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MODELS OF LEARNING AND THE POLAR DECOMPOSITION
OF BOUNDED LINEAR OPERATORS

FERNANDA BOTELHO, ANNITA DAVIS

Abstract. We study systems of differential equations in B(H), the space of
all bounded linear operators on a separable complex Hilbert space H equipped

with the operator norm. These systems are infinite dimensional generaliza-

tions of mathematical models of learning. We use the polar decomposition of
operators to find an explicit form for solutions. We also discuss the standard

questions of existence and uniqueness of local and global solutions, as well as

their long-term behavior.

1. Introduction

Learning models are devices that reproduce features of the human’s ability to
interact with the environment. Such models are typically implemented in a feed-
forward neural network consisting of a finite number of interconnected units, desig-
nated neurons. Each neuron has the capability of receiving, combining and process-
ing quantifiable information. The interconnection among neurons is represented by
a net of channels through which information flows. This translates the activity
of a brain at the synaptic level. It is natural to predict that information changes
in this system. This is represented by the action of multiplicative factors, desig-
nated connecting weights. A mathematical model of learning should encompass
an algebraic interpretation of this phenomenon, in general, given as a system of
differential equations. The stability of a learning model is of crucial importance
since it provides information on how the device emerges after exposed to a set of
initial conditions. If stability occurs, the result yields a set of weight values that
represents learning after the exposure to an initial stimulus. In this paper we ad-
dress this aspect of learning theory, often referred in literature as “unsupervised
learning”. Several researchers have proposed systems that perform unsupervised
learning, see [3, 13, 16]. In [17] Oja introduced a learning model that behaves as an
information filter with the capability to adapt from an internal assignment of initial
weights. This approach uses the principal component analyzer statistical method
to perform a selection of relevant information. More recently, Adams [2] proposed
a generalization of Oja’s model by incorporating a probabilistic parameter. Such

2000 Mathematics Subject Classification. 34G20, 47J25.
Key words and phrases. Nonlinear systems; learning models;

polar decomposition of operators.
c©2010 Texas State University - San Marcos.

Published September 25, 2010.

31



32 F. BOTELHO, A. DAVIS EJDE/CONF/19

a parameter captures the possible creation of temporary synapses or channels in
an active network. We refer the reader to [5] for a detailed interpretation of the
Cox-Adams model for a network with n input neurons and a single output neuron.
This model is given by the system of differential equations:

dW

dt
= TCW −WWT CW

with W a column of connecting weights and C is a symmetric matrix. Each entry
value in C is equal to the expected input correlation between two neurons. The
matrix T is a non-singular tri-diagonal matrix [tij ]i,j given by

tij =


1− ε if i = j

ε/2 if |i− j| = 1
0 otherwise.

This matrix translates the synaptic formation according to some probability ε.
In this paper we consider a generalization of this system to an infinite dimensional

setting. This better reflects the complexity of real systems where continuous activity
occurs. Our new setting is the Banach space B(H) of bounded operators on a
separable Hilbert space . We consider the system

dZ

dt
= TMZ − ZZ∗MZ, (1.1)

with T representing an invertible, positive, self-adjoint operator on H and M a
self-adjoint operator on H. Particularly interesting examples are the tridiagonal
self-adjoint operators, see [7, 8, 10, 11].

The operator valued, time dependent Z now represents the continuous change
of connecting weights according to the rule described in equation (1.1). We present
a scheme that explicitly solves system (1.1). First a natural change of variables
reduces (1.1) to a static system where no synaptic formation occurs. However,
the probabilistic effect transfers to the input correlation operator M. System (1.1)
reduces to an Oja type model. We follow a strategy employed in [4]. The main
tool is the polar decomposition of operators that allows us to derive a scalar system
and a polar system associated with the original system. Both systems are solved
explicitly. These two solutions combined define the local solution for the original
system, given certain mild constrains on the initial conditions. The explicit form
for local solutions is now used to derive the existence of global solutions and for the
stability analysis.

2. Background Results

In this section we summarize the techniques used in [4] to solve the generaliza-
tion of Oja-Karhunen’s model on a separable Hilbert space. We recall that the
generalized Oja-Karhunen model is given as follows

Ż = MZ − ZZ∗MZ

Z(0) = Z0.
(2.1)

The time dependent variable Z has values in B(H). The operator Z∗ is the adjoint
of Z and M is a normal operator on H.

Classical fixed point theorems allow us to assure the local existence and unique-
ness of solutions for system (2.1), see [15, p. 405].
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Theorem 2.1 ([4]). Let Z0 be a bounded operator in B(H). If F : B(H) → B(H) is
a Lipschitz function then there exists a positive number ε and a unique differentiable
map Z : (−ε, ε) → B(H) such that Ż = F (Z) and Z(0) = Z0.

It is straightforward to check that Z → MZ − ZZ∗MZ is a Lipschitz function
and hence local existence and uniqueness of solutions of (2.1) follow from Theorem
2.1.

The technique employed in the solution scheme uses the well known polar de-
composition of bounded operators, see Ringrose [19]. A bounded operator Z can
be written as the product of a partial isometry P and a hermitian operator

√
ZZ∗.

The operator
√

ZZ∗ represents the unique positive square root of ZZ∗ and the op-
erator P satisfies the equation PP ∗P = P. The bounded operator Z is decomposed
as follows: Z =

√
ZZ∗P . This decomposition is unique and is called the polar

decomposition of the operator Z.
In [4] we applied the polar decomposition to construct two new systems asso-

ciated with (2.1). The solutions of these systems are the scalar and the polar
components of the solution of the original system.

For t ∈ (−ε, ε) we denote by Z(t) a local solution of (2.1) and we set V (t) =
Z(t)Z(t)∗. It is a straightforward calculation to verify that V (t) is a local solution
of the system

V̇ = MV + V M∗ − V MV − V M∗V

V (0) = Z0Z
∗
0 .

(2.2)

If M and Z0 commute, Fuglede-Putman Theorem (cf. Furuta [12, p. 67]) and Pic-
card’s iterative method (Hartman [15, pp. 62-66]) imply that the family {V (t)}t∈(−ε,ε)

defines a path of positive operators that commute with M and M∗. Furthermore
{V (t)}t∈(−ε,ε) is a family of commuting operators. Thus system (2.2) can be written
as

V̇ = (M + M∗)(V − V 2), with V (0) = V0.

Since Z0 is an invertible operator in H, for some ε > 0, V (t) is also an invertible
operator for t ∈ (ε, ε), cf [9]. We have that

d

dt
(V −1) = −V −2V̇ .

Using the commutativity of M and V , we found that

d

dt
(V −1) = (M + M∗)− (M + M∗)V −1,

which is a first-order linear differential equation, see [1]. A generalization of stan-
dard techniques of integrating factors, appropriately generalized to infinite dimen-
sions (see [4] pg 101), imply that V (t) = [I + (V −1

0 − I)exp(−(M + M∗)t)]−1 for
t ∈ (−ε, ε).

We derive the polar system associated with (2.1). This is a first order non
autonomous linear differential equation. For simplicity of notation we set V 1/2 =√

ZZ∗. Using the commutativity of V and M , we obtain

Ṗ = −1
2
(M −M∗)(V (t)− I)P

P (0) = P0.
(2.3)
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Properties of exponential operator-valued functions imply that

P (t) = exp
( ∫ t

0

−1
2
(M −M∗)(V (ξ)− I)dξ

)
P0 for |t| < ε)

is a solution of the polar system (2.3). These considerations are now summarized
in the following theorem.

Theorem 2.2 ([4]). If Z0 is invertible and commutes with the normal operator M,
then there exist ε > 0 and a unique differentiable mapping Z : (−ε, ε) → B(H) such
that

Ż = MZ − ZZ∗MZ

Z(0) = Z0,
(2.4)

if and only if Z(t) = V (t)1/2P (t),

V (t) = [I + (V −1
0 − I) exp(−(M + M∗)t)]−1,

and

P (t) = exp
( t∫

0

−1
2
(M −M∗)(V (ξ)− I)dξ

)
P0.

3. General Solution for the Cox-Adams Learning Model

We recall that the Cox-Adams learning model is
dZ

dt
= TMZ − ZZ∗MZ

Z(0) = Z0

(3.1)

with T representing an invertible, positive, self-adjoint operator, and M self-adjoint
on H. Theorem 2.1 implies the local existence and uniqueness of solutions.

Since T is positive and invertible, we rewrite equation (3.1) as follows
dZ

dt
= (

√
T
√

T )M
(√

T (
√

T )−1
)
Z − ZZ∗

(
(
√

T )−1
√

T
)
MZ,

equivalently,

(
√

T )−1 dZ

dt
=
√

TM
√

T (
√

T )−1Z − (
√

T )−1ZZ∗(
√

T )−1
√

TMZ.

We set W = (
√

T )−1Z and S =
√

TM
√

T . We observe that S is a hermitian
operator. Then system (3.1) becomes

Ẇ = SW −WW ∗SW

W (0) = W0,

where W0 = (
√

T )−1Z0.

Proposition 3.1. If W0 is invertible and commutes with the hermitian operator
S, then there exist ε > 0 and a unique differentiable mapping W : (−ε, ε) → B(H)
such that

Ẇ = SW −WW ∗SW and W (0) = W0, (3.2)
if and only if W (t) = V (t)1/2P (t), with

V (t) = [I + (V −1
0 − I) exp(−2St)]−1 (3.3)

P (t) = P0. (3.4)
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Since the operator S is hermitian (S = S∗), the proof of the above lemma follows
from Theorem 2.2

Theorem 3.2. Let T be an invertible, positive, self-adjoint operator and M a
hermitian operator. If Z0 is invertible and commutes with M, then there exist
ε > 0 and a unique differentiable mapping Z : (−ε, ε) → B(H) such that

Ż = TMZ − ZZ∗MZ

Z(0) = Z0,
(3.5)

if and only if Z(t) = (TV (t))1/2P (t),

V (t) =
[
I +

(√
T (Z0Z

∗
0 )−1

√
T − I

)
exp(−2

√
TM

√
Tt)

]−1

and P (t) = P0.

The proof of the above theorem follows from Proposition 3.1. The following
lemma is used in the stability analysis of the Cox-Adams model.

Lemma 3.3 ([4]). If Z0 is an invertible operator in B(H), M is a normal operator
that commutes with Z0, ‖(Z0Z

∗
0 )−1 − I‖ < 1, and the spectrum of M is strictly

positive, then there exists ε > 0 so that

I + [(Z0Z
∗
0 )−1 − I] exp(−(M + M∗)t)

is invertible on the interval (−ε,∞) and

lim
t→∞

[I + ((Z0Z
∗
0 )−1 − I) exp(−(M + M∗)t)] = I.

As a result we have the following corollary.

Corollary 3.4. Let T be an invertible, positive, self-adjoint operator. If Z0 is an
invertible operator in B(H), M is a self-adjoint operator that commutes with Z0,
‖
√

T (Z0Z
∗
0 )−1

√
T − I‖ < 1, and the spectrum of M is strictly positive, then there

exists ε > 0 so that

I + [
√

T (Z0Z
∗
0 )−1

√
T − I] exp

(
− 2

√
TM

√
T )t

)
is invertible on the interval (−ε,∞) and

lim
t→∞

[
I + [

√
T (Z0Z

∗
0 )−1

√
T − I]exp

(
− 2

√
TM

√
Tt

)]
= I.

Remark 3.5. We observe that, under the assumptions in Corollary 3.4, we have

lim
t→∞

Z(t) = P0.

This provides a filtering procedure that selects the polar component of the initial
condition.
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