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Abstract. We look for weak solutions u ∈ W 1,p
0 (Ω) of the degenerate quasi-

linear Dirichlet boundary value problem

−∆pu = λ|u|p−2u + f(x) in Ω ; u = 0 on ∂Ω . (P)

It is assumed that 1 < p < ∞, p 6= 2, ∆pu ≡ div(|∇u|p−2∇u) is the p-

Laplacian, Ω is a bounded domain in RN , f ∈ L∞(Ω) is a given function, and
λ stands for the (real) spectral parameter. Such weak solutions are precisely

the critical points of the corresponding energy functional on W 1,p
0 (Ω),

Jλ(u)
def
=

1

p

Z
Ω
|∇u|p dx−

λ

p

Z
Ω
|u|p dx−

Z
Ω

f(x) u dx , u ∈ W 1,p
0 (Ω) . (J)

I.e., problem (P) is equivalent with J ′λ(u) = 0 in W−1,p′ (Ω). Here, J ′λ(u)

stands for the (first) Fréchet derivative of the functional Jλ on W 1,p
0 (Ω) and

W−1,p′ (Ω) denotes the (strong) dual space of the Sobolev space W 1,p
0 (Ω),

p′ = p/(p− 1).

We will describe a global minimization method for this functional provided

λ < λ1, together with the (strict) convexity of the functional for λ ≤ 0 and
possible “nonconvexity” if 0 < λ < λ1. As usual, λ1 denotes the first (smallest)

eigenvalue λ1 of the positive p-Laplacian −∆p. Strict convexity will force the

uniqueness of a critical point (which is then the global minimizer for Jλ),
whereas “nonconvexity” will be shown by constructing a saddle point which is

different from any local or global minimizer. These methods are well-known

and can be found in many textbooks on Nonlinear Functional Analysis or
Variational Calculus.

The problem becomes quite difficult if λ = λ1 or λ > λ1, even in space

dimension one (N = 1). We will restrict ourselves to the case λ = λ1, the
Fredholm alternative for the p-Laplacian at the first eigenvalue. Even if the

functional Jλ1 is no longer coercive on W 1,p
0 (Ω), for p > 2 we will show that it

is bounded from below and does possess a global minimizer. For 1 < p < 2 the
functional Jλ1 is unbounded from below and one can find a pair of sub- and

supersolutions to problem (P) by a variational method (a simplified minimax

principle) performed in the orthogonal decomposition W 1,p
0 (Ω) = lin{ϕ1} ⊕

W 1,p
0 (Ω)> induced by the inner product in L2(Ω). First, the minimum is

taken in W 1,p
0 (Ω)>, and then (possibly only local) maximum in lin{ϕ1}. The

“sub-” and “supercritical” points thus obtained provide a pair of sub- and

supersolutions to problem (P). Then a topological (Leray-Schauder) degree

has to be employed to obtain a solution to problem (P) by a standard fixed
point argument.

Finally, we will discuss the existence and multiplicity of a solution for prob-

lem (P) when f “nearly” satisfies the orthogonality condition
R
Ω fϕ1 dx = 0

and λ < λ1 + δ (with δ > 0 small enough). A crucial ingredient in our proofs

are rather precise asymptotic estimates for possible “large” solutions to prob-
lem (P) obtained from the linearization of problem (P) about the eigenfunction

ϕ1. These will be briefly discussed. Naturally, the (linear selfadjoint) Fred-

holm alternative for the linearization of problem (P) about ϕ1 (with λ = λ1)
appears in the proofs.
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1. Introduction

In this lecture notes we will combine variational and topological methods to
establish various results on existence (or nonexistence), uniqueness, and multiplicity
of solutions corresponding to the Fredholm alternative for the nonlinear Dirichlet
problem

−∆pu = λ|u|p−2u+ f(x) in Ω ; u = 0 on ∂Ω , (1.1)

with the p-Laplacian ∆p defined by ∆pu
def=div(|∇u|p−2∇u) for p ∈ (1,∞). Here,

λ ∈ R is the spectral (control) parameter taking values near the first (smallest)
eigenvalue λ1 of −∆p,

λ1 = inf
{∫

Ω

|∇u|p dx : u ∈W 1,p
0 (Ω) with

∫
Ω

|u|p dx = 1
}
, (1.2)

and f ∈ L∞(Ω) is a given function, f 6≡ 0 in Ω. Using a new variational method
introduced in Takáč [32, 35] we will be able to show a number of results on the
solvability of problem (1.1) under various conditions on λ and f . We assume that
Ω is a bounded domain in RN (N ≥ 1) with sufficiently smooth boundary ∂Ω; C2

boundary will do. As far as conditions on f are concerned, we will find it convenient
to work with the orthogonal sum L2(Ω) = lin{ϕ1} ⊕ L2(Ω)>, where

L2(Ω)>def=
{
f ∈ L2(Ω) : 〈f, ϕ1〉 = 0

}
, (1.3)

〈f, ϕ1〉
def=

∫
Ω
fϕ1 dx, so that f splits as f = f‖ · ϕ1 + f>, where

f‖
def= ‖ϕ1‖−2

L2(Ω)〈f, ϕ1〉 and 〈f>, ϕ1〉 = 0 . (1.4)

Here, ϕ1 denotes the eigenfunction associated with λ1 which is a simple eigenvalue
of −∆p, by Anane [2, Théorème 1, p. 727] or Lindqvist [25, Theorem 1.3, p. 157].
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We normalize ϕ1 by ϕ1 > 0 in Ω and ‖ϕ1‖Lp(Ω) = 1. We have ϕ1 ∈ L∞(Ω) by
Anane [3, Théorème A.1, p. 96]. More details about λ1 and ϕ1 will be presented in
Section 5.

We formulate our solvability conditions on f in terms of f‖ and f> where the
ratio between |f‖| and ‖f>‖L∞(Ω) plays a decisive role. For λ near λ1, say, |λ−λ1| ≤
δ, this ratio, combined with the signs of λ− λ1 and p− 2, determines the existence
(or nonexistence) and multiplicity of weak solutions to problem (1.1) in W 1,p

0 (Ω).
It is not surprising that we look for solutions to (1.1) coming also in the form
u = u‖ · ϕ1 + u> defined in (1.4). We will establish strong relations between f‖

and u‖, and f> and u>, as well, for any 1 < p < ∞, in analogy with the case
p = 2 when these two relations are decoupled by the spectral decomposition of the
(linear) Laplace operator ∆ in L2(Ω).

In accordance with (1.3) we write

L∞(Ω)>def=
{
u ∈ L∞(Ω) : 〈u, ϕ1〉 = 0

}
,

W 1,p
0 (Ω)>def=

{
u ∈W 1,p

0 (Ω) : 〈u, ϕ1〉 = 0
}
,

and take advantage of the orthogonal sums

L∞(Ω) = lin{ϕ1} ⊕ L∞(Ω)> , W 1,p
0 (Ω) = lin{ϕ1} ⊕W 1,p

0 (Ω)> .

The main idea in our variational approach is to look for the unknowns u‖ and u>

separately; first for u> ∈W 1,p
0 (Ω)> and then for u‖ ∈ R (depending on u>). More

precisely, we look for critical points of the energy functional

Jλ(u) =
1
p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

|u|p dx−
∫

Ω

f(x)u dx , u ∈W 1,p
0 (Ω) , (1.5)

corresponding to problem (1.1) as follows.
First, we fix u‖ = τ ∈ R arbitrary and minimize the restricted energy functional

u> 7→ Jλ(τϕ1 + u>) over the orthogonal complement W 1,p
0 (Ω)>, thus obtaining a

global minimizer u>τ ∈W 1,p
0 (Ω)>,

jλ(τ)def=Jλ(τϕ1 + u>τ ) ≤ Jλ(τϕ1 + u>) for all u> ∈W 1,p
0 (Ω)> .

This is possible provided the functional u> 7→ Jλ(τϕ1+u>) is coercive onW 1,p
0 (Ω)>

which, indeed, is the case if λ < Λ∞. The number

Λ∞
def= inf

{ ∫
Ω

|∇u|p dx : u ∈W 1,p
0 (Ω)> with

∫
Ω

|u|p dx = 1
}

(1.6)

satisfies Λ∞ > λ1, by the simplicity of eigenvalue λ1. Using the uniform convexity
of W 1,p

0 (Ω), we will be able to show that jλ : R → R is a continuous function.
Now we vary τ ∈ R and look for local extrema (minima or maxima) of the

function jλ(τ) in order to determine possible critical points of the functional Jλ :
W 1,p

0 (Ω) → R. Clearly, if τ0 is a local minimizer for jλ, then also u0 = τ0ϕ1 + u>τ0

is a local minimizer for Jλ and hence a critical point of Jλ. A more complicated
situation occurs if jλ has a local maximum at τ0 ∈ R. In general, we even do not
know if jλ is differentiable at τ0. However, we are still able to show that problem
(1.1) possesses a pair of sub- and supersolutions,

u = τ0ϕ1 + u> and u = τ0ϕ1 + u>,
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respectively, such that

−∆pu = λ|u|p−2u+ f(x) + ζ · ϕ1 in Ω;
u = 0 on ∂Ω,

}
(1.7)

−∆pu = λ|u|p−2u+ f(x) + ζ · ϕ1 in Ω;
u = 0 on ∂Ω,

}
(1.8)

for some ζ, ζ ∈ R satisfying ζ ≤ 0 ≤ ζ. Fortunately, another method ([6, Theorem
8.2, p. 448] or [14, Lemma 2.4, p. 191]), which combines the existence of such a pair
of sub- and supersolutions with the topological (Leray-Schauder) degree, renders the
existence of a (weak) solution u = τϕ1 +u> of problem (1.1) with τ “close enough”
to τ0, relative to the magnitude of |τ0|. In this way we are able to distinguish the
solution u from those other local minima or maxima of jλ whose absolute value is
of a different order of magnitude than |τ0| (meaning either much smaller or much
larger) or whose sign is opposite to sgnτ0. If the sub- and supersolutions coincide,
then u0 = u = u is a critical point of Jλ and, moreover, it is an easy exercise
to show that jλ is differentiable at τ0 with vanishing derivative. Employing this
procedure we are able to obtain multiple solutions of the form u = τϕ1 + u> to
problem (1.1) which can be distinguished either by the order of magnitude of |τ |
or by the sign of parameter τ ∈ R.

The variational method sketched above is somewhat different from Rabinowitz’
“Saddle Point Theorem” [30, Theorem 4.6, p. 24] applied to the functional Jλ. We
actually work with a “maximin” expression,

max
a<τ<b

jλ(τ) = max
a<τ<b

min
u>∈W 1,p

0 (Ω)>
Jλ(τϕ1 + u>) (1.9)

with −∞ ≤ a < b ≤ ∞ suitably chosen, and thus obtain a local maximizer τ0
of the function jλ : R → R which, in turn, induces a sub- and a supersolution to
problem (1.1). This method originates in an earlier work of the author [32, Sect. 7]
for p < 2 and λ1 − δ ≤ λ ≤ λ1. A number of results on the solvability (existence,
or nonexistence, and multiplicity of solutions) of problem (1.1) have been obtained
by other methods for any 1 < p < ∞ and |λ − λ1| ≤ δ; see [7, 9, 28, 40, 41] with
further significant progress being made recently in [10, 11, 12, 13, 14, 20, 22, 26,
27, 29, 32, 33, 34, 35]. We will follow the recent work [35] in order to prove (or at
least explain) some of these results here employing our variational method. A result
from [35, Theorem 2.7, p. 702] concerning the case p > 2 and λ1 < λ ≤ λ1 + δ
is of special interest, for it features at least three (pairwise distinct) solutions of
problem (1.1): two critical points of the functional Jλ, which are probably not
local minimizers, and a local minimizer “between” them. Occasionally, variational
proofs provide generalizations of earlier results. For these reasons we feel that
the method is worth of being further explored in order to derive existence and
multiplicity results for (1.1) and related problems, with f(x) replaced by a more
general function f(x, u), see suggestions in Section 12.

We will see that problem (1.1) possesses multiple solutions in some cases provided
|〈f, ϕ1〉| > 0 is small enough relative to ‖f‖L∞(Ω): at least two solutions if λ = λ1,
and at least three solutions if |λ−λ1| > 0 is small enough. We start from the basic
case 〈f, ϕ1〉 = 0 and λ = λ1. Our variational method is stable enough for the energy
functional Jλ, so that we can slightly relax the orthogonality condition 〈f, ϕ1〉 = 0
(relative to the size of ‖f‖L∞(Ω)) and/or the condition λ = λ1. Multiple solutions
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to problem (1.1) with N = 1, any 0 < λ < λ1, and a suitable function f have been
constructed earlier in [19] (for 1 < p < 2) and [28] (for 2 < p < ∞). Other cases,
all with λ near λ1, have been treated more recently in [10, 11, 12, 13, 22, 33, 34].

These lecture notes are organized as follows. As a “warm-up” exercise, in the
next section (Section 2) we give a (simple) variational proof of the Riesz represen-
tation theorem for continuous linear functionals on Lp(Ω) inspired by Adams and
Fournier [1, Proof of Theorem 2.44, pp. 46–47]. In Section 3 we introduce some
notations and basic hypotheses. The energy functional Jλ and (weak and strong)
convergence of a minimizing sequence in W 1,p

0 (Ω) are studied in Section 4. A few
basic properties of the first eigenvalue of −∆p are stated in Section 5. In Section 6
we explore the convexity of the functional Jλ, first for λ ≤ 0 (on all of W 1,p

0 (Ω), in
§6.1) and then also for 0 < λ ≤ λ1 and f ≥ 0 (on the set of positive functions, in
§6.2), and its impact on the uniqueness of a solution to problem (1.1). In Section 7
we present a variational method which is based on minimization with constraint.
Elementary analysis in Section 8 suggests how to obtain critical points for Jλ. In
Section 9 we apply the Leray-Schauder degree to a suitable fixed point mapping
in order to establish the existence of a critical point for Jλ (which probably is not
a local minimizer). Multiple (and “large”) critical points of Jλ are discussed in
Section 10. A collection of main results that can be obtained by the variational
and topological methods presented in these notes is given in Section 11. Finally,
Section 12 is devoted to a brief discussion of the general problem

−∆pu = λ|u|p−2u+ f(x, u(x)) in Ω ; u = 0 on ∂Ω , (1.10)

when the function f(x, u) is allowed to depend also on the state variable u ∈ R.
The lecture notes conclude with two appendices: Appendix A with some auxiliary
functional-analytic results from Takáč [32] and Appendix B which contains some
(mostly highly nontrivial) results from Drábek et al. [13, Theorem 4.1, pp. 445–446]
and Takáč [32, 33].

2. The Riesz representation theorem in Lp(Ω)

A given (equivalent) norm ‖ · ‖X on a Banach space X (and, hence, also X itself
endowed with this norm) is called uniformly convex if for every ε > 0 there exists
some δ ≡ δ(ε) > 0 such that, for all u, v ∈ X, one has

‖u‖X , ‖v‖X ≤ 1 and
∥∥u+ v

2

∥∥
X
> 1− δ =⇒ ‖u− v‖X < ε .

The uniform convexity of the standard norm on Lp(Ω) for 1 < p <∞,

‖u‖Lp(Ω)
def=

( ∫
Ω

|u(x)|p dx
)1/p

, u ∈ Lp(Ω), (2.1)

is a direct consequence of Clarkson’s inequalities (see e.g. Adams and Fournier
[1, Theorem 2.38, p. 44] for a proof):

Lemma 2.1 (Clarkson’s inequalities). Let 1 < p < ∞ and p′ = p/(p − 1). For
u, v ∈ Lp(Ω) (real or complex-valued, and vector-valued functions from [Lp(Ω)]N ,
as well) we have
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(a) if 2 ≤ p <∞ then∥∥u+ v

2

∥∥p

Lp(Ω)
+

∥∥u− v

2

∥∥p

Lp(Ω)
≤ 1

2

(
‖u‖p

Lp(Ω) + ‖v‖p
Lp(Ω)

)
, (2.2)∥∥u+ v

2

∥∥p′

Lp(Ω)
+

∥∥u− v

2

∥∥p′

Lp(Ω)
≥

[1
2

(
‖u‖p

Lp(Ω) + ‖v‖p
Lp(Ω)

) ]p′−1

;

(b) if 1 < p ≤ 2 then∥∥u+ v

2

∥∥p′

Lp(Ω)
+

∥∥u− v

2

∥∥p′

Lp(Ω)
≤

[1
2

(
‖u‖p

Lp(Ω) + ‖v‖p
Lp(Ω)

) ]p′−1

, (2.3)∥∥u+ v

2

∥∥p

Lp(Ω)
+

∥∥u− v

2

∥∥p

Lp(Ω)
≥ 1

2

(
‖u‖p

Lp(Ω) + ‖v‖p
Lp(Ω)

)
.

Notice that if p = p′ = 2, the inequalities above reduce to the parallelogram law
in the Hilbert space L2(Ω).

Clarkson’s inequalities (2.2) (if 2 ≤ p <∞) and (2.3) (if 1 < p ≤ 2) can be used
to give a simple variational proof of the Riesz representation theorem for continuous
linear functionals on Lp(Ω); see e.g. the monograph by Adams and Fournier [1,
Theorem 2.44, p. 47]. We are now ready to give a similar proof. Our approach is
even more “variational” than the one presented in [1, Proof of Theorem 2.44, pp.
46–47]. We apply a standard minimization procedure to the functional

E(u) ≡ E(u; `) =
1
p

∫
Ω

|u|p dx−<e `(u) , u ∈ Lp(Ω) , (2.4)

where ` : Lp(Ω) → R (or C) is a continuous linear functional defined on the real
(or complex, respectively) Lebesgue space Lp(Ω), 1 < p < ∞, which is given.
Hence, we will show that this functional has a global minimizer ũ in Lp(Ω); see
Lemma 2.2 below. Moreover, E being strictly convex, by Clarkson’s inequalities,
we can conclude that it possesses a unique critical point. This point will provide us
with the desired representation function from the dual space Lp′(Ω), p′ = p/(p−1).

In other words, we will apply Clarkson’s inequalities (Lemma 2.1) to show

The Riesz representation theorem. Given a continuous linear functional ` on
Lp(Ω), there exists a unique function f ∈ Lp′(Ω) such that

`(u) =
∫

Ω

uf dx holds for all u ∈ Lp(Ω) . (2.5)

Clearly, the standard complexification procedure for the real Lebesgue space
Lp

R(Ω) (over the field R) yields the complex Lebesgue space Lp
C(Ω) (over the field

C), so that Lp
C(Ω) = Lp

R(Ω)⊕ iLp
R(Ω) is a direct sum over the field R (i2 = −1). As a

consequence, both, the real and imaginary parts of the continuous linear functional
` are also continuous linear functionals on the direct sum Lp

R(Ω)⊕ iLp
R(Ω). Hence,

it suffices to verify the Riesz representation theorem for the real Lebesgue space
Lp(Ω) = Lp

R(Ω) and ` : Lp
R(Ω) → R. To this end, observe that if f ∈ Lp′(Ω) satisfies

(2.5) then v = |f |p′−2f is a critical point of the functional

E(u) =
1
p

∫
Ω

|u|p dx− `(u) , u ∈ Lp(Ω) .

Vice versa, if v ∈ Lp(Ω) is a critical point of E then f = |v|p−2v satisfies (2.5).
Notice that the Fréchet derivative E ′(v) : Lp(Ω) → R of the functional E at a given
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point v ∈ Lp(Ω) is given by the formula

E ′(v)u =
∫

Ω

u |v|p−2v dx− `(u) , u ∈ Lp(Ω) .

It remains to establish the following lemma which is valid in both, the real and
complex versions of the Lebesgue space Lp(Ω) (over the field R or C), that is, also
for the functional E defined in (2.4).

Lemma 2.2. The functional E : Lp(Ω) → R defined in (2.4) is continuous, strictly
convex, and coercive on Lp(Ω), 1 < p < ∞. Moreover, every minimizing sequence
for E converges strongly in Lp(Ω) to the (unique) global minimizer ũ of E.

Proof. The continuity and coercivity of E are obvious. As mentioned above, E
is strictly convex, by Clarkson’s inequalities (2.2) (if 2 ≤ p < ∞) and (2.3) (if
1 < p ≤ 2).

Set µdef= infu∈Lp(Ω) E(u) and consider any minimizing sequence {un}∞n=1 ⊂ Lp(Ω)
for E , i.e., E(un) → µ as n→∞. We wish to show that un → ũ strongly in Lp(Ω)
as n→∞. Since the space Lp(Ω) is complete, this is equivalent to {un}∞n=1 being
a Cauchy sequence, i.e.,

lim
m,n→∞

‖un − um‖Lp(Ω) → 0 as m,n→∞ . (2.6)

The last claim follows from the facts that

E
(

1
2 (un + um)

)
≥ µ and `

(
1
2 (un + um)

)
= 1

2 (`(un) + `(um)) (2.7)

combined with Clarkson’s inequalities (2.2) and (2.3) which force (2.6), thanks to
E(un) → µ as n→∞.

To see this, for p ≥ 2 one applies inequality (2.2) directly to the functional E as
follows:

µ+
1
p

∥∥un − um

2

∥∥p

Lp(Ω)
≤ E

(un + um

2
)

+
1
p

∥∥un − um

2

∥∥p

Lp(Ω)

≤ 1
2

(
E(un) + E(um)

)
.

Using E(un) → µ as n→∞ we arrive at (2.6).
For 1 < p < 2 the proof is less direct; this proof works for any p ∈ (1,∞). Since

the functional E is coercive, the minimizing sequence {un}∞n=1 must be bounded
in Lp(Ω). Consequently, passing to a suitable subsequence if necessary, we may
assume

‖un‖Lp(Ω) → ξ ∈ R+ and `(un) → η ∈ C as n→∞ ;

hence, 1
p ξ

p + <e η = µ. From Minkowski’s inequality (convexity of a norm) and
(2.7) we deduce

µ ≤ E
(un + um

2
)

=
1
p

∥∥un + um

2

∥∥p

Lp(Ω)
−<e `

(un + um

2
)

≤ 1
p

(‖un‖Lp(Ω) + ‖um‖Lp(Ω)

2

)p

− 1
2

(<e `(un) + <e `(um))

≤ 1
2

(E(un) + E(um)) .

Using E(un) → µ as n → ∞, we arrive at E
(
un+um

2

)
→ µ as m,n → ∞. Since

also `
(
un+um

2

)
→ η and 1

p ξ
p + <e η = µ, we conclude that

∥∥un+um

2

∥∥
Lp(Ω)

→ ξ
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(m,n → ∞). Finally, we combine this convergence result and ‖un‖Lp(Ω) → ξ
(n→∞) with Clarkson’s inequalities (2.2) (if 2 ≤ p <∞) and (2.3) (if 1 < p ≤ 2)
to obtain (2.6). �

3. Notation and basic hypotheses

All Banach and Hilbert spaces used in these lecture notes are real. We work with
the standard inner product in L2(Ω) defined by 〈u, v〉def=

∫
Ω
uv dx for u, v ∈ L2(Ω).

The orthogonal complement in L2(Ω) of a set M⊂ L2(Ω) is denoted by M⊥,L2
,

M⊥,L2def= {u ∈ L2(Ω) : 〈u, v〉 = 0 for all v ∈M}.

The inner product 〈 · , · 〉 in L2(Ω) induces a duality between the Lebesgue spaces
Lp(Ω) and Lp′(Ω), where 1 ≤ p < ∞ and 1 < p′ ≤ ∞ with 1

p + 1
p′ = 1, and

between the Sobolev space W 1,p
0 (Ω) and its (strong) dual space W−1,p′(Ω), as well.

We keep the same notation also for the duality between the Cartesian products
[Lp(Ω)]N and [Lp′(Ω)]N . The closure, interior, and boundary of a set S ⊂ RN are
denoted by S, int(S), and ∂S, respectively, and the characteristic function of S by
χS : RN → {0, 1}. We write |S|N

def=
∫

RN χS(x) dx if S is also Lebesgue measurable.
We always assume the following hypothesis:

(H1) If N ≥ 2 then Ω is a bounded domain in RN whose boundary ∂Ω is a
compact manifold of class C1,α for some α ∈ (0, 1), and Ω satisfies also
the interior sphere condition at every point of ∂Ω. If N = 1 then Ω is a
bounded open interval in R1.

For N ≥ 2, (H1) is satisfied if Ω ⊂ RN is a bounded domain with C2 boundary.

4. The energy functional

Recall that the energy functional defined in (1.5),

Jλ(u) ≡ Jλ(u; f) =
1
p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

|u|p dx−
∫

Ω

f(x)u dx (1.5)

for u ∈ W 1,p
0 (Ω), corresponds to problem (1.1). This problem is equivalent to

J ′
λ(u) = 0 in W−1,p′(Ω), where J ′

λ(u) denotes the (first) Fréchet derivative of the
functional Jλ on W 1,p

0 (Ω).
If λ < λ1, the functional Jλ is coercive on W 1,p

0 (Ω) which means that ‖u‖W 1,p
0 (Ω)

→∞ forces Jλ(u) → +∞. Thus, the Sobolev space W 1,p
0 (Ω) being reflexive, there

exists a weakly convergent (minimizing) sequence un ⇀ u0 in W 1,p
0 (Ω) as n→∞,

such that

Jλ(un) → Jλ(u0) = inf
u∈W 1,p

0 (Ω)
Jλ(u) > −∞ as n→∞ .

Notice that this weak convergence implies only

lim inf
n→∞

∫
Ω

|∇un|p dx ≥
∫

Ω

|∇u0|p dx .

Since the Sobolev embedding W 1,p
0 (Ω) ↪→ Lp(Ω) is compact, by the Rellich-

-Kondrachov embedding theorem, we have also un → u0 strongly in Lp(Ω) as
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n→∞. We combine these convergence results with the definition of the functional
Jλ to conclude that we must have also∫

Ω

|∇un|p dx −→
∫

Ω

|∇u0|p dx as n→∞ .

But this and the weak convergence un ⇀ u0 inW 1,p
0 (Ω) force the strong convergence

‖un − u‖W 1,p
0 (Ω) = ‖∇(un − u)‖Lp(Ω) → 0 in W 1,p

0 (Ω) as n→∞,

owing to the fact that Lp(Ω) (and similarly [Lp(Ω)]N ) is a uniformly convex Banach
space, by Clarkson’s inequalities (Lemma 2.1).

Lemma 4.1. Let λ ∈ R be arbitrary. If un ⇀ u0 weakly in W 1,p
0 (Ω) and Jλ(un) →

Jλ(u0) as n→∞, then also un → u0 strongly in W 1,p
0 (Ω).

We will use such convergence reasoning often throughout the entire lecture notes.
In what follows we show a few applications of the reasoning from our proof of Lemma
4.1.

5. The first eigenvalue of −∆p

Consider the Rayleigh quotient (1.2) for the first (smallest) eigenvalue λ1 of −∆p,

λ1 = inf
{∫

Ω
|∇u|p dx∫

Ω
|u|p dx

: 0 6= u ∈W 1,p
0 (Ω)

}
. (1.2)

The embedding W 1,p
0 (Ω) ↪→ Lp(Ω) being compact, there exists a function ϕ1 ∈

W 1,p
0 (Ω) such that ∫

Ω

|ϕ1|p dx = 1 and
∫

Ω

|∇ϕ1|p dx = λ1 .

Hence, 0 < λ1 < ∞. Next, we use the polar decomposition u = u+ − u− of
u ∈ Lp(Ω), u+def= max{u, 0} and u−

def= max{−u, 0}, with ∇u = ∇u+ − ∇u− a.e.
in Ω for u ∈W 1,p

0 (Ω); see, e.g., Gilbarg and Trudinger [21, Theorem 7.8, p. 153].
We observe that also the positive and negative parts ϕ±1 of ϕ1 must satisfy∫

Ω
|∇ϕ±1 |p dx = λ1

∫
Ω
(ϕ±1 )p dx .

We will see in the next section, §6.2, Theorem 6.8, that ϕ1 ∈ W 1,p
0 (Ω) is deter-

mined uniquely by the conditions

(iϕ1) ϕ1 ≥ 0 almost everywhere in Ω;
(iiϕ1)

∫
Ω
ϕp

1 dx = 1 and
∫
Ω
|∇ϕ1|p dx = λ1.

This uniqueness result is due to Anane [2, Théorème 1, p. 727] and Lindqvist [25,
Theorem 1.3, p. 157]. Hence, either ϕ+

1 ≡ 0 or else ϕ−1 ≡ 0 in Ω, and so we may
assume ϕ1 ≥ 0 a.e. in Ω.

It follows that λ1 is a simple eigenvalue of the positive Dirichlet p-Laplacian
−∆p with a nonnegative eigenfunction ϕ1 satisfying

−∆pϕ1 = λ1|ϕ1|p−2ϕ1 in Ω; ϕ1 = 0 on ∂Ω. (5.1)

Using this equation, Anane [3, Théorème A.1, p. 96] has derived also ϕ1 ∈ L∞(Ω).
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6. Convexity and uniqueness

Convexity of a function (or functional) is a standard tool for proving the unique-
ness of a critical point for that function (or functional), provided the convexity is
strict in some sense; cf. §6.1 below. We will see in §6.2 that if the strictness in
the convexity is lost in some sense (partially), so may be the uniqueness of critical
points (only partially, as well). The following simple example explains the key tool
for this method.

Example 6.1. Let X be a Banach space, x0 ∈ X a point, and v ∈ X \ {0} a
direction. Consider the straight line L = {x = x0 + tv ∈ X : t ∈ R} in X.
Given a functional Φ : X → R on X, consider its restriction Φ|L to the line L or,
equivalently, consider the function φ(t) = Φ(x0 + tv) of the variable t ∈ R. If φ
happens to be convex and differentiable on R then the set of all critical points of
φ coincides with a closed interval in R (which may be empty or unbounded). This
interval coincides, in turn, with the set of all global minimizers for φ. If φ is also
strictly convex then it may possess at most one critical point in R; this point is the
global minimizer for φ. Consequently, if Φ is convex and Gâteaux-differentiable on
X, it suffices to investigate the strict convexity of Φ on every line L in X in order
to determine the set of all critical points for Φ in X. This set is convex and consists
precisely of all global minimizers for Φ; it may be empty or unbounded in X.

Now let us treat the energy functional defined in (1.5),

Jλ(u) ≡ Jλ(u; f) =
1
p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

|u|p dx−
∫

Ω

f(x)u dx (1.5)

for u ∈W 1,p
0 (Ω). Recall that problem (1.1) is equivalent to J ′

λ(u) = 0 inW−1,p′(Ω),
where J ′

λ(u) denotes the (first) Fréchet derivative of the functional Jλ on W 1,p
0 (Ω).

From Section 4 we know that Jλ is coercive on W 1,p
0 (Ω) provided λ < λ1. Hence,

if λ < λ1 then Jλ has a global minimizer in W 1,p
0 (Ω). We investigate its uniqueness

(or multiplicity) in the next two paragraphs, for λ ≤ 0 and 0 < λ ≤ λ1, respectively.
From the end of Section 7 we recall jλ1(τ) = −c · |τ |2−p + o(|τ |2−p) as τ → ±∞,
where c = c(f>) > 0 is a constant depending on f> (f> 6≡ 0 in Ω). The function
jλ1 being continuous, it attains a global minimum at τ0 ∈ R if p > 2. It follows that,
even if Jλ1 is not coercive on W 1,p

0 (Ω), for p > 2 it possesses a global minimizer
u0 = τ0ϕ1 + u>0 with some u>0 ∈W

1,p
0 (Ω)>.

6.1. Convexity for λ ≤ 0 and any f . Let λ ≤ 0 and f ∈W−1,p′(Ω). Then both
nonlinear terms on the right-hand side in (1.5) are nonnegative and convex, the first
one even strictly convex on W 1,p

0 (Ω). The uniqueness of the global minimizer for Jλ

in W 1,p
0 (Ω) now follows from Example 6.1 above. Moreover, this global minimizer

is the unique critical point for Jλ. Thus, we have proved the following theorem.

Theorem 6.2. Let 1 < p < ∞, −∞ < λ ≤ 0, and f ∈ W−1,p′(Ω). Then the
functional Jλ defined in (1.5) has a unique critical point in W 1,p

0 (Ω). This critical
point is its (unique) global minimizer. Moreover, Jλ is strictly convex on W 1,p

0 (Ω).

6.2. Convexity for 0 < λ ≤ λ1 and f ≥ 0. In this paragraph we restrict ourselves
to the special case 0 ≤ f ∈ L∞(Ω) and investigate the functional Jλ(u) for u ∈
W 1,p

0 (Ω), u > 0 a.e. in Ω. We follow the approach used in Fleckinger et al. [19,
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Sect. 6 (Appendix)]; cf. also Girg and Takáč [22, §4.1], Takáč [34, Sect. 3], or
Takáč, Tello, and Ulm [36, Sect. 2] for some generalizations.

Lemma 6.3. Let 0 ≤ f ∈ L∞(Ω) and −∞ < λ ≤ λ1. If λ = λ1, assume also
f 6≡ 0 in Ω. Then every critical point for Jλ is nonnegative.

Proof. Consider any critical point u ∈ W 1,p
0 (Ω) for Jλ. On the contrary, assume

u− 6≡ 0 in Ω. Then we have

0 = 〈J ′
λ(u), u−〉

=
∫

Ω

|∇u|p−2(∇u · ∇u−) dx− λ

∫
Ω

|u|p−2uu− dx−
∫

Ω

f(x)u− dx

= −
∫

Ω

|∇u−|p dx+ λ

∫
Ω

|u−|p dx−
∫

Ω

f(x)u− dx

≤ (λ− λ1)
∫

Ω

|u−|p dx−
∫

Ω

f(x)u− dx ≤ 0 .

Since u− 6≡ 0 and f ≥ 0 in Ω, these inequalities force λ = λ1, u− is a minimizer for
λ1 in eq. (1.2), and u−(x) = 0 almost everywhere in the set {x ∈ Ω : f(x) > 0}. On
the other hand, from the strong maximum principle of Tolksdorf [37, Prop. 3.2.2,
p. 801] or Vázquez [39, Theorem 5, p. 200] we deduce u− > 0 a.e. in Ω. This forces
f = 0 a.e. in Ω, a contradiction. The lemma is proved. �

We say that a functional K is ray-strictly convex if it is convex on a convex set
C (say, C ⊂ L1

loc(Ω)), K : C → R ∪ {+∞}, and if v1, v2 ∈ C obey the equality

K((1− θ)v1 + θv2) = (1− θ)K(v1) + θK(v2) <∞
for some θ ∈ (0, 1), then v1 and v2 are linearly dependent.

We now define the functional

K(v)def=
∫

Ω

|∇(v1/p)|p dx = p−p

∫
Ω

v |∇(log v)|p dx

for all functions v : Ω → (0,∞) such that v1/p ∈ W 1,p
0 (Ω). More generally, we

may replace v 7→ |v|p : RN → R+ by any continuous, strictly convex function
K : RN → R+ and define (up to the constant factor p−p)

K(v) =
∫

Ω

v K(∇(log v)) dx ∈ R ∪ {+∞}

for all functions v : Ω → (0,∞) such that v1/p ∈ W 1,p
0 (Ω), cf. Girg and Takáč

[22, §4.1], Takáč [34, Sect. 3], or Takáč, Tello, and Ulm [36, Sect. 2]. (Notice
that ∇(v1/p) = p−1v1/p∇(log v).)

Lemma 6.4. The functional K defined above is ray-strictly convex.

Proof. For θ ∈ (0, 1), u1 > 0, u2 > 0 and ξ1, ξ2 ∈ RN , we compute

((1− θ)u1 + θu2)K
(

(1− θ)ξ1 + θξ2
(1− θ)u1 + θu2

)
= ((1− θ)u1 + θu2)K

(
(1− θ)u1

(1− θ)u1 + θu2

ξ1
u1

+
θu2

(1− θ)u1 + θu2

ξ2
u2

)
≤ (1− θ)u1K

(
ξ1
u1

)
+ θu2K

(
ξ2
u2

)
,
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where equality holds if and only if ξ1/u1 = ξ2/u2. Putting ui = vi(x) and ξi =
∇vi(x) for a.e. x ∈ Ω and i = 1, 2, and integrating the last inequality over Ω, we
obtain

K((1− θ)v1 + θv2) ≤ (1− θ)K(v1) + θK(v2), (6.1)
where equality holds if and only if ∇v1/v1 = ∇v2/v2 a.e. in Ω. The latter equality
is equivalent to v1 and v2 being linearly dependent. �

We combine Lemmas 6.3 and 6.4 to obtain the following theorem:

Theorem 6.5. Let 0 ≤ f ∈ L∞(Ω) with f 6≡ 0 in Ω. If λ ∈ (0, λ1) then the
functional Jλ possesses a unique critical point u ∈ W 1,p

0 (Ω). This critical point is
the (unique) minimizer for Jλ and satisfies u > 0 a.e. in Ω. If, in addition, the
boundary ∂Ω of Ω is of class C1,α for some α ∈ (0, 1), then u satisfies also the
Hopf maximum principle

u > 0 in Ω and
∂u

∂ν
< 0 on ∂Ω. (6.2)

Proof. By our assumption 0 < λ < λ1, the functional Jλ is coercive on W 1,p
0 (Ω).

Thus, it has a minimizer (which is a critical point). From Lemma 6.3 we know
that every critical point u ∈ W 1,p

0 (Ω) for Jλ must be nonnegative throughout Ω.
Moreover, the strong maximum principle of Tolksdorf [37, Prop. 3.2.2, p. 801] or
Vázquez [39, Theorem 5, p. 200] guarantees u > 0 a.e. in Ω. For such u, let us
now consider the functional u 7→ Jλ(u1/p) which is strictly convex, by Lemma 6.4
combined with our hypotheses on f . Therefore, the critical point of this new
functional and, consequently, also the critical point of Jλ are unique. Both are
minimizers of the corresponding functionals.

Finally, assume that ∂Ω is of class C1,α. Then we have u ∈ C1,β(Ω) for some β ∈
(0, α), by a regularity result which is due to DiBenedetto [8, Theorem 2, p. 829] and
Tolksdorf [38, Theorem 1, p. 127] (interior regularity, shown independently), and to
Lieberman [24, Theorem 1, p. 1203] (regularity near the boundary). More precisely,
in order to apply their regularity result, one needs to invoke the boundedness of
u ∈ L∞(Ω) due to Anane [3, Théorème A.1, p. 96]. Thus, the Hopf maximum
principle [37, Prop. 3.2.1 and 3.2.2, p. 801] or [39, Theorem 5, p. 200] can be applied
to obtain (6.2) as desired. �

Applying similar arguments as in the proof above, one can verify the following
complementary result for λ = λ1:

Theorem 6.6. Let 0 ≤ f ∈ L∞(Ω) with f 6≡ 0 in Ω. Then the functional Jλ1

possesses no critical point u ∈W 1,p
0 (Ω). Furthermore, Jλ1 is unbounded from below

with

Jλ1(tϕ1) = −t
∫
Ω
fϕ1 dx −→ −∞ as t→ +∞ . (6.3)

Proof. On the contrary, assume that Jλ1 has a critical point u0 ∈ W 1,p
0 (Ω). In

analogy with the proof of Theorem 6.5 above, one shows that u0 ∈ C1,β(Ω) for some
β ∈ (0, α), together with the Hopf maximum principle (6.2) for u0. The functional
u 7→ Jλ(u1/p) being strictly convex on the cone of all functions u ∈ C1(Ω) satisfying
(6.2), we conclude that u0 is a global minimizer for Jλ1 over that cone. However,
this conclusion contradicts (6.3). The theorem is proved. �
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Remark 6.7. If p 6= 2, f ∈ L∞(Ω) changes sign, and 0 < λ < λ1, then the
functional Jλ may possess two or more distinct critical points inW 1,p

0 (Ω). Examples
of a suitable function f , such that Jλ exhibits multiple critical points, have been
constructed in Fleckinger et al. [19, Example 2, p. 148] for 1 < p < 2 and del Pino,
Elgueta, and Manásevich [28, Eq. (5.26), p. 12] for 2 < p < ∞. There, Ω ⊂ R1

is a bounded open interval and Jλ has a global minimizer together with a saddle
point.

Finally, concerning minimizers in the variational formula (1.2) for λ1,

λ1 = inf
{∫

Ω
|∇u|p dx∫

Ω
|u|p dx

: 0 6= u ∈W 1,p
0 (Ω)

}
, (1.2)

we have the following result:

Theorem 6.8. A minimizer u ∈W 1,p
0 (Ω) for λ1 is unique up to a constant multi-

ple, that is, u = cϕ1 for some constant c ∈ R, where ϕ1 ∈W 1,p
0 (Ω) is a minimizer

for λ1 satisfying ϕ1 > 0 a.e. in Ω and
∫
Ω
ϕp

1 dx = 1. If, in addition, the bound-
ary ∂Ω of Ω is of class C1,α for some α ∈ (0, 1), then ϕ1 satisfies also the Hopf
maximum principle (6.2).

This theorem is due to Anane [2, Théorème 1, p. 727] and Lindqvist [25,
Theorem 1.3, p. 157].

Proof. Let u be any (nontrivial) minimizer for λ1. First, suppose that u changes
sign in Ω. Then we have

λ1 =

∫
Ω
(u+)p∫
Ω
|u|p

·
∫
Ω
|∇u+|p dx∫

Ω
(u+)p dx

+

∫
Ω
(u−)p∫
Ω
|u|p

·
∫
Ω
|∇u−|p dx∫

Ω
(u−)p dx

≥ λ1

(∫
Ω
(u+)p∫
Ω
|u|p

+

∫
Ω
(u−)p∫
Ω
|u|p

)
= λ1 .

Consequently, both u+ and u− are (nontrivial) minimizers for λ1. Hence, we must
have u+ > 0 and u− > 0 a.e. in Ω, by the strong maximum principle [37, Prop.
3.2.2, p. 801] or [39, Theorem 5, p. 200]. But this is impossible. We conclude that
either u > 0 a.e. in Ω or else u < 0 a.e. in Ω.

Second, recall the proof of Theorem 6.5 above and take there f ≡ 0 in Ω.
Replacing u by −u if necessary, we may assume that u > 0 a.e. in Ω. For such u,
the functional u 7→ Jλ(u1/p) is ray-strictly convex, by Lemma 6.4. Therefore, the
critical point of this new functional and, consequently, also the critical point of Jλ

are unique up to a constant multiple.
Finally, the Hopf maximum principle (6.2) for ϕ1 is proved in the same way as

in Theorem 6.5. �

7. Minimization with constraint

Recall the orthogonal decomposition W 1,p
0 (Ω) = lin{ϕ1} ⊕ W 1,p

0 (Ω)> induced
by the inner product in L2(Ω). For u ∈ W 1,p

0 (Ω) we write u = τϕ1 + u> with
τ ∈ R and

∫
Ω
u>ϕ1 dx = 0. In analogy with the Rayleigh quotient in (1.2), we have

introduced another quotient in (1.6),

Λ∞
def= inf

{∫
Ω
|∇u>|p dx∫

Ω
|u>|p dx

: 0 6= u ∈W 1,p
0 (Ω)>

}
. (1.6)
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Clearly, λ1 < Λ∞ < ∞, because λ1 is a simple eigenvalue of −∆p. (If Ω has
reflection symmetry, one can show Λ∞ = λ2, the second eigenvalue of −∆p.)

Let λ < Λ∞ and consider the functional Jλ(u) = Jλ(τϕ1+u>) with τ ∈ R being
fixed (but arbitrary) and u> ∈ W 1,p

0 (Ω)> variable. Then the restricted functional
u> 7→ Jλ(τϕ1 +u>) is coercive on W 1,p

0 (Ω)> and thus possesses a global minimizer
u>τ ∈W 1,p

0 (Ω)>. Such a global minimizer satisfies the boundary value problem

−∆p(τϕ1 + u>) = λ |τϕ1 + u>|p−2(τϕ1 + u>) + f(x) + ζ · ϕ1(x) in Ω;

u> = 0 on ∂Ω;

〈u>, ϕ1〉 = 0,

(7.1)

where ζ ∈ R is a Lagrange multiplier (which is unknown). In particular, when
investigating the solvability of this problem, without loss of generality we may
assume that f = f> ∈ L∞(Ω)>, by simply substituting ζ for f‖ + ζ. Notice
that, for u ≡ τϕ1 + u> and f ≡ ζϕ1 + f>, with τ, ζ ∈ R, u> ∈ W 1,p

0 (Ω)>, and
f> ∈ L∞(Ω)>, we have

Jλ(u; f) = Jλ(τϕ1 + u>; f>)− τζ ‖ϕ1‖2L2(Ω). (7.2)

It is now clear that it suffices to determine the properties of Jλ in the special case
f = f> ∈ L∞(Ω)>.

By arguments used in the proof of Lemma 4.1 above, we conclude that any
minimizing sequence for the restricted functional u> 7→ Jλ(τϕ1 +u>) on W 1,p

0 (Ω)>

contains a strongly convergent subsequence u>τ,n → u>τ in W 1,p
0 (Ω) as n → ∞,

which converges to a global minimizer u>τ ∈ W 1,p
0 (Ω)>. Taking advantage of this

technique, it is not difficult to see that

jλ(τ)def= inf
{
Jλ(τϕ1 + u>) : u> ∈W 1,p

0 (Ω)>
}

= Jλ(τϕ1 + u>τ ) (7.3)

is a continuous function of τ ∈ R; a complete proof is in Takáč [32, Lemma 7.2,
p. 222].

We notice that eq. (7.1) yields J ′
λ(τϕ1 +u>) = ζ ·ϕ1 in W−1,p′(Ω), which entails

τζ ‖ϕ1‖2L2(Ω) = ζ 〈ϕ1, τϕ1 + u>〉 = 〈J ′
λ(τϕ1 + u>), τϕ1 + u>〉

= p · Jλ(τϕ1 + u>) + (p− 1) 〈f, τϕ1 + u>〉 .

Thus, if f = f> ∈ L∞(Ω)> and if u>τ ∈ W 1,p
0 (Ω)> is any global minimizer for the

restricted energy functional u> 7→ Jλ(τϕ1 + u>) on W 1,p
0 (Ω)>, then the Lagrange

multiplier ζ = ζτ ∈ R from the boundary value problem (7.1) satisfies

τζτ ‖ϕ1‖2L2(Ω) = p · Jλ(τϕ1 + u>τ ) + (p− 1) 〈f>, u>τ 〉

= p · jλ(τ) + (p− 1) 〈f>, u>τ 〉 .
Unfortunately, we do not know whether

τ 7→ 〈f>, u>τ 〉 =
∫
Ω
f>u>τ dx : R → R (7.4)

is a continuous function of τ or whether this function is independent from the choice
of the global minimizer u>τ for the restricted energy functional. Consequently, also
τ 7→ τζτ might not be continuous. Fortunately, and this fact is very important
for us, we will be able to determine the asymptotic behavior of both, the global
minimizer u>τ and the Lagrange multiplier ζτ rather precisely, depending on τ , as
τ → ±∞. Applying these asymptotic estimates to eq. (7.4) we will easily derive
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the asymptotic behavior of the (continuous) function jλ(τ) as τ → ±∞. It will
depend on whether 1 < p < 2, p = 2, or 2 < p <∞.

For instance, if λ = λ1 and f = f> ∈ L∞(Ω), f> 6≡ 0 in Ω, it has been shown
in Takáč [34, Lemma 9.7, p. 466] that jλ1(τ) = −c · |τ |2−p + o(|τ |2−p) as τ → ±∞,
where c = c(f>) > 0 is a constant depending on f>. (Of course, the symbol “o( · )”
means o(t)/t→ 0 as either t→ ±∞ or t→ 0 in R, t 6= 0.) The proof of this result
relies on formula (B.18) from Proposition B.4 in the Appendix, §B.2. For p > 2 it
follows that the function jλ1 possesses a global minimizer τ0 ∈ R, even though jλ1

is not coercive. For 1 < p < 2 it possesses a global maximizer τ0 ∈ R and tends to
−∞ as τ → ±∞. For p = 2 it is an easy exercise to see that jλ1(τ) ≡ const < 0 is
a constant function.

8. Some elementary analysis

We know that jλ : R → R is a continuous function. Let us consider the following
two standard cases:

(i) If jλ has a local minimum at τ = τ0, then uτ0 = τ0ϕ1+u>τ0
is a local minimizer

for Jλ : W 1,p
0 (Ω) → R. (This claim is easy to verify.)

(ii) If jλ has a local maximum (= βλ) at τ = τ0, then we do not know if
uτ0 = τ0ϕ1 +u>τ0

is a critical point for the energy functional Jλ. However, again by
arguments used in the proof of Lemma 4.1, it is not difficult to show the following
lemma about the existence of a pair of sub- and supersolutions.

Lemma 8.1. Let −∞ < λ < Λ∞ and f ∈ L∞(Ω), f 6≡ 0. Assume that jλ : R → R
attains a local maximum βλ at some point τ0 ∈ R. Then there exist two functions

u = τ0ϕ1 + u>, u = τ0ϕ1 + u> with u>, u> ∈W 1,p
0 (Ω)>,

such that
Jλ(τ0ϕ1 + u>) = Jλ(τ0ϕ1 + u>) = jλ(τ0) = βλ (8.1)

and
J ′

λ(τ0ϕ1 + u>) = ζ · ϕ1, J ′
λ(τ0ϕ1 + u>) = ζ · ϕ1 (8.2)

hold for some (Lagrange multipliers) ζ, ζ ∈ R with ζ ≤ 0 ≤ ζ.

A proof of this lemma is given in Takáč [35, Lemma 4.6, p. 715]. It is based on
a construction of two arbitrary sequences {τ ′n}∞n=1 and {τ ′′n}∞n=1, satisfying

−∞ < τ ′1 < τ ′2 < · · · < τ ′n < · · · < τ0 < · · · < τ ′′n < · · · < τ ′′2 < τ ′′1 <∞

with τ ′n ↗ τ0 and τ ′′n ↘ τ0 as n→∞, such that for some functions u>τ ∈W 1,p
0 (Ω)>

indexed by τ ∈ {τ ′n}∞n=1 ∪ {τ ′′n}∞n=1 we have

Jλ(τϕ1 + u>τ ) = jλ(τ) (≤ βλ) (8.3)

and
J ′

λ(τϕ1 + u>τ ) = ζτ · ϕ1 with some ζτ ∈ R, (8.4)
for every τ ∈ {τ ′n}∞n=1 ∪ {τ ′′n}∞n=1, where

ζτ ′n ≥ 0 and ζτ ′′n ≤ 0 for all n = 1, 2, . . . . (8.5)

If ζ = 0 and/or ζ = 0, then we have a critical point for Jλ; one may call
it a simple saddle point for Jλ. Otherwise, u is called a strict subsolution of the
problem J ′

λ(u) = 0, because of ζ < 0, and similarly, u is called a strict supersolution,
because of ζ > 0. In order to deduce the existence of a solution to J ′

λ(u) = 0 from
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the existence of a pair of (strict) sub- and supersolutions, u and u, we will apply a
topological method (Leray-Schauder degree theory). Needless to say, we will lose all
information about the “geometry” of the functional Jλ near such a critical point.

9. Existence by a topological degree

Let us recall that the first (smallest) eigenvalue λ1 of the positive Dirichlet
p-Laplacian −∆p is simple with the associated eigenfunction ϕ1 normalized by
ϕ1 > 0 in Ω and ‖ϕ1‖Lp(Ω) = 1, by Anane [2, Théorème 1, p. 727] or Lindqvist
[25, Theorem 1.3, p. 157]. We have ϕ1 ∈ L∞(Ω) by Anane [3, Théorème A.1,
p. 96]. Consequently, recalling hypothesis (H1), we get even ϕ1 ∈ C1,β(Ω) for
some β ∈ (0, α), by a regularity result due to DiBenedetto [8, Theorem 2, p. 829]
and Tolksdorf [38, Theorem 1, p. 127] (interior regularity), and to Lieberman
[24, Theorem 1, p. 1203] (regularity near the boundary). The constant β depends
solely on α, N , and p. We keep the meaning of the constants α and β throughout
the entire lecture notes. Finally, the Hopf maximum principle (see Tolksdorf [37,
Prop. 3.2.1 and 3.2.2, p. 801] or Vázquez [39, Theorem 5, p. 200]) renders

ϕ1 > 0 in Ω and
∂ϕ1

∂ν
< 0 on ∂Ω . (9.1)

As usual, ∂/∂ν denotes the outer normal derivative on ∂Ω. We set

U
def= {x ∈ Ω : ∇ϕ1(x) 6= 0}, hence Ω \ U = {x ∈ Ω : ∇ϕ1(x) = 0},

and observe that Ω \ U is a compact subset of Ω, by (9.1).
As we have already mentioned at the end of Section 7, if f = f> ∈ L∞(Ω),

f> 6≡ 0 in Ω, then for 1 < p < 2 the function jλ1(τ) possesses a global maximizer
τ0 ∈ R and tends to −∞ as |τ | → ∞. As this topological method is typical for the
case 1 < p < 2 and λ = λ1, to which it has been originally applied in Drábek and
Holubová [14, Theorem 1.1, p. 184], we will explain it for this parameter setting.
Of course, it works similarly for any p > 1 and any λ < Λ∞; see Takáč [35].

So fix 1 < p < 2 and λ = λ1. In the (resonant) Dirichlet problem

−∆pu = λ1|u|p−2u+ f(x) in Ω ; u = 0 on ∂Ω , (9.2)

assume f = f> + ζϕ1, where f> ∈ L∞(Ω)>, f> 6≡ 0 in Ω, and ζ ∈ R. If f> is
continuous in a an open neighborhood of the (compact) set {x ∈ Ω : ∇ϕ1(x) = 0}
and if |ζ| is small enough, then it is possible to show that the functional Jλ1 has
a “saddle point geometry” ( Drábek and Holubová [14, Lemma 2.1, p. 185]). If
also ζ 6= 0, then Jλ1 satisfies the so-called “Palais-Smale condition” ([14, Lemma
2.2, p. 188]). Thus, if |ζ| > 0 is small enough, a “saddle point theorem” from
Rabinowitz [30, Theorem 4.6, p. 24] guarantees the existence of a critical point
u0 ∈ W 1,p

0 (Ω) for Jλ1 . If ζ = 0, the validity of the Palais-Smale condition for Jλ1

is still an open question and, as indicated in Drábek and Takáč [15], it might
not be satisfied at all; see [15, Theorem 4.1, pp. 47–48] for difficulties and hints
to ramifications. This means that we will not be able to apply the saddle point
theorem [30, Theorem 4.6, p. 24] to treat the most natural case ζ = 0. Taking
|ζ| > 0 small enough one can apply this theorem to construct only a pair of strict
sub- and supersolutions, u and u, as in the previous section (Section 8). Notice
that the construction in the previous section does not require f> to be continuous
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in a an open neighborhood of the (compact) set Ω \ U defined above. Besides, it
gives

〈u, ϕ1〉 = 〈u, ϕ1〉 = τ0 ‖ϕ1‖2L2(Ω) with some τ0 ∈ R. (9.3)

However, it uses the asymptotic behavior jλ1(τ) → −∞ as τ → ±∞ which is not
easy to establish (except for the case when f> is continuous in an open neighbor-
hood of Ω \ U).

We will therefore use a topological (hence, nonvariational) method to handle
this situation. It has been introduced in De Coster and Henrard [6, Theorem 8.2,
p. 448] for semilinear elliptic boundary value problems. Given a pair of unordered
sub- and supersolutions, a fixed point mapping is constructed first and then its
Leray-Schauder degree is computed. We follow the presentation given in Takáč
[35, §4.5, pp. 727–733].

Theorem 9.1. Let 1 < p < ∞, λ = λ1, and f = ζϕ1 + f> with some ζ ∈ R
and f> ∈ L∞(Ω)>, f> 6≡ 0 in Ω. Assume that u, u ∈ W 1,p

0 (Ω) is a pair of strict
sub- and supersolutions of the problem J ′

λ1
(u) = 0 as described in Lemma 8.1.

(In particular, u and u are unordered, by eq. (9.3).) Then the Dirichlet problem
J ′

λ1
(u) = 0 possesses a weak solution u ∈W 1,p

0 (Ω).

We remark that u, u ∈ C1,β(Ω) for some β ∈ (0, α), by the regularity result
mentioned above [3, 8, 24, 38]. We use this fact repeatedly in an essential way.

We will prove Theorem 9.1 using the topological (Leray-Schauder) degree. In
the proof of the next lemma we obtain another pair of sub- and supersolutions,
ordered by “≤”, which provides lower and upper bounds for the unordered pair.

Recalling ϕ1 ∈ C1,β(Ω) and the Hopf maximum principle (9.1), we introduce the
space X of all functions φ ∈ C(Ω) such that

‖φ‖X
def= sup

Ω
(|φ|/ϕ1) <∞ . (9.4)

Then X endowed with the norm ‖ · ‖X is a Banach space. Notice that the embed-
dings C1

0 (Ω) ↪→ X ↪→ C(Ω) are continuous, where

C1
0 (Ω)def= {φ ∈ C1(Ω) : φ = 0 on ∂Ω}

is a closed linear subspace of C1(Ω).
We denote R+ = [0,∞). Given any R > 0, let us define the function γR : R+ →

[0, 1] by

γR(ξ)def=


1 if 0 ≤ ξ ≤ R ;
2− (ξ/R) if R < ξ ≤ 2R ;
0 if ξ > 2R .

(9.5)

Notice that γR is a monotone decreasing, Lipschitz-continuous function. Next, for
u ∈ X we define GR(u) : Ω → R by

[GR(u)](x)def=


λ1|u|p−2u+ γR

(
|u(x)|
ϕ1(x)

)
f(x) if |u(x)|

ϕ1(x) ≤ 2R ;

−λ1 [2Rϕ1(x)]p−1 if u(x)
ϕ1(x) < −2R ;

λ1 [2Rϕ1(x)]p−1 if u(x)
ϕ1(x) > 2R ,

(9.6)

at every x ∈ Ω. As γR(2ε) = 0, f ∈ L∞(Ω), and u/ϕ1 ∈ L∞(Ω), it is easy to see
that the mapping

GR : u 7→ GR(u) : X → L∞(Ω)
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is continuous.

Lemma 9.2. Assume that f and the sub- and supersolutions u and u are exactly
as in Lemma 8.1. Let {ηn}∞n=1 ⊂ (0, 1) and {Rn}∞n=1 ⊂ (0,∞) satisfy ηn → 0 and
Rn → ∞ as n → ∞. Finally, for each n = 1, 2, . . . , let un ∈ W 1,p

0 (Ω) have the
following properties:

(i) un ∈ C1
0 (Ω);

(ii) un is a weak solution of the boundary value problem

−∆pun = [GRn
(un)](x) in Ω ; un = 0 on ∂Ω ; (9.7)

(iii) there exist points x′n, x
′′
n ∈ Ω such that

un(x′n) ≤ u(x′n) + ηnRn ϕ1(x′n) , (9.8)

un(x′′n) ≥ u(x′′n)− ηnRn ϕ1(x′′n) . (9.9)

Then, given any 0 < ε ≤ 1, there exists an integer nε ≥ 1 such that inequalities

‖un‖C1(Ω) + sup
Ω

(|un|/ϕ1) ≤ εRn (9.10)

hold for every n ≥ nε. In particular, for every n ≥ nε, un is a weak solution of
problem (9.2) as well, i.e., J ′

λ1
(un) = 0.

In fact, we wish to prove Theorem 9.1 by computing the Leray-Schauder degree
in subsets of

U ′n = {u ∈ X : u(x) > u(x) + ηn ϕ1(x)} ,
U ′′n = {u ∈ X : u(x) < u(x)− ηn ϕ1(x)} .

Here, we have dropped the factor Rn (≥ 1 for all n sufficiently large) from the
product ηnRn in (9.8) and (9.9); the (weaker) inequalities above will do. Lemma 9.2
is needed to take care of the complement (in X) of the union of these two sets,
X \ (U ′n ∪U ′′n). Clearly, the “pointwise boundedness” conditions (9.8) and (9.9) are
very generous as ηn and Rn are not related.

Proof of Lemma 9.2. The “normalized” sequence vn
def=R−1

n un (n = 1, 2, . . . ) satis-
fies

−∆pvn = R−(p−1)
n [GRn

(Rnvn)](x) in Ω; vn = 0 on ∂Ω. (9.11)

Since ∂Ω is assumed to be of class C1,α, for some 0 < α < 1, we conclude that
vn ∈ C1,β(Ω), for some β ∈ (0, α), and the sequence {vn}∞n=1 is bounded in C1,β(Ω),
by the regularity result mentioned above [3, 8, 24, 38]. Now, for any fixed β′ ∈ (0, β),
we can apply Arzelà-Ascoli’s theorem in C1,β′(Ω) to the sequence {vn}∞n=1 to obtain
a convergent subsequence vn → v∗ in C1,β′(Ω) as n → ∞. Letting n → ∞ in the
weak formulation of problem (9.11), and recalling our notation from (9.5), we arrive
at

−∆pv
∗ = [H(v∗)](x) in Ω ; v∗ = 0 on ∂Ω , (9.12)

where H(v) : Ω → R is defined by

[H(v)](x)def=


λ1|v|p−2v if |v(x)|

ϕ1(x) ≤ 2 ;

−λ1 [2ϕ1(x)]p−1 if v(x)
ϕ1(x) < −2 ;

λ1 [2ϕ1(x)]p−1 if v(x)
ϕ1(x) > 2 ,
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at every x ∈ Ω, for v ∈ X. As both functions v± = ±2ϕ1 are solutions of problem
(9.12) and H(v−) ≤ H(v∗) ≤ H(v+) in Ω, we conclude that v∗ itself must satisfy
v− ≤ v∗ ≤ v+ in Ω, by the weak comparison principle (see e.g. [37, Lemma 3.1,
p. 800]). Consequently, eq. (9.12) reads

−∆pv
∗ = λ1|v∗|p−2v∗ in Ω; v∗ = 0 on ∂Ω.

Eigenvalue λ1 of −∆p being simple, this equation forces v∗ = κϕ1 in Ω for some
κ ∈ R with |κ| ≤ 2.

Next, we observe that (9.8) and (9.9), respectively, are equivalent to

vn(x′n) ≤ R−1
n u(x′n) + ηnϕ1(x′n), (9.13)

vn(x′′n) ≥ R−1
n u(x′′n)− ηnϕ1(x′′n). (9.14)

From vn → v∗ = κϕ1 in C1,β′(Ω) as n → ∞ we deduce that vn/ϕ1 → v∗/ϕ1 =
κ in L∞(Ω). We claim that κ = 0 which implies the conclusion of our lemma
immediately. So, on the contrary, suppose that κ 6= 0.

If κ > 0 then there exists an integer n0 ≥ 1 such that vn/ϕ1 ≥ 1
2κ in Ω for all

n ≥ n0. Combining this inequality with (9.13) we arrive at

R−1
n

u(x′n)
ϕ1(x′n)

+ ηn ≥
vn(x′n)
ϕ1(x′n)

≥ κ

2
> 0 for all n ≥ n0.

But this contradicts Rn →∞ and ηn → 0 as n→∞.
Similarly, if κ < 0 then vn/ϕ1 ≤ 1

2κ in Ω for all n ≥ n0. Combining this
inequality with (9.14) we get

R−1
n

u(x′′n)
ϕ1(x′′n)

− ηn ≤
vn(x′′n)
ϕ1(x′′n)

≤ κ

2
< 0 for all n ≥ n0.

Again, this contradicts Rn → ∞ and ηn → 0. The lemma follows from R−1
n un =

vn → κϕ1 = 0 in C1
0 (Ω). �

Let us denote by X+ the positive cone in X, that is,

X+
def= {φ ∈ X : φ ≥ 0 in Ω} ,

and by
◦
X+ its (topological) interior,

◦
X+ = {φ ∈ X : φ ≥ κϕ1 in Ω for some κ ∈ (0,∞)} .

Given any a, b ∈ X, we write a � b (or, equivalently, b � a) if and only if

b− a ∈
◦
X+. We denote

[a, b]def= {φ ∈ X : a ≤ φ ≤ b in Ω} and [[a, b]]def= {φ ∈ X : a� φ� b}.

Notice that [[a, b]] is the (topological) interior of [a, b] in X.

Proof of Theorem 9.1. With regard to Lemma 9.2 above, it suffices to construct a
weak solution un ∈ W 1,p

0 (Ω) of problem (9.7) with properties (i), (ii), and (iii) of
Lemma 9.2, for each n = 1, 2, . . . . The sequences {ηn}∞n=1 ⊂ (0, 1) and {Rn}∞n=1 ⊂
(0,∞) may be chosen arbitrarily with ηn → 0 and Rn →∞ as n→∞.

Given 0 < r <∞, we denote by

Br = {u ∈ X : ‖u‖X < r}
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the open ball in X with radius r centered at the origin, and by

Br = {u ∈ X : ‖u‖X ≤ r}

its closure in X. Set
R0 = max {‖u‖X , ‖u‖X}+ 1 .

In particular, recalling (9.5), for R ≥ R0 we have γR(|u|/ϕ1) = 1 and γR(|u|/ϕ1) =
1 throughout Ω. Hence, from now on, we may assume Rn ≥ R0 for all n ≥ 1. Let
us fix any n ≥ 1 and recall 0 < ηn < 1 ≤ Rn <∞.

Now we follow Drábek and Holubová [14], proof of Lemma 2.4, pp. 191–192.
First, fix any number % > 3Rn. We define the (fixed point) mapping

T : B% → X : u 7→ T udef= ũ ,

where ũ ∈ C1
0 (Ω) is the unique weak solution of

−∆pũ = [GRn
(u)](x) in Ω ; ũ = 0 on ∂Ω . (9.15)

We claim that T is compact, i.e., T is continuous and its image is contained in a
compact set. Indeed, it is easy to see that T : B% ⊂ X → W 1,p

0 (Ω) is continuous
with the image T (B%) being a bounded set in C1,β(Ω), by regularity [3, 8, 24, 38].
Consequently, for any fixed β′ ∈ (0, β),

T : B% ⊂ X → C1,β′(Ω) ∩W 1,p
0 (Ω)

is continuous with T (B%) having compact closure in each of the spaces

C1,β′(Ω) ∩W 1,p
0 (Ω) ↪→ C1

0 (Ω) ↪→ X,

by Arzelà-Ascoli’s theorem. Thus, T : B% → X is compact.
If there exists a fixed point un ∈ B% of T , i.e., T un = un, such that both

inequalities (9.8) and (9.9) are satisfied, then we are done. So let us assume the
contrary, that is, if un ∈ B% satisfies T un = un then at least one of the following
two inequalities must be valid:

un(x) > u(x) + ηn ϕ1(x) for all x ∈ Ω , (9.16)

un(x) < u(x)− ηn ϕ1(x) for all x ∈ Ω . (9.17)

Notice that we have dropped the factor Rn (≥ 1) from the product ηnRn in (9.8)
and (9.9); the (weaker) inequalities above will suffice to get a contradiction. Con-
sequently, we get un � u or un � u in X. Moreover, both inequalities cannot hold
simultaneously; for otherwise we would have u ≤ u throughout Ω which forces u = u
in Ω, owing to eq. (9.3). Hence, there exists a point y ∈ Ω such that u(y) < u(y).
From either inequality un � u or un � u in X we deduce easily that un ∈ X \ S
where S denotes the closure in X of the set

S =
{
u ∈ X : u(x′) < u(x′) and u(x′′) > u(x′′) for some x′, x′′ ∈ Ω

}
.

Clearly, S is open in X with the complement

X \ S = {u ∈ X : u ≥ u in Ω} ∪ {u ∈ X : u ≤ u in Ω} .

Next, we introduce the functions A±
def= ± 3Rnϕ1. We have A± ∈ B%, together

with A− � u� A+ and A− � u� A+. Hence, also u, u ∈ B%. Observe that both
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A− and u (A+ and u) are strict subsolutions (supersolutions, respectively) of the
boundary value problem (9.7); more precisely, they satisfy

−∆pu− [GRn
(u)](x) ≤ −φ1(x) < 0 (≥ φ1(x) > 0) in Ω ;

u = 0 on ∂Ω ,
(9.18)

where φ1 = cRn ·min{ϕ1, ϕ
p−1
1 } with some constant cRn > 0. This in turn implies

u � T u (u � T u) in X, by the strong comparison principle due to Cuesta and
Takáč [4, Theorem 1, p. 81] (see also [5, Theorem 2.1, p. 725]). We remark that the
connectedness of the boundary ∂Ω, assumed in [4, Theorem 1], is not needed here
owing to the strict inequality in eq. (9.18) throughout the domain Ω. Hence, in the
proof of [4, Theorem 1, p. 81], one may apply [4, Prop. 3, p. 82] on any connected
component of the boundary ∂Ω.

Finally, let deg[I − T ; U , 0] denote the Leray-Schauder degree of the mapping
I − T : U → X relative to the origin 0 ∈ X, where U is any open set in X such
that U ⊂ B% and 0 6∈ (I −T )(∂U). As usual, I stands for the identity mapping and
∂U for the boundary of U in X. We compute this degree in the sets [[A−, A+]],
[[A−, un]], [[un, A+]], and S ∩ [[A−, A+]], all of which are open in X. Clearly, the
last three sets, [[A−, un]], [[un, A+]], and S ∩ [[A−, A+]], are pairwise disjoint and
the union of their closures equals [A−, A+] ⊂ B%. Using the excision property of
the Leray-Schauder degree, we compute

deg[I − T ; [[A−, A+]], 0]

= deg[I − T ; [[A−, un]], 0] + deg[I − T ; [[un, A+]], 0]

+ deg[I − T ; S ∩ [[A−, A+]], 0].
(9.19)

Recalling the fact that T has no fixed point un ∈ B% on the boundary of any of the
sets [[A−, A+]], [[A−, un]], and [[un, A+]], we may apply [14, Lemma 2.3, p. 190] to
conclude that

deg[I − T ; [[A−, A+]], 0] = deg[I − T ; [[A−, un]], 0]

= deg[I − T ; [[un, A+]], 0] = 1.

Furthermore, since T has no fixed point in S, we must have also

deg[I − T ; S ∩ [[A−, A+]], 0] = 0.

Inserting these results into eq. (9.19) we arrive at a contradiction, 1 = 1 + 1 + 0.
Hence, we have proved that, indeed, there exists a fixed point un ∈ B% of T such

that both inequalities (9.8) and (9.9) are valid. So Lemma 9.2 can be applied and
Theorem 9.1 is proved. �

10. Large critical points of Jλ

In the previous two sections we have shown how to obtain a (weak) solution to
the resonant problem (9.2) (i.e., when λ = λ1), first for p > 2 (in Section 8) and
then for 1 < p < 2 (in Section 9). When λ < Λ∞ and f ≡ ζϕ1 + f> with some
ζ ∈ R and f> ∈ L∞(Ω)>, f> 6≡ 0 in Ω, a refinement of the techniques from Sections
8 and 9 yields multiple critical points of Jλ for suitable combinations of the pair of
parameters (λ, ζ) near (λ1, 0). Such critical points u = τ(ϕ1+v>) are distinguished
from each other by the size of τ ∈ R; one has v> → 0 in C1(Ω) as τ → ±∞. Thus,
such “large solutions” of the equation J ′

λ(u) = 0 need to be obtained. This is done
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as follows, using the function jλ ≡ jλ( · ; f)R → R and starting from the simpliest
case λ = λ1 and ζ = 0.

The results obtained in Section 8 (Section 9, respectively) apply to this case
if p > 2 (1 < p < 2). Indeed, from the end of Section 7 we recall jλ1(τ) =
−c · |τ |2−p +o(|τ |2−p) as τ → ±∞, where c = c(f>) > 0 is a constant depending on
f>. The function jλ1 being continuous, it attains a global minimum (maximum,
respectively) at τ0 ∈ R if p > 2 (1 < p < 2). We note that this scenario is a special
case of what has been described at the beginning of Section 8 in cases (i) and (ii).
Next, in f ≡ ζϕ1 + f> the original choice of ζ = 0 is perturbed to ζ 6= 0 with |ζ|
small enough. Since formula (7.2) yields

jλ(τ ; f) = jλ(τ ; f>)− τζ ‖ϕ1‖2L2(Ω), (10.1)

this means that for λ = λ1 the second term on the right-hand side above, the
linear function τ 7→ τζ ‖ϕ1‖2L2(Ω), determines the asymptotic behavior of jλ1(τ ; f)
as τ → ±∞:

jλ1(τ ; f) = − c(f>) · |τ |2−p − τζ ‖ϕ1‖2L2(Ω) + o(|τ |2−p)

= − |τ |2−p
(
c(f>) + |τ |p−2τζ ‖ϕ1‖2L2(Ω) + o(1)

)
.

It is not difficult to see that if |ζ| > 0 is small enough then jλ1 possesses a local
minimizer and a local maximizer, such that one of them stays in a bounded interval
and the other tends to +∞ or −∞ as ζ → 0, depending on the signs of p−2 and ζ.
Consequently, the local minimizer and maximizer are distinguished from each other
by the size of their absolute values. Finally, keeping ζ constant (with |ζ| > 0 small
enough), we perturb λ = λ1 to λ near λ1 (with |λ− λ1| > 0 small enough) in order
to obtain a second local minimizer (local maximizer, respectively) for jλ if λ > λ1

(λ < λ1), whose absolute value is even much larger than the absolute values of the
local minimizers and maximizers constructed before for the case λ = λ1. With some
additional caution about the size of critical points, the (multiple) critical points of
Jλ corresponding to the local minimizers and maximizers of jλ are now obtained
by the methods presented in Sections 8 and 9. We refer the interested reader to
the article Takáč [35, Sect. 4 and 5] for (rather complicated) technical details.

An essential tool in the perturbation process just described is, of course, contin-
uous dependence of the function jλ(τ ; ζϕ1 + f>) on all (real) variables τ , λ, and ζ,
which is proved in Takáč [32, Lemma 7.2, p. 222].

11. A collection of main results

In order to give an idea to the reader interested in what kinds of results can be
obtained by the techniques from Sections 8 and 9 applied to the energy functional
Jλ (concerning multiple critical points and their classification), below we present a
collection of the main results from Takáč [35, Sect. 2, pp. 698–705]. Some of them
appeared before in [10, 11, 12, 13, 14, 20, 22, 26, 27, 29, 32, 33, 34].

Recall that we always assume that the domain Ω ⊂ RN satisfies hypothesis (H1).
The first (smallest) eigenvalue λ1 of the positive Dirichlet p-Laplacian −∆p for

1 < p < ∞ is given by formula (1.2). We recall from the beginning of Section 9
that the eigenvalue λ1 is simple and the eigenfunction ϕ1 associated with λ1 can be
normalized by ϕ1 > 0 in Ω and ‖ϕ1‖Lp(Ω) = 1. Furthermore, we have ϕ1 ∈ C1,β(Ω)
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for some β ∈ (0, α), together with the Hopf maximum principle

ϕ1 > 0 in Ω and
∂ϕ1

∂ν
< 0 on ∂Ω. (9.1)

There, we have also introduced the set

U = {x ∈ Ω : ∇ϕ1(x) 6= 0}.
Often, a function u ∈ L1(Ω) will be decomposed as the orthogonal sum u =

u‖ ·ϕ1 +u> according to (1.4). Given a linear subspace M of L1(Ω) with ϕ1 ∈M,
we write

M>def= {u ∈M : 〈u, ϕ1〉 = 0}.
The following concept is tailored for our treatment of the functional Jλ defined
in (1.5); we recall

jλ(τ)def= min
u>∈W 1,p

0 (Ω)>
Jλ(τϕ1 + u>) for τ ∈ R. (7.3)

Definition 11.1. u0 ∈ W 1,p
0 (Ω) will be called a simple saddle point for Jλ if

u0 = τ0ϕ1 +u>0 is a critical point for Jλ, u>0 is a global minimizer for the restricted
functional u> 7→ Jλ(τ0ϕ1 +u>) on W 1,p

0 (Ω)>, and the function jλ : R → R attains
a local maximum at τ0.

A more general type of a saddle point is obtained in Rabinowitz [30, Theorem
4.6, p. 24]. From now on we separate the cases p > 2 and 1 < p < 2, respectively.

11.1. The degenerate case 2 < p < ∞. Let 2 < p < ∞. We introduce a new
norm on W 1,p

0 (Ω) by

‖v‖ϕ1

def=
(∫

Ω
|∇ϕ1|p−2|∇v|2 dx

)1/2 for v ∈W 1,p
0 (Ω), (11.1)

and denote by Dϕ1 the completion of W 1,p
0 (Ω) with respect to this norm. That the

seminorm (11.1) is in fact a norm on W 1,p
0 (Ω) follows from an inequality in [32,

ineq. (4.7), p. 200]. The Hilbert space Dϕ1 coincides with the domain of the closure
of the quadratic form Q0 : W 1,p

0 (Ω) → R given by

2 · Q0(φ) =
∫

Ω

|∇ϕ1|p−2
{
|∇φ|2 + (p− 2)

∣∣ ∇ϕ1

|∇ϕ1|
· ∇φ

∣∣2} dx

− λ1(p− 1)
∫

Ω

ϕp−2
1 φ2 dx, φ ∈W 1,p

0 (Ω).
(11.2)

We impose the following additional hypothesis on the domain Ω:
(H2) If N ≥ 2 and ∂Ω is not connected, then there is no function v ∈ Dϕ1 ,

Q0(v) = 0, with the following four properties:
(i) v = ϕ1 ·χS a.e. in Ω, where S ⊂ Ω is Lebesgue measurable, 0 < |S|N <

|Ω|N ;
(ii) S is connected and S ∩ ∂Ω 6= ∅;
(iii) if V is a connected component of U , then either V ⊂ S or else V ⊂

Ω \ S;
(iv) (∂S) ∩ Ω ⊂ Ω \ U . ( Recall Ω \ U = {x ∈ Ω : ∇ϕ1(x) = 0}. )

It has been conjectured in Takáč [32, §2.1] that (H2) always holds true provided
(H1) is satisfied. The cases, when Ω is either an interval in R1 or else ∂Ω is
connected if N ≥ 2, have been covered within the proof of Proposition 4.4 in [32,
pp. 202–205] which claims:
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Proposition 11.2. Let 2 < p < ∞ and assume both hypotheses (H1) and (H2).
Then a function u ∈ Dϕ1 satisfies Q0(u) = 0 if and only if u = κϕ1 for some
constant κ ∈ R.

In particular, there is no function v ∈ Dϕ1 , Q0(v) = 0, with properties (i)–(iv).
This proposition is the only place where (H2) is needed explicitly. All other results
in these notes depend solely on the conclusion of the proposition which, in turn,
implies (H2).

We write f ≡ f> + ζϕ1 with f> ∈ K and ζ ∈ R, where K is as follows:
(H3) K is a nonempty, weakly-star compact set in L∞(Ω) such that 0 6∈ K and

〈g, ϕ1〉 = 0 for all g ∈ K.
We begin by stating the following existence result which generalizes the existence

part of Takáč [32, Theorem 2.2, p. 194].

Theorem 11.3. There exist positive constants δ ≡ δ(K), δ′ ≡ δ′(K), and C(K)
such that, whenever λ ≤ λ1 + δ, f> ∈ K, and |ζ| ≤ δ′, the functional Jλ possesses
a local minimizer u1 ∈ W 1,p

0 (Ω) (hence, a weak solution to (1.1)) that satisfies
‖u1‖C1,β(Ω) ≤ C(K). Furthermore, if δ0, δ′0 > 0 (in place of δ and δ′) are arbitrary
and λ ≤ λ1 − δ0, |ζ| ≤ δ′0, the same bound (depending also on δ0 and δ′0) holds for
any global minimizer of Jλ.

A variational proof of this theorem relies on the methods described in Sections 7
and 8, case (i). It can be found in [35, §6.1, pp. 738–739] (proof of Theorem 2.2 in
[35]). For all λ < λ1 and ζ ∈ R, this result follows from the coercivity of the energy
functional Jλ, whereas for 0 < λ − λ1 ≤ δ and any ζ ∈ R, it can be proved by a
well-known argument employing topological degree; see Drábek [9, Theorem 14.18,
p. 189]. Finally, for λ = λ1 it has been established in Fleckinger and Takáč [20,
Theorem 3.3] and Takáč [32, Theorem 2.2] if ζ = 0, and in Takáč [33, Theorem
3.1] if |ζ| ≤ δ′.

Remark 11.4. The local minimizer u1 ∈ W 1,p
0 (Ω) described in Theorem 11.3 is

the same as the one obtained in Theorems 11.5, 11.7, and 11.8 below.

Our second theorem is a multiplicity result for the resonant value λ = λ1. Al-
though it has been obtained originally in [33, Theorem 3.1], its present form (taken
from [35, Theorem 2.4, p. 701]) is more specific about the qualitative description
of solutions.

Theorem 11.5. There exists a constant δ′ ≡ δ′(K) > 0 such that problem (1.1)
with λ = λ1 and f ≡ f> + ζϕ1 has at least two (distinct) weak solutions u1, u2

specified as follows, whenever f> ∈ K and 0 < |ζ| ≤ δ′: Functional Jλ1 (which
is unbounded from below) possesses a local minimizer u1 ∈ W 1,p

0 (Ω) and another
critical point u2 ∈W 1,p

0 (Ω).

The proof of this theorem can be derived from that of Theorem 11.3; see [35,
§6.2, pp. 739–741] (proof of Theorem 2.4 in [35]).

Remark 11.6. The critical point u2 ∈ W 1,p
0 (Ω) obtained in Theorem 11.5 above

is constructed from a suitable pair of sub- and supersolutions to problem (1.1)
satisfying (1.7) and (1.8), respectively, with λ = λ1. This method is a refinement
of the topological degree arguments described in Section 9. If the sub- and super-
solutions coincide, then u2 = u = u is a simple saddle point for Jλ1 , u2 = τ2ϕ1+u>2 ,
and, moreover, jλ1 is differentiable at τ2 with vanishing derivative, j′λ1

(τ2) = 0.
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Analogous remarks apply to all critical points (other than local minimizers)
obtained in our theorems below, Theorems 11.7 and 11.8 in this paragraph, and
Theorems 11.13, 11.15, 11.16, and 11.17 in the next one (§11.2).

The following two theorems on the existence of at least three solutions to the
Dirichlet problem (1.1) are the main new results for p > 2 obtained in [35]. First,
we consider the subcritical case λ1 − δ ≤ λ < λ1.

Theorem 11.7. There exists a constant δ′ ≡ δ′(K) > 0 such that, for any d ∈
(0, δ′), there is another constant δ ≡ δ(K, d) > 0 such that problem (1.1) with
f ≡ f>+ζϕ1 has at least three (pairwise distinct) weak solutions u1, u2, u3 specified
as follows, whenever λ1 − δ ≤ λ < λ1, f> ∈ K, and d ≤ |ζ| ≤ δ′: Functional Jλ

(which is bounded from below) possesses two local minimizers u1, u2 ∈ W 1,p
0 (Ω) of

which at least one is global, and another critical point u3 ∈W 1,p
0 (Ω).

The proof of this theorem is derived from those of Theorems 11.3 and 11.5; see
[35, §6.3, pp. 742–744] (proof of Theorem 2.6 in [35]).

Finally, we treat the supercritical case λ1 < λ ≤ λ1 + δ. Here we obtain the
following multiplicity and uniform boundedness results for problem (1.1):

Theorem 11.8. There exist constants δ ≡ δ(K) > 0 and δ′ ≡ δ′(K) > 0 such
that problem (1.1) with f ≡ f> + ζϕ1 has at least three (pairwise distinct) weak
solutions u1, u2, u3 specified as follows, whenever λ1 < λ ≤ λ1 + δ, f> ∈ K, and
|ζ| ≤ δ′: Functional Jλ (which is unbounded from below) possesses a local minimizer
u1 ∈W 1,p

0 (Ω) and two other critical points u2, u3 ∈W 1,p
0 (Ω).

The proof of this theorem is derived from that of Theorem 11.3; see [35, §6.4,
pp. 745–746] (proof of Theorem 2.7 in [35]).

Remark 11.9. In Theorem 11.5, the orthogonal projections of u1 and u2 onto
lin{ϕ1} satisfy u

‖
1 < u

‖
2 if ζ > 0, and u

‖
1 > u

‖
2 if ζ < 0. In Theorem 11.7, u‖3 lies

between u‖1 and u‖2, and in Theorem 11.8, u‖1 lies between u‖2 and u‖3.

For the question of boundedness of the solution set for problem (1.1) with λ
near λ1, we refer to Drábek et al. [13] and Takáč [32, Sect. 2] and [33, Prop.
6.1]. Although the variational methods developed in our present lecture notes are
clearly not suitable for resolving this question, in the proofs of all our theorems one
makes essential use of [33, Prop. 6.1] (stated as Proposition B.4 in the Appendix,
§B.2) which in turn provides the following answer in the special case λ = λ1; see
[33, Theorem 3.2]:

Theorem 11.10. Let f> be as in Theorem 11.3 above. If ζ = 0 then the set of
all weak solutions to problem (1.1) with λ = λ1 is bounded in C1,β(Ω). Given any
δ > 0, this set is bounded in C1,β(Ω) uniformly for all |ζ| ≥ δ as well.

This theorem is proved in [35, §6.5, p. 747] (proof of Theorem 2.9 in [35]).
In contrast with Theorem 11.3, if |ζ| in f ≡ f> + ζϕ1 is “too large” relative to

the size of ‖f>‖L∞(Ω), say |ζ| ≥ δ > 0, then problem (1.1) with λ = λ1 has no
weak solution; see [32, Corollary 2.4, p. 195] or [33, Theorem 3.1]:

Corollary 11.11. Given an arbitrary function g ∈ L∞(Ω) with 0 ≤ g 6≡ 0 in Ω,
there exists a constant γ ≡ γ(g) > 0 with the following property: If f ∈ L∞(Ω),
f 6≡ 0, is such that

f = fg · g + f̄g with some fg ∈ R and f̄g ∈ L∞(Ω),
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and ‖f̄g‖L∞(Ω) ≤ γ |fg|, then problem (1.1) with λ = λ1 has no weak solution.

Equivalently, given g as above, notice that there is an open cone C in L∞(Ω)
with vertex at the origin (0 6∈ C) such that g ∈ C and problem (1.1) with λ = λ1

has no weak solution whenever f ∈ C. This result improves a nonexistence result
due to [17, Théorème 1] (see also [31, Theorem 7.2, p. 154]) for 0 ≤ f 6≡ 0 in Ω.

As already mentioned in the Introduction, one needs a number of auxiliary results
to prove these theorems. Complete proofs can be found in Takáč [35, Sect. 6, pp.
738–747]. Additional results revealing more details about the structure of solutions
to problem (1.1) have been established within these proofs, e.g., the positivity or
negativity of solutions with a sufficiently large norm.

11.2. The singular case 1 < p < 2. We further require hypothesis (H1); (H2) will
be replaced by a hypothesis on f . In fact, hypothesis (H2) always holds true in this
case; see Takáč [32, Sect. 8, p. 225].

Remark 11.12. It is not difficult to verify that the conclusion of Proposition 11.2
remains valid also for 1 < p < 2, by [32, Remark 8.1, p. 225].

The Hilbert space Dϕ1 , endowed with the norm (11.1) for p > 2, needs to be
redefined for 1 < p < 2 as follows: We define v ∈ Dϕ1 if and only if v ∈ W 1,2

0 (Ω),
∇v(x) = 0 for almost every x ∈ Ω \ U = {x ∈ Ω : ∇ϕ1(x) = 0}, and

‖v‖ϕ1

def=
( ∫

U

|∇ϕ1|p−2|∇v|2 dx
)1/2

<∞. (11.3)

Consequently, Dϕ1 endowed with the norm ‖ · ‖ϕ1 is continuously embedded into
W 1,2

0 (Ω). We conjecture that Dϕ1 is dense in L2(Ω). This conjecture would im-
mediately follow from |Ω \ U |N = 0. The latter holds true if Ω is convex; then
also Ω \ U is a convex set in RN with empty interior, and hence of zero Lebesgue
measure, see [18, Lemma 2.6, p. 55].

If the conjecture is false, we need to consider also the orthogonal complement

D⊥,L2

ϕ1
= {v ∈ L2(Ω) : 〈v, φ〉 = 0 for all φ ∈ Dϕ1}.

Notice that v ∈ D⊥,L2

ϕ1
implies v = 0 almost everywhere in U . This means that

D⊥,L2

ϕ1
is isometrically isomorphic to a closed linear subspace of L2(Ω\U). Moreover,

χΩ\U 6∈ D⊥,L2

ϕ1
since Ω \ U is a compact subset of Ω; hence, there is a C1 function

φ ∈ Dϕ1 , 0 ≤ φ ≤ 1, with compact support in Ω and such that φ = 1 in an open
neighborhood of Ω \ U .

As above, we write f ≡ f>+ ζϕ1 with f> ∈ K and ζ ∈ R, where our hypothesis
on K below admits the possibility D⊥,L2

ϕ1
6= {0}.

(H3’) K is a nonempty, weakly-star compact set in L∞(Ω) such that K∩D⊥,L2

ϕ1
=

∅ and 〈g, ϕ1〉 = 0 for all g ∈ K.

The condition g 6∈ D⊥,L2

ϕ1
is satisfied if g is continuous in Ω and g 6≡ 0. Our first

result for p < 2 below is an analogue of Theorem 11.3; it generalizes the existence
part of Drábek and Holubová [14, Theorem 1.1, p. 184] and Takáč [32, Theorem
2.6, p. 196]. We assume that both hypotheses (H1) and (H3’) are satisfied.

Theorem 11.13. There exist positive constants δ ≡ δ(K), δ′ ≡ δ′(K), and C(K)
such that, whenever |λ − λ1| ≤ δ, f> ∈ K, and |ζ| ≤ δ′, the functional Jλ

possesses a critical point u1 ∈ W 1,p
0 (Ω) (hence, a weak solution to (1.1)) that



94 P. TAKÁČ EJDE/CONF/18

satisfies ‖u1‖C1,β(Ω) ≤ C(K). Furthermore, if δ0, δ′0 > 0 (in place of δ and δ′) are
arbitrary and λ ≤ λ1 − δ0, |ζ| ≤ δ′0, the same bound (depending also on δ0 and δ′0)
holds for any global minimizer of Jλ.

A proof is given in [35, §7.1, pp. 747–749] (proof of Theorem 2.12 in [35]).
It is based on the topological (Leray-Schauder) degree as described in Section 9.
It has been originally taken from [32, §8.4, p. 229] and is analogous to that of
Theorem 11.3. For all λ ≤ λ1 + δ, λ 6= λ1, and ζ ∈ R, this result can be proved
in the same way as for p > 2; see [9, Theorem 14.18, p. 189]. For λ = λ1 it was
established in [14, Theorem 1.1] and [33, Theorem 3.5] if |ζ| ≤ δ′ (by completely
different methods), and in [32, Theorem 2.6] if ζ = 0 (by the same variational
method we use here).

Remark 11.14. The critical point u1 ∈ W 1,p
0 (Ω) described in Theorem 11.13 is

the same as the one obtained in Theorems 11.15, 11.16, and 11.17 below.
We recall that Remark 11.6 applies also to all critical points (other than local

minimizers) obtained in our theorems throughout this paragraph, Theorems 11.13,
11.15, 11.16, and 11.17.

Again, our second theorem for p < 2 is a multiplicity result for λ = λ1 taken from
[33, Theorem 3.5] in a more specific form obtained in [35, Theorem 2.14, p. 704].

Theorem 11.15. There exists a constant δ′ ≡ δ′(K) > 0 such that problem (1.1)
with λ = λ1 and f ≡ f> + ζϕ1 has at least two (distinct) weak solutions u1, u2

specified as follows, whenever f> ∈ K and 0 < |ζ| ≤ δ′: Functional Jλ1 (which is
unbounded from below) possesses a critical point u1 ∈ W 1,p

0 (Ω) and a local mini-
mizer u2 ∈W 1,p

0 (Ω).

The proof of this theorem can be derived from that of Theorem 11.13; see [35,
§7.2, pp. 749–750] (proof of Theorem 2.14 in [35]).

The following theorem on the existence of at least three solutions to the Dirichlet
problem (1.1) in the subcritical case λ1 − δ ≤ λ < λ1 is a generalization of [32,
Theorem 2.7, p. 196] where it is established for ζ = 0 only.

Theorem 11.16. There exist constants δ ≡ δ(K) > 0 and δ′ ≡ δ′(K) > 0 such
that problem (1.1) with f ≡ f> + ζϕ1 has at least three (pairwise distinct) weak
solutions u1, u2, u3 specified as follows, whenever λ1 − δ ≤ λ < λ1, f> ∈ K, and
|ζ| ≤ δ′: Functional Jλ (which is bounded from below) possesses a critical point
u1 ∈ W 1,p

0 (Ω) and two (distinct) local minimizers u2, u3 ∈ W 1,p
0 (Ω) of which at

least one is global.

Again, the proof of this theorem is derived from that of Theorem 11.13; see [35,
§7.3, p. 751] (proof of Theorem 2.15 in [35]).

Our last theorem on the existence of at least three solutions to problem (1.1)
appeared for the first time in Takáč [35, Theorem 2.16, p. 705]. Here we consider
the supercritical case λ1 < λ ≤ λ1 + δ.

Theorem 11.17. There exists a constant δ′ ≡ δ′(K) > 0 such that, for any
d ∈ (0, δ′), there is another constant δ ≡ δ(K, d) > 0 such that problem (1.1)
with f ≡ f> + ζϕ1 has at least three (pairwise distinct) weak solutions u1, u2, u3

specified as follows, whenever λ1 < λ ≤ λ1 + δ, f> ∈ K, and d ≤ |ζ| ≤ δ′:
Functional Jλ (which is unbounded from below) possesses two (distinct) critical
points u1, u2 ∈W 1,p

0 (Ω) and a local minimizer u3 ∈W 1,p
0 (Ω).
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The proof is derived from those of Theorems 11.13 and 11.16, see [35, §7.4, pp.
751–754] (proof of Theorem 2.16 in [35]).

Remark 11.18. In Theorem 11.15, the orthogonal projections of u1 and u2 on
lin{ϕ1} satisfy u‖1 < u

‖
2 if ζ < 0, and u

‖
1 > u

‖
2 if ζ > 0. In Theorem 11.16, u‖1 lies

between u‖2 and u‖3, and in Theorem 11.17, u‖3 lies between u‖1 and u‖2.

Under the same hypotheses, we obtain the corresponding uniform boundedness
result [33, Theorem 3.6]; we refer to [13], [32, Sect. 2], and [33, Prop. 6.1] for
additional results:

Theorem 11.19. The conclusion of Theorem 11.10 is valid also for 1 < p < 2.

The proof of this theorem is identical with the proof of Theorem 11.10 above
([35, §7.5, p. 754], proof of Theorem 2.18 in [35]).

Finally, the nonexistence for f ≡ f> + ζϕ1 with |ζ| large enough has been
proved in [14, Theorem 1.1, p. 184], [32, Corollary 2.9, p. 197], or [33, Theorem 3.5]
in various ways:

Corollary 11.20. Let g ∈ L∞(Ω) be an arbitrary function such that g ≥ 0 in Ω
and g 6≡ 0. Then the conclusion of Corollary 11.11 is valid also for 1 < p < 2.

Complete proofs of all these results can be found in Takáč [35, Sect. 7, pp.
747–754].

12. Discussion

The variational method used in this work can be applied to finding critical points
of some functionals of the following more general type,

Jλ(u)def=
1
p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

|u|p dx−
∫

Ω

F (x, u(x)) dx (12.1)

onW 1,p
0 (Ω). This functional corresponds to the “spectral” Dirichlet problem (1.10),

considered in the same setting as problem (1.1), with

F (x, u)def=
∫ u

0
f(x, t) dt for x ∈ Ω and u ∈ R.

The reaction f : Ω×R → R is a given function of Carathéodory type with suitable
growth or decay properties as |u| → ∞. For instance, one may assume f( · , u) ∗⇀f∞
weakly-star in L∞(Ω) as |u| → ∞, where f∞ 6≡ 0 in Ω.

For p = 2 both the resonant and nonresonant cases of problem (1.10) have been
studied in numerous works; see [9, 12, 22] for references. In contrast, the more
difficult case p 6= 2 has been investigated less intensively [7, 9, 12, 22, 28, 29, 31, 40,
41]. For technical reasons (e.g., complicated asymptotic expressions), in the present
work we have treated only the special case when f(x, u) is independent from the
(unknown) state variable u, i.e., f(x, u) ≡ f(x) for a.e. x ∈ Ω, where f ∈ L∞(Ω)
with f 6≡ 0 in Ω. The general problem (1.10) can be treated similarly provided f
satisfies

f(x, u)/|u|p−1 → 0 as |u| → ∞ uniformly for x ∈ Ω. (12.2)

Our method applies to a number of related problems at resonance for λ near λ1

that have to be treated individually. We refer the interested reader to [12] and [22].



96 P. TAKÁČ EJDE/CONF/18

So let us assume the asymptotic growth condition (12.2). Obviously, all what is
needed is the asymptotic behavior of the function jλ1 : R → R near ±∞, i.e., some
analogue of the formula

|τ |p−2 · jλ1(τ ; f) → −Q0(w,w) as |τ | → ∞ . (12.3)

Here, w ∈ D>ϕ1
is the unique weak solution of problem (B.12) if p > 2, and (B.13)

if p < 2. (We refer to [35], Lemmas 5.2 (p. 736) and Lemmas 5.3 (p. 737), respec-
tively.) With regard to Proposition B.4, this means investigating sequences of large
solutions,

un = t−1
n ϕ1 + u>n = t−1

n (ϕ1 + v>n ) with tn → 0 and ‖v>n ‖C1,β′ (Ω) → 0 as n→∞,

to the following generalized version of problem (B.16), see §B.2 (Appendix):

−∆p(t−1ϕ1 + u>)− λ1|t−1ϕ1 + u>|p−2(t−1ϕ1 + u>)

= f(x, u(x))> + ζ · ϕ1(x) in Ω;

u> = 0 on ∂Ω;

〈u>, ϕ1〉 = 0.

(12.4)

After a careful inspection of the proof of Proposition B.4 one finds out that only
Theorem B.2 is needed. Although we will not provide formal proofs of our claims
in the present lecture notes, all these auxiliary results can be established without
major changes provided f satisfies the following two conditions, cf. Girg and Takáč
[22, §2.3, hypothesis (H ′

∞)]:
(f1) f : Ω × R → R is a given function of Carathéodory type such that the

function u 7→ f(·u) maps bounded intervals in R into bounded sets in
L∞(Ω).

(f2) f satisfies f(·, u)/θ(u) ∗⇀f±∞ weakly-star in L∞(Ω) as u → ±∞, where
f±∞ 6≡ 0 in Ω, and either θ(u) ≡ 1 for u ∈ R, or else θ : R → R is some C1

function such that θ(0) = 0, θ′(u) 6= 0 for u 6= 0,

lim
|u|→∞

(
θ(u)/|u|p−1

)
= 0, sup

u 6=0
|θ′(u)u/θ(u)| <∞,

and

θ(τϕ1(x))/θ(τ) → θ±∞(x) uniformly for x ∈ Ω as τ → ±∞,

with θ±∞ > 0 in Ω.

In particular, the expression Vn = t1−p
n v>n (for θ ≡ 1) in Theorem B.2 becomes

Vn =
[
tp−1
n θ(t−1

n )
]−1

v>n .

Notice that tn → 0 entails tp−1
n θ(t−1

n ) → 0. Of course, first, formula (B.18) has to
be recalculated, and then also formula (12.3).

In contrast with the case θ ≡ 1, two obvious nontrivial examples when f satisfies
conditions (f1) and (f2) are as follows:

f(x, u) = f∞(x) |u|q−1 + f0(x, u); x ∈ Ω, u ∈ R,

and
f(x, u) = f∞(x) |u|q−2u+ f0(x, u); x ∈ Ω, u ∈ R,
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where q is a constant, 1 < q < p, f∞ ∈ L∞(Ω), f∞ 6≡ 0 in Ω, and f0 satisfies
condition (f1) together with

f0(x, u)/|u|q−1 → 0 as |u| → ∞ uniformly for x ∈ Ω.

Consequently, in condition (f2) we may take θ(u) = |u|q−1 in the former case and
θ(u) = |u|q−2u in the latter one.

The Neumann boundary conditions, ∂u/∂ν = 0 on ∂Ω, can be treated as well
by replacing the underlying space W 1,p

0 (Ω) by W 1,p(Ω). Then λ1 = 0 and ϕ1 ≡
const = 1/|Ω|1/p

N in Ω. Hence, the energy functional (12.1) becomes

Jλ(u) ≡ Jλ(τ + u>)

def=
1
p

∫
Ω

|∇u>|p dx− λ

p

∫
Ω

|τ + u>|p dx−
∫

Ω

F (x, τ + u>(x)) dx
(12.5)

for u ≡ τ + u> ∈ W 1,p(Ω), where τ ∈ R and u> ∈ W 1,p(Ω) satisfies
∫
Ω
u> dx = 0.

Consequently, the resonant case λ = λ1 = 0 is somewhat easier to treat than for
the Dirichlet boundary conditions. For instance, setting u> ≡ 0 in Ω we get

j0(τ) ≤ J0(τ) = −
∫

Ω

F (x, τ) dx for τ ∈ R.

Thus, as |τ | → ∞, if
∫
Ω
F (x, τ) dx→ +∞ then j0(τ) → −∞.

Appendix A. Some auxiliary functional-analytic results

A.1. Linearization and quadratic forms. In order to determine the asymptotic
behavior of the function jλ1(τ) as |τ | → ∞ which has been introduced in eq. (7.3),
we will estimate the functional u> 7→ Jλ1(τϕ1 + u>) by suitable quadratic forms.
We need to compute the first two Fréchet derivatives of the functional Jλ1 , see [32,
Sect. 3, p. 197]. Define

F(u)def=
1
p

∫
Ω

|∇u|p dx, u ∈W 1,p
0 (Ω). (A.1)

The first Fréchet derivative F ′(u) of F at u ∈ W 1,p
0 (Ω) is given by F ′(u) = −∆pu

in W−1,p′(Ω), where 1
p + 1

p′ = 1. The second Fréchet derivative F ′′(u) is a bit
more complicated; if 1 < p < 2, it might have to be considered only as a Gâteaux
derivative which is not even densely defined: For all φ, ψ ∈ W 1,p

0 (Ω), one has (if
2 ≤ p <∞)

〈F ′′(u)ψ, φ〉 =∫
Ω

|∇u|p−2
{
(∇φ · ∇ψ) + (p− 2)|∇u|−2(∇u · ∇φ)(∇u · ∇ψ)

}
dx

=
∫

Ω

|∇u|p−2
〈
I + (p− 2)

∇u⊗∇u
|∇u|2

, ∇φ⊗∇ψ
〉

RN×N dx.

(A.2)

Here, I is the identity matrix in RN×N , a⊗b is the (N×N)-matrix T = (aibj)N
i,j=1

for a = (ai)N
i=1, b = (bi)N

i=1 ∈ RN , and 〈 · , · 〉RN×N is the Euclidean inner product
in RN×N .

For a ∈ RN (a = ∇u in our case), a 6= 0 ∈ RN , we abbreviate

A(a)def= |a|p−2
(
I + (p− 2)

a⊗ a
|a|2

)
. (A.3)
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If p > 2, we set also A(0)def=0 ∈ RN×N . For a 6= 0, A(a) is a positive definite,
symmetric matrix. The spectrum of |a|2−pA(a) consists of eigenvalues 1 and p− 1,
whence

min{1, p− 1} ≤ 〈A(a)v,v〉RN

|a|p−2|v|2
≤ max{1, p− 1}, a,v ∈ RN \ {0}. (A.4)

From this point on, until the end of this paragraph, we restrict ourselves to
p ≥ 2. The case 1 < p < 2 will be taken care of in the next paragraph, §A.2. We
rewrite the p-homogeneous part of the functional (1.5) with λ = λ1 as follows [32,
eq. (4.1), p. 198]:

Jλ1(ϕ1 + φ) + 〈f, ϕ1 + φ〉

=
1
p

∫
Ω

|∇(ϕ1 + φ)|p dx− λ1

p

∫
Ω

|ϕ1 + φ|p dx

=
∫ 1

0

∫
Ω

|∇(ϕ1 + sφ)|p−2∇(ϕ1 + sφ) · ∇φdxds

− λ1

∫ 1

0

∫
Ω

|ϕ1 + sφ|p−2(ϕ1 + sφ)φdxds

(A.5)

for all φ ∈W 1,p
0 (Ω). Similarly, using (A.2), we get

Jλ1(ϕ1 + φ) + 〈f, ϕ1 + φ〉 = Qφ(φ, φ), (A.6)

where Qφ is the symmetric bilinear form on [W 1,p
0 (Ω)]2 defined as follows, using

(A.3):

Qφ(v, w)def=
∫

Ω

〈[ ∫ 1

0

A(∇(ϕ1 + sφ))(1− s) ds
]
∇v, ∇w

〉
RN

dx

− λ1(p− 1)
∫

Ω

[ ∫ 1

0

|ϕ1 + sφ|p−2(1− s) ds
]
vw dx

(A.7)

for v, w ∈W 1,p
0 (Ω). In particular, one has (cf. (11.2))

2 · Q0(v, v) =
∫

Ω

〈A(∇ϕ1)∇v,∇v〉RN dx− λ1(p− 1)
∫

Ω

ϕp−2
1 v2 dx.

Furthermore, equations (1.2) and (A.6) guarantee (see [32, ineq. (4.4), p. 199])

Q0(φ, φ) ≥ 0 for all φ ∈W 1,p
0 (Ω). (A.8)

Form Q0 is closable in L2(Ω) and the domain of its closure is Dϕ1 (see [32, Sect. 4,
p. 201]).

A.2. The weighted Sobolev space Dϕ1 . We set R+ = [0,∞) and begin with a
few inequalities from Takáč [32, Lemma A.1, p. 233]. Let 1 < p < ∞ and p 6= 2.
Assume that Θ ∈ L∞(0, 1) satisfies Θ ≥ 0 in (0, 1) and T =

∫ 1

0
Θ(s) ds > 0. Then

there exists a constant cp(Θ) > 0 such that the following inequalities hold true for
all a,b ∈ RN : If p > 2 then

cp(Θ)p−2
(

max
0≤s≤1

|a + sb|
)p−2

≤
∫ 1

0

|a + sb|p−2 Θ(s) ds

≤ T ·
(

max
0≤s≤1

|a + sb|
)p−2

,

(A.9)
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and if 1 < p < 2 and |a|+ |b| > 0 then

T ·
(

max
0≤s≤1

|a + sb|
)p−2

≤
∫ 1

0

|a + sb|p−2 Θ(s) ds

≤ cp(Θ)p−2
(

max
0≤s≤1

|a + sb|
)p−2

.

(A.10)

The inequalities below are a combination of (A.4) with (A.9) (if p > 2) and
(A.10) (if p < 2), see [32, Lemma A.2]: If p > 2 then

cp(Θ)p−2
(

max
0≤s≤1

|a + sb|
)p−2

|v|2 ≤
∫ 1

0

〈A(a + sb)v,v〉Θ(s) ds

≤ (p− 1)T ·
(

max
0≤s≤1

|a + sb|
)p−2

|v|2
(A.11)

for all a,b,v ∈ RN , and if 1 < p < 2 and |a|+ |b| > 0 then

(p− 1)T ·
(

max
0≤s≤1

|a + sb|
)p−2

|v|2 ≤
∫ 1

0

〈A(a + sb)v,v〉Θ(s) ds

≤ cp(Θ)p−2
(

max
0≤s≤1

|a + sb|
)p−2

|v|2.
(A.12)

Several important properties of Dϕ1 established in Takáč [32] are listed below.
The following claim is obvious ([32, Lemma 4.1]): If 1 < p < ∞, p 6= 2, and

if (H1) is satisfied, then one has Q0(ϕ1, ϕ1) = 0 and 0 ≤ Q0(v, v) < ∞ for all
v ∈ Dϕ1 .

Now we need to distinguish between the cases p > 2 and 1 < p < 2. Assume
2 < p <∞ together with (H1). Notice that inequality (A.4) entails

‖v‖2ϕ1
≤

∫
Ω

〈A(∇ϕ1)∇v,∇v〉RN dx ≤ (p− 1)‖v‖2ϕ1
for v ∈ Dϕ1 . (A.13)

For 0 < δ <∞, we denote by

Ωδ
def= {x ∈ Ω : dist(x, ∂Ω) < δ} (A.14)

the δ-neighborhood of ∂Ω. Its complement in Ω is denoted by Ω′δ = Ω \ Ωδ.
The following compact embedding result is proved in [32, Lemma 4.2, p. 199].

Lemma A.1. Let 2 < p < ∞ and assume that hypothesis (H1) is satisfied. Then
we have:

(a) For every δ > 0 small enough, ‖ · ‖ϕ1 is an equivalent norm on W 1,2
0 (Ωδ).

(b) The embedding Dϕ1 ↪→ L2(Ω) is compact.

Due to inequality (A.13) combined with Lemma A.1, Part (b) above, we can
extend the domain of Q0 to Dϕ1 ×Dϕ1 . This extension of Q0 is unique and closed
in L2(Ω). We denote by Aϕ1 the Friedrichs representation of the quadratic form
2 ·Q0 in L2(Ω); see [23, Theorem VI.2.1, p. 322]. This means that Aϕ1 is a positive
semidefinite, selfadjoint linear operator on L2(Ω) with domain dom(Aϕ1) dense in
Dϕ1 and

〈Aϕ1v, w〉 = 2 · Q0(v, w) for all v, w ∈ dom(Aϕ1).
Notice that our definition of Q0 yields Aϕ1ϕ1 = 0. Since the embedding Dϕ1 ↪→
L2(Ω) is compact, by Lemma A.1, Part (b), the null space of Aϕ1 denoted by

ker(Aϕ1) = {v ∈ dom(Aϕ1) : Aϕ1v = 0}
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is finite-dimensional, by the Riesz-Schauder theorem [23, Theorem III.6.29, p. 187].
Owing to hypothesis (H2), we have even ker(Aϕ1) = lin{ϕ1}, by Proposition 11.2.

Now we switch to the case 1 < p < 2 and again require only (H1). We highlight
a few places at which the proof of the boundedness part in Theorem 11.13 differs
from that in Theorem 11.3. The most substantial difference is that the role of the
compact embedding Dϕ1 ↪→ L2(Ω) needs to be replaced by that of W 1,2

0 (Ω) ↪→ Hϕ1 ,
where Hϕ1 is the Hilbert space defined below, Hϕ1 ↪→ L2(Ω). Let us define another
norm on W 1,2

0 (Ω) by

v ϕ1

def=
( ∫

Ω

ϕp−2
1 v2 dx

)1/2

for v ∈W 1,2
0 (Ω), (A.15)

and denote by Hϕ1 the completion of W 1,2
0 (Ω) with respect to this norm.

The embeddings below are taken from [32, Lemma 8.2, p. 226].

Lemma A.2. Let 1 < p < 2 and let hypothesis (H1) be satisfied. Then we have:
(a) The embedding Hϕ1 ↪→ L2(Ω) is continuous.
(b) The embedding W 1,2

0 (Ω) ↪→ Hϕ1 is compact.

Appendix B. Auxiliary results for the equation with ∆p

B.1. An approximation scheme for a solution. Here we investigate an ap-
proximation scheme for a weak solution to the Dirichlet problem (1.1) in order to
compute the asymptotic behavior of its large solutions provided f ∈ L∞(Ω) satis-
fies f 6≡ 0 and λ is close to λ1. The condition 〈f, ϕ1〉 = 0 is not required in this
paragraph.

We study the sequence of Dirichlet problems for n = 1, 2, . . . ,

−∆pun = (λ1 + µn)|un|p−2un + fn(x) in Ω; un = 0 on ∂Ω, (B.1)

that is, in the weak formulation, for all φ ∈W 1,p
0 (Ω),∫

Ω

|∇un|p−2〈∇un,∇φ〉dx = (λ1 + µn)
∫

Ω

|un|p−2un φdx+
∫

Ω

fn φdx. (B.2)

Here, {µn}∞n=1 ⊂ R and {fn}∞n=1 ⊂ L∞(Ω) are bounded sequences, and {un}∞n=1

is an unbounded sequence of corresponding weak solutions to problem (B.1) in
W 1,p

0 (Ω).
We assume that these sequences satisfy the following hypotheses:
(S1) µn → 0 as n→∞.
(S2) fn

∗
⇀f in L∞(Ω) (in the weak-star topology) as n→∞, where f 6≡ 0 in Ω.

(S3) ‖un‖L∞(Ω) →∞ as n→∞.
By a regularity result [3, Théorème A.1, p. 96], hypothesis (S3) is equivalent to

(S3’) ‖un‖W 1,p
0 (Ω) →∞ as n→∞.

Furthermore, since ∂Ω is assumed to be of class C1,α, for some 0 < α < 1, we can
apply another regularity result, [8, Theorem 2, p. 829] or [38, Theorem 1, p. 127] for
interior regularity, and [24, Theorem 1, p. 1203] for regularity near the boundary, to
conclude that un ∈ C1,β(Ω), for some β ∈ (0, α), and hypothesis (S3) is equivalent
to
(S3”) ‖un‖C1,β(Ω) →∞ as n→∞.
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We often work with a chain of subsequences of {(µn, fn, un)}∞n=1 by passing from
the current one to the next, but keeping the index n unchanged if no confusion may
arise.

We commence with the asymptotic behavior of the normalized sequence ũn
def=

‖un‖−1
L∞(Ω)un as n→∞. Observe that each ũn satisfies ‖ũn‖L∞(Ω) = 1 and

−∆pũn = (λ1 + µn)|ũn|p−2ũn + ‖un‖1−p
L∞(Ω)fn(x) in Ω;

ũn = 0 on ∂Ω.
(B.3)

Hence, {ũn}∞n=1 is bounded in C1,β(Ω), by regularity [8, 24, 38]. We allow 1 < p <
∞.

Lemma B.1 ([32, Lemma 5.1]). Let β′ ∈ (0, β). The sequence {ũn}∞n=1 contains
a convergent subsequence ũn → κϕ1 in C1,β′(Ω) as n → ∞, where κ ∈ R is a
constant, |κ| · ‖ϕ1‖L∞(Ω) = 1. In particular, we have un = t−1

n (ϕ1 + v>n ), where
{tn}∞n=1 ⊂ R is a sequence such that κtn > 0 and tnun ≥ 1

2ϕ1 in Ω for all n large
enough; moreover, tn → 0 and v>n → 0 in C1,β′(Ω) as n → ∞, with 〈v>n , ϕ1〉 = 0
for n = 1, 2, . . . .

As a consequence of this lemma, we can rewrite problem (B.3) as

−∆p(ϕ1 + v>n ) = (λ1 + µn)|ϕ1 + v>n |p−2(ϕ1 + v>n ) + tp−1
n fn(x) in Ω;

v>n = 0 on ∂Ω;

〈v>n , ϕ1〉 = 0,

(B.4)

with all tn > 0, tn ↘ 0 as n → ∞. Indeed, if κ < 0, we take advantage of the
(p − 1)-homogeneity of problem (B.1) and replace all functions fn, f and un by
−fn, −f and −un, respectively, thus switching to the case κ > 0. Hence, without
loss of generality, we may assume tn > 0 and tnun = ϕ1 + v>n ≥ 1

2ϕ1 > 0 in Ω for
all n ≥ 1.

A useful equivalent form of problem (B.1) is obtained by subtracting equation
(5.1) from (B.4) and using the Taylor formula with a help from identity (A.2), for
n = 1, 2, . . . :

− div(An∇v>n ) = (p− 1)(λ1 + µn)anv
>
n + µnϕ

p−1
1 + |tn|p−2tnfn(x) in Ω;

v>n = 0 on ∂Ω;

〈v>n , ϕ1〉 = 0,
(B.5)

with the abbreviations

An
def=

∫ 1

0

A(∇ϕ1 + s∇v>n ) ds and an
def=

∫ 1

0

|ϕ1 + sv>n |p−2 ds. (B.6)

Recall that the matrix A(a) is defined in (A.3). We abbreviate also

Aϕ1

def=A(∇ϕ1) and write A1/2
ϕ1

=
√

Aϕ1 . (B.7)

Equivalently, Vn
def= t1−p

n v>n ∈ C1,β′(Ω) satisfies the linear boundary value problem

−div(An∇Vn) = (p− 1)(λ1 + µn)anVn +
µn

|tn|p−2tn
ϕp−1

1 + fn(x) in Ω;

Vn = 0 on ∂Ω;

〈Vn, ϕ1〉 = 0.

(B.8)
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The asymptotic behavior of Vn and µn/(|tn|p−2tn) as n → ∞ is determined as
follows ([13, Theorem 4.1]).

Theorem B.2. Let 1 < p <∞, p 6= 2, and let {µn}∞n=1 ⊂ R, {fn}∞n=1 ⊂ L∞(Ω),
and {un}∞n=1 ⊂ W 1,p

0 (Ω) be sequences satisfying hypotheses (S1), (S2), and (S3),
respectively. In addition, assume that they satisfy equation (B.2) for all φ ∈
W 1,p

0 (Ω) and for each n ∈ N. Then, writing un = t−1
n (ϕ1+v>n ) with tn ∈ R, tn 6= 0,

and v>n ∈ W 1,p
0 (Ω)>, we have tn → 0 as n → ∞, Vn =

(
|tn|p−2tn

)−1
v>n → V >

strongly in Dϕ1 if p > 2 and in W 1,2
0 (Ω) if 1 < p < 2, and

µn = −|tn|p−2tn

∫
Ω

fϕ1 dx+ o(|tn|p−1), (B.9)

µn = − |tn|p−2tn

∫
Ω

fnϕ1 dx+ (p− 2) |tn|2(p−1)Q0(V >, V >)

+ (p− 1) |tn|2(p−1)
( ∫

Ω

fϕ1 dx
)( ∫

Ω

ϕp−1
1 V > dx

)
+ o(|tn|2(p−1)).

(B.10)

Moreover, the limit function V > ∈ Dϕ1 ∩ {ϕ1}⊥,L2
is the (unique) solution to

2 · Q0(V >, φ) =
∫

Ω

f† φdx for all φ ∈ Dϕ1 , (B.11)

where the symmetric bilinear form Q0 is given by (11.2) and

f† = f −
( ∫

Ω

fϕ1 dx
)
ϕp−1

1 .

Formula (B.9) is an improvement of Takáč [33, Prop. 6.1, p. 331] whereas (B.10)
is established in Drábek et al. [13, Theorem 4.1]. Notice that Q0(V >, V >) > 0
holds by Proposition 11.2 and Remark 11.12. In addition, we have

∫
Ω
f†ϕ1 dx = 0.

The linear degenerate Dirichlet problem (B.11) above has been obtained by lin-
earizing (1.1) with λ = λ1 about ϕ1, that is to say, from

−div (A(∇ϕ1)∇w) = λ1(p− 1)ϕp−2
1 w + f(x) in Ω;

w = 0 on ∂Ω.
(B.12)

It plays a crucial role in our asymptotic formulas as |τ | → ∞. Its solution set in
Dϕ1 is described in Theorem B.2. If p < 2 then Dϕ1 is not necessarily dense in
L2(Ω), and so equation (B.12) can be satisfied only in the following weak sense, cf.
eq. (B.11): For all test functions φ ∈ Dϕ1 ,∫

U

〈A(∇ϕ1)∇w,∇φ〉dx = λ1(p− 1)
∫

Ω

ϕp−2
1 wφdx+

∫
Ω

fφdx . (B.13)

The following two special cases of formula (B.10) are of particular interest in the
present work; both force

∫
Ω
fϕ1 dx = 0.

Corollary B.3. In the situation of Theorem B.2 we have: If
∫
Ω
fnϕ1 dx = 0 for

all n ∈ N, then

µn = (p− 2) |tn|2(p−1)Q0(V >, V >) + o
(
|tn|2(p−1)

)
. (B.14)

On the other hand, if µn = 0 for all n ∈ N, then

lim
n→∞

1
|tn|p−2tn

∫
Ω

fnϕ1 dx = (p− 2)Q0(V >, V >). (B.15)

In particular, in both cases we must have
∫
Ω
fϕ1 dx = 0.
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B.2. Uniform boundedness of the solution set. Finally, we are ready to es-
tablish the asymptotic behavior (blow-up) of every weak solution to the resonant
problem (9.2), that is,

−∆pu = λ1|u|p−2u+ f(x) in Ω; u = 0 on ∂Ω, (9.2)

with f ≡ f> + ζϕ1, where f> ∈ L∞(Ω)> and ζ ∈ R. It turns out to be convenient
to apply Lemma B.1, that is, to fix an arbitrary number t ∈ R \ {0} and consider
only those weak solutions to problem (9.2) that take the form u = t−1ϕ1 + u>

where u> ∈ W 1,p
0 (Ω)> is an unknown function. Hence u> ∈ C1,β(Ω) by regularity

[3, 8, 24, 38]. While determining the asymptotic behavior of u as t→ 0, we regard
ζ ∈ R in eq. (9.2) as a parameter depending on t as well.

Let F (t) denote the set of all pairs (ζ, u>) ∈ R×W 1,p
0 (Ω)> satisfying the bound-

ary value problem

−∆p(t−1ϕ1 + u>)− λ1|t−1ϕ1 + u>|p−2(t−1ϕ1 + u>)

= f>(x) + ζ · ϕ1(x) in Ω;

u> = 0 on ∂Ω;

〈u>, ϕ1〉 = 0.

(B.16)

The asymptotic behavior of F (t) as t → 0 is determined next. The following
equivalent form of problem (B.16) will be needed with the new unknown function
v>

def= tu>:
−∆p(ϕ1 + v>)− λ1|ϕ1 + v>|p−2(ϕ1 + v>)

= |t|p−2t
(
f>(x) + ζ · ϕ1(x)

)
in Ω;

v> = 0 on ∂Ω;

〈v>, ϕ1〉 = 0.

(B.17)

We take a sequence of nonzero real numbers tn → 0 as n → ∞ and a se-
quence of pairs (ζn, u>n ) ∈ F (tn). We substitute v>n

def= tnu
>
n and Vn

def= |tn|−(p−2)u>n =
|tn|−(p−2)t−1

n v>n , and abbreviate fn
def= f> + ζnϕ1. More generally, we can replace

function f> ∈ L∞(Ω)>, f> 6≡ 0 in Ω, by a bounded sequence {f>n }∞n=1 of functions
from L∞(Ω)> satisfying the following hypothesis (cf. (S2) in §B.1):

(S2>) f>n
∗
⇀f> in L∞(Ω) (weakly-star) as n→∞. We require f> 6∈ D⊥,L2

ϕ1
.

The following a priori asymptotic formula was obtained in Takáč [33, Prop.
6.1]:

Proposition B.4. Assume (S2>). If tn 6= 0 and tn → 0 as n→∞, then ζn → 0,
all conclusions of Theorem B.2 and Corollary B.3 remain valid with f = f>, and
moreover

lim
n→∞

ζn
|tn|p−2tn

= (p− 2)‖ϕ1‖−2
L2(Ω) · Q0(w,w) 6= 0. (B.18)

Here, for p > 2, w ∈ Dϕ1 is the unique weak solution of problem (B.12) with
f = f> satisfying 〈w,ϕ1〉 = 0. For p < 2, equation (B.13) replaces (B.12). Finally,
Proposition 11.2 and Remark 11.12 guarantee Q0(w,w) > 0.
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P. Drábek, P. Krejč́ı, and P. Takáč; eds., “Nonlinear Differential Equations”, Chapman
& Hall/CRC Research Notes in Mathematics Series, Vol. 404, pp. 111–196. CRC Press LLC,

Boca Raton, FL, U.S.A., 1999. (Formerly Pitman Mathematics Series.)
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