisfies ∫
Z

h(z) dz = 0. (3.2)

To prove an existence theorem for (3.1), we will need the following hypotheses on
the nonsmooth potential j:

(H1) j : Z × R → R is a function such that j(z, 0) = 0 a.e. on Z and
(i) for all x ∈ R, z 7→ j(z, x) is measurable;
(ii) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;
(iii) for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have

|u| ≤ a(z) + c|x|r−1

with a ∈ L∞(Z)+, c > 0 and 1 ≤ r < p∗;
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(iv) there exists ξ ∈ L1(Z)+ such that j(z, x) ≤ ξ(z) for a.a. z ∈ Z and all
x ∈ R;

(v) there exists c0 ∈ R\{0} such that
∫

Z
j(z, c0) dz > 0.

Here, p∗ is the usual Sobolev critical exponent

p∗ =

{
Np

N−p if N > p,

+∞ if N ≤ p.

Example 3.1. The following potential function j satisfies hypotheses (H1), where
for the sake of simplicity we drop the z-dependence,

j(x) =

{
s(x)c (|x|r − |x|q) if |x| ≤ 1,

s(x)
(

1
x2 − ln |x| − 1

)
if |x| > 1,

where s(x) ≡ 1 or s(x) = sign(x) + 2, c > 0 and 1 ≤ r ≤ p < q. In the latter
case, where s is nonconstant, j has no symmetry properties. Moreover, if 1 < r
and c = 3

q−r > 0, then j ∈ C1(R).

Example 3.2. The following potential function j satisfies hypotheses (H1), where
again for the sake of simplicity we drop the z-dependence,

j(x) =

{
|x|r if |x| ≤ 1,
1
x2 ln(|x|) + 1 if |x| > 1,

where 1 ≤ r ≤ p. Note that the corresponding Euler functional is noncoercive.

In what follows, we set

β =
∫

Z

lim sup
|x|→∞

j(z, x) dz.

By hypothesis (H1)(iv), we have β ∈ R ∪ {−∞}.
It is worth pointing out, that hypotheses (H1) incorporate, in our framework

of analysis, problems which are strongly resonant with respect to the principal
eigenvalue λ0 = 0 of the Neumann p-Laplacian. For this reason, we do not expect
the PS-condition to be satisfied globally (i.e., at all levels). This will be confirmed
in the sequel (see Proposition 3.5). But to be able to reach that result, we shall
need some preparation.

So, we consider the following auxiliary Neumann problem:

−∆px(z) = h(z) a.e. in Z,

∂x

∂n
= 0 on ∂Z,

(3.3)

with a h ∈ L∞(Z) that satisfies (3.2). We consider the direct sum decomposition

W 1,p(Z) = R⊕ V with V =
{
x̂ ∈ W 1,p(Z) :

∫
Z

x̂(z) dz = 0
}
. (3.4)

Then, we have the following simple result.

Proposition 3.3. Problem (3.3) has a unique solution x̂0 ∈ C1(Z̄) ∩ V .

Proof. Let n : W 1,p(Z) → R be the C1-functional defined by

η(z) =
1
p
‖Dx‖p

p −
∫

Z

hx dz
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for all x ∈ W 1,p(Z). Every x ∈ W 1,p(Z) can be written in a unique way as

x = x̄ + x̂

with x̄ ∈ R and x̂ ∈ V (see (3.4)).
Because of (3.2), we see that η|R = 0. Let η̂ = η|V (i.e., η̂ is the restriction of η on

V ). By virtue of the Poincaré-Wirtinger inequality, we see that η̂ is coercive on V .
Moreover, it is clear that η̂ is sequentially weakly lower semicontinuous on V . So, by
the Weierstrass theorem, we can find x̂0 ∈ V such that −∞ < m̂0 = η̂(x̂0) = infV η̂,
which implies

η̂′(x̂0) = 0 in V ∗. (3.5)
Let pV : W 1,p(Z) → V be the projection operator onto V . It exists since V is finite
codimensional. Using the chain rule, we have

η′(x) = p∗V η̂′(pV (x)) = p∗V η̂′(x̂) for all x ∈ W 1,p(Z). (3.6)

In what follows, by 〈·, ·〉V we denote the duality brackets for the pair (V ∗, V ). Then
for any x, y ∈ W 1,p(Z), we have

〈η′(x), y〉 = 〈p∗V η̂′(pV (x)), y〉 (see (3.6))

= 〈η̂′(pV (x)), pV (y)〉V
which implies

〈η′(x̂0), y〉 = 〈η′(x̂0), pV (y)〉V = 0. (3.7)
Because y ∈ W 1,p(Z) was arbitrary, from (3.7) it follows that η′(x̂0) = 0 in W 1,p(Z),
so

A(x̂0) = h, (3.8)
where A : W 1,p(Z) → W 1,p(Z)∗ is the nonlinear operator defined by

〈A(x), y〉 =
∫

Z

‖Dx‖p−2
RN (Dx, Dy)RN dz (3.9)

for all x, y ∈ W 1,p(Z). Evidently, A is strictly monotone (strongly monotone, if
p ≥ 2) and continuous. From (3.8), using the nonlinear Green’s identity and the
nonlinear regularity theory (e.g., see [12]), we infer that x̂0 ∈ C1(Z̄) and it solves
(3.3). Moreover, the strict monotonicity of A|V implies that x̂0 ∈ V is unique in
V . �

From [14, Proposition 12], we have the following useful fact about the nonlinear
map A : W 1,p(Z) → W 1,p(Z)∗ defined by (3.9).

Proposition 3.4. If A : W 1,p(Z) → W 1,p(Z)∗ is defined by (3.9), then A is
maximal monotone and of type (S)+; i.e., if xn

w→ x in W 1,p(Z) and

lim sup
n→+∞

〈A(xn), xn − x〉 ≤ 0,

then xn → x in W 1,p(Z).

The next proposition illustrates the failure of the global PS-condition already
mentioned earlier. So, let ϕ1 : W 1,p(Z) → R be the Euler functional for (3.1),
defined by

ϕ1(x) =
1
p
‖Dx‖p

p −
∫

Z

j(z, x(z)) dz −
∫

Z

h(z)x(z) dz

for all x ∈ W 1,p(Z). From [7, p.83], we know that ϕ1 is Lipschitz continuous on
bounded sets, hence it is locally Lipschitz.
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Proposition 3.5. If hypotheses (H1) hold and c < η(x̂0)− β, then ϕ1 satisfies the
PSc-condition.

Proof. Consider a sequence {xn}n≥1 ⊆ W 1,p(Z) such that

ϕ1(xn) → c as n → +∞ with c < η(x̂0)− β, (3.10)

m1(xn) = inf{‖x∗‖ : x∗ ∈ ∂ϕ1(xn)} → 0 as n →∞. (3.11)

Because ∂ϕ1(xn) ⊆ W 1,p(Z)∗ is w-compact and the norm functional in a Banach
space is weakly lower semicontinuous, we can find x∗n ∈ ∂ϕ1(xn) such that m1(xn) =
‖x∗n‖. We know that

x∗n = A(xn)− un − h, (3.12)
with un ∈ N(xn) = {u ∈ Lr′

(Z) : u(z) ∈ ∂j(z, xn(z)) a.e. on Z} and 1
r + 1

r′ = 1
(see [7, p. 83]). Also, we have xn = x̄n + x̂n with x̄n ∈ R and x̂n ∈ V . From (3.10)
and (3.2), we can find M1 > 0 such that

M1 ≥ ϕ1(xn) =
1
p
‖Dx̂n‖p

p −
∫

Z

j(z, x(z)) dz −
∫

Z

h(z)x̂n(z) dz

≥ 1
p
‖Dx̂n‖p

p − ‖ξ‖1 − c1‖Dx̂n‖p

(3.13)

for some c1 > 0 and all n ≥ 1. Here, we have used the Poincaré-Wirtinger inequality
and hypothesis (H1)(iv). From (3.13) and the Poincaré-Wirtinger inequality again,
we infer that

{x̂n}n≥1 ⊆ W 1,p(Z) is bounded. (3.14)
Because of (3.14) and by passing to a suitable subsequence if necessary, we may
assume that

|x̂n(z)| ≤ k(z) (3.15)
for a.a. z ∈ Z, all n ≥ 1, with k ∈ Lr(Z)+.

Suppose that {xn}n≥1 ⊆ W 1,p(Z) is not bounded. We may assume that ‖xn‖ →
∞ and so, because of (3.14), we must have |x̄n| → ∞. Then

|xn(z)| ≥ |x̄n| − |x̂(z)| ≥ |x̄n| − k(z)

for a.a. z ∈ Z (see (3.15)), hence

|xn(z)| → +∞ as n →∞
for a.a. z ∈ Z. From (3.13), we see that

M1 ≥ ϕ1(xn) = η(x̂n)−
∫

Z

j(z, xn(z)) dz ≥ η(x̂0)−
∫

Z

j(z, xn(z)) dz,

(see the proof of Proposition 3.3). Passing to the limit as n → +∞ and using
(3.10), we obtain

M1 ≥ c ≥ η(x̂0)− lim sup
n→∞

∫
Z

j(z, xn(z)) dz

≥ η(x̂0)−
∫

Z

lim sup
n→∞

j(z, xn(z)) dz (by Fatou’s lemma, see (H1)(iv))

= η(x̂0)− β,

which contradicts the choice of c (see (3.10)). This proves that {xn}n≥1 ⊆ W 1,p(Z)
is bounded. Hence, we may assume that

xn
w→ w in W 1,p(Z) and xn → x in Lr(Z).
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From (3.11) and (3.12), we have, with εn ↓ 0,∣∣〈A(xn), xn − x〉 −
∫

Z

un(xn − x) dz −
∫

Z

h(xn − x) dz
∣∣ ≤ εn‖xn − x‖. (3.16)

Clearly ∫
Z

un(xn − x) dz → 0,

∫
Z

h(xn − x) dz → 0.

So, if in (3.16) we pass to the limit as n →∞, then we obtain

lim
n→∞

〈A(xn), xn − x〉 = 0.

thus by virtue of Proposition 3.4, we have that xn → x in W 1,p(Z). This proves
that ϕ satisfies the PSc-condition for all c < η(x̂0)− β. �

Now we are ready for the existence result concerning Problem (3.1).

Theorem 3.6. If hypotheses (H1) hold and β <
∫

Z
j(z, x̂0(z)) dz, then (3.1) admits

a nontrivial solution y0 ∈ C1(Z̄).

Proof. Recall that

ϕ1(x) = η(x̂)−
∫

Z

j(z, x(z)) dz

for all x ∈ W 1,p(Z) (x̂ = pV (x)). From the proof of Proposition 3.3, we know that
x̂0 ∈ V is a minimizer of the functional η. Therefore,

ϕ1(x) ≥ η(x̂0)−
∫

Z

j(z, x(z)) dz ≥ η(x̂0)− ‖ξ‖1

for all x ∈ W 1,p(Z) (see hypothesis (H1)(iv)). Hence ϕ1 is bounded below and so
−∞ < m̂1 = inf

{
ϕ1 ∈ W 1,p(Z)

}
. Also

−∞ < m̂1 ≤ ϕ1(x̂0) = η(x̂0)−
∫

Z

j(z, x0(z)) dz, < η(x0)− β

by hypothesis. Then, by virtue of Proposition 3.5, ϕ1 satisfies the PSm̂1-condition.
So, from [11, p.144], we infer that there exists y0 ∈ W 1,p(Z) such that

ϕ1(y0) = m̂1 = inf{ϕ1(x) : x ∈ W 1,p(Z)} ≤ ϕ1(c0) = −
∫

Z

j(z, c0) dz < 0 = ϕ1(0)

(see hypothesis (H1)(v)). It follows that y0 6= 0. Also ϕ′(y0) = 0, which implies

A(y0) = u0 + h with u0 ∈ N(y0). (3.17)

From (3.17) as before, using the nonlinear Green’s identity and nonlinear regularity
theory, we infer that y0 ∈ C1(Z̄) and solves (3.1). �

We remark that in Example 3.2, we have j(x) > 0 for x 6= 0, so the hypotheses
of Theorem 3.6 are satisfied for h ≡ 0.
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4. Multiplicity Theorem

In this section, we return to (1.1), where h ≡ 0, hence x̂0 = 0 and η(x0) = 0.
To prove a multiplicity theorem for (1.1), we need to strengthen the hypotheses on
the nonsmooth potential j as follows:

(H2) j : Z ×RN → R is a function such that j(z, 0) → 0 a.e. on Z, and satisfies
hypotheses (H1)(i)–(v) and
(vi) β =

∫
Z

lim sup|x|→∞ j(z, x) dz < 0 and there exists η ∈ L∞(Z)+, η 6= 0
such that

η(z) ≤ lim inf
x→0

j(z, x)
|x|p

uniformly for a.a. z ∈ Z;
(vii) j(z, x) ≤ λ1

p |x|
p for a.a. z ∈ Z and all x ∈ R and with λ1 > 0

being the first nonzero eigenvalue of (−∆p ,W 1,p(Z)) (i.e., the second
eigenvalue).

The Euler functional ϕ : W 1,p(Z) → R for (1.1) is defined by

ϕ(x) =
1
p
‖Dx‖p

p −
∫

Z

j(z, x(z)) dz

for all x ∈ W 1,p(Z). We know that ϕ is Lipschitz continuous on bounded sets,
hence it is locally Lipschitz (see [7], p.83).

Theorem 4.1. If hypotheses (H2) hold, then (1.1) has at least two nontrivial so-
lutions y0, v0 ∈ C1(Z̄).

Proof. As we already mentioned, since h ≡ 0, we have x̂0 = 0 and so j(z, x̂0(z)) = 0
a.e. on Z. Then hypothesis (H2) permits the use of Theorem 3.6, which gives a
nontrivial solution y0 ∈ C1(Z̄) for (1.1).

Hypothesis (H2)(vi) implies that, for ε > 0, we can find δ = δ(ε) > 0 such that

j(z, x) ≥ (η(z)− ε) |x|p (4.1)

for a.a. Z and all |x| ≤ δ. If ξ ∈ R with 0 < |ξ| ≤ δ, then

ϕ(ξ) = −
∫

Z

j(z, ξ) dz ≤
∫

Z

(ε− η(z))dz |ξ|p, (4.2)

(see (4.1)). If we choose 0 < ε < 1
|Z|N

∫
Z

η(z) dz (by | · |N we denote the Lebesgue
measure on RN ), then from (4.2), we infer that ϕ(ξ) < 0, so

µr = max
∂Br∩R

ϕ < 0 (4.3)

for all 0 < r ≤ δ. Let

C(p) =
{
x ∈ W 1,p(Z) :

∫
Z

|x(z)|p−2x(z) dz = 0
}
.

Then, for every x ∈ C(p), we have

ϕ(x) =
1
p
‖Dx‖p

p −
∫

Z

j(z, x(z)) dz

≥ 1
p
‖Dx‖p

p −
λ1

p
‖Dx‖p

p −
λ1

p
‖x‖p

p ≥ 0,
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since x ∈ C(p) (see [14]) and by using (H2)(vii). Hence,

inf
C(p)

ϕ = 0. (4.4)

We introduce the set

Γr = {γ ∈ C(B̄r ∩ R,W 1,p(Z)) : γ|∂Br∩R = id|∂Br∩R}, 0 < r ≤ δ,

and define the minimax quantity

ĉr = inf
γ∈Γr

max
x∈B̄r∩R

ϕ(γ(x)). (4.5)

Consider the map σ : W 1,p(Z) → R defined by

σ(u) =
∫

Z

|u|p−2u dz.

Evidently, σ is continuous and for r,−r ∈ γ(B̄r ∩ R), γ ∈ Γr, we have

σ(−r) < 0 < σ(r).

So, by Bolzano’s theorem, we can find u ∈ γ(B̄r ∩ R) (recall that the set is con-
nected), such that

σ(u) =
∫

Z

|u|p−2u dz = 0,

hence u ∈ C(p). Therefore, we have u ∈ γ(B̄r ∩ R) ∩ C(p), which implies

ĉr ≥ 0 (4.6)

(see (4.4) and (4.5)). Suppose that {0, y0} are the only critical points of ϕ. Set

b = 0 = ϕ(0) and a = m̂ = inf ϕ = ϕ(y0)

(see the proof of Theorem 3.6). We know that a < b (also from Theorem 3.6).
Moreover, by virtue of Proposition 3.5, ϕ satisfies the PSc-condition for every
c ∈ (a, b) (recall that η(x̂0) = 0 and by hypothesis (H2)(vi), β < 0). Also Ka = {y0}
and y0 is a minimizer of ϕ. Finally, by hypothesis, ϕ has no critical values in
(a, b). Therefore, we can apply Theorem 2.1 and obtain a continuous deformation
h : 0, 1× ϕ̇b → ϕ̇b such that h(t, ·)|Ka

= id|Ka
for all t ∈ [0, 1] and

h(1, ϕ̇b) ⊆ ϕ̇a ∪Ka = {y0} (4.7)

(since ϕ̇a = ∅) and

ϕ(h(t, x)) ≤ ϕ(x) for all t ∈ [0, 1] and all x ∈ ϕ̇b. (4.8)

We consider the map γ0 : B̄r ∩ R → W 1,p(Z) defined by

γ0(x) =

{
y0 if ‖x‖ ≤ r

2 ,

h
( 2(r−‖x‖)

r , rx
‖x‖

)
if ‖x‖ > r

2 ,
(4.9)

for all x ∈ B̄r ∩R. If ‖x‖ = r
2 , then h

( 2(r−‖x‖)
r , rx

‖x‖
)

= h(1, 2x) = y0 (see (4.7) and
(4.3)). Hence, it follows that γ0 is continuous.

If ‖x‖ = r, then γ0(x) = h(0, x) = x (since h is a deformation). Therefore,
γ ∈ Γ. Moreover, from (4.9) and (4.8) and since ϕ(y0) = a ≤ µr < 0 (see (4.3)), we
have

ϕ(γ0(x)) ≤ µr < 0 for all x ∈ B̄r ∩ R,

which implies
ĉr < 0. (4.10)
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(see (4.5) and recall γ0 ∈ Γ). Comparing (4.3) and (4.10), we reach a contradiction.
This means that there is one more critical point v0 6∈ {0, y0} of ϕ. Then, as before,
we check that v0 ∈ W 1,p(Z) is a solution for (1.1) and nonlinear regularity theory
implies that v0 ∈ C1(Z̄). �
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