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IMPORTANCE OF BROOD MAINTENANCE TERMS IN SIMPLE
MODELS OF THE HONEYBEE - VARROA DESTRUCTOR -

ACUTE BEE PARALYSIS VIRUS COMPLEX

HERMANN J. EBERL, MALLORY R. FREDERICK, PETER G. KEVAN

Abstract. We present a simple mathematical model of the infestation of a
honeybee colony by the Acute Paralysis Virus, which is carried by parasitic

varroa mites (Varroa destructor). This is a system of nonlinear ordinary dif-

ferential equations for the dependent variables: number of mites that carry
the virus, number of healthy bees and number of sick bees. We study this

model with a mix of analytical and computational techniques. Our results

indicate that, depending on model parameters and initial data, bee colonies
in which the virus is present can, over years, function seemingly like healthy

colonies before they decline and disappear rapidly (e.g. Colony Collapse Disor-

der, wintering losses). This is a consequence of the fact that a certain number
of worker bees is required in a colony to maintain and care for the brood, in

order to ensure continued production of new bees.

1. Introduction

A famous folklore quote says that four years after honeybees vanish from the
Earth, mankind will vanish too. Commonly attributed to Albert Einstein, there
seems to be little evidence that it is authentic [9]. Nevertheless, the message is
clear: No bees, no pollination, no crops, no people.

Besides cows, pigs, and poultry, western honeybees (Apis mellifera) are among
the economically most important domestic livestocks in Europe and Northern Amer-
ica, not to mention their ecological importance [11]. Due to the demand of honey
and other hive products, but in particular because of the demand for pollination
services, apiculture has developed to become a profitable business. Honeybees (Apis
spp.: Hymenoptera: Apidea) live in highly integrated and complex social colonies to
the extent that a single colony can be thought of as a super organism [11]. Like all
animals, honeybees are hosts to parasites and pathogens. For the temperate zone
biotypes of western honeybees, the devastating attacks of parasitic mites, especially
Varroa destructor, have created major problems for beekeepers around the world.
The damage caused by the mites has been exacerbated by mite-borne infections of
viruses [3], notably the Acute Paralytic Bee Virus (APV, ABPV). In recent years,
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beekeepers in the USA, and now other parts of the world, have reported huge losses
of colonies to the extent that there is national, continental and international alarm
over their demise, e.g. [7]. The combination of parasitic mites and virus infections
have been indicated as a major cause of Colony Collapse Disorder (CCD) as the
syndrome is diagnosed in USA. Elsewhere, symptoms are not exactly the same as
in CCD, but huge and worrisome losses, in particular wintering losses, are also
recorded with the same parasite/virus complex suggested as a major cause. It has
been suggested that various other stresses, such as hard management, pesticides,
weather, and poor diet may also be involved to make matters worse [4].

The Acute Bee Paralysis virus kills larvae, pupae, and adults only in association
with varroa mites [3, 6]. In contrast to other viruses, such as the Deformed Wing
Virus, larvae and pupae that are affected by the virus die before they develop into
bees [6, 10]; i.e., all bees that are infected with the APV virus must have acquired
it as adults.

In this small study we present and analyze a simple model of three ordinary
differential equations for the disease dynamics of the bee-mite-APV complex, that
follows the classical SIR-like approach of mathematical epidemiology. It will be
formulated for the dependent variables: (i) number of mites that carry the virus,
(ii) number of healthy bees and (iii) number of infected bees. Our work builds
firmly on the previous study [10], but introduces a simple but important extension:
In their original model [10], the authors assumed that the birth rate of bees might
be affected by the presence of the virus in the colony, but it is not directly linked
to the size of the worker bee population. In other words, even if all healthy bees
are gone, the pupae in the brood will develop into adults. Moreover, since it is
assumed that the queen bee is not affected by the virus, this would allow a constant
birth of new bees during spring, summer, and autumn. However, carrying for and
maintaining the brood is an important task in bee hives, in which many workers
are involved [5, 11, 13]. If the bee population becomes too small, larvae and pupae
cannot be reared and die in the brood cells before they can develop into adult
bees. To reflect this in the model, we introduce an additional brood maintenance
term in the birth rate which depends on the current size of the worker population.
From a mathematical point of view, including such a maintenance term affects the
structure of the omega limit set of the system, because it allows for additional
equilibria. Moreover, it can change the stability of the existing equilibria. Like
[10], we will study our model separately for the four seasons. Additionally we will
use computer simulations to investigate the fate of the bee colony through the years
according to our model.

2. Mathematical Model

The mathematical model is formulated in terms of the dependent variables
m: number of mites that carry the virus,
x: number of honeybees that are virus free,
y: number of honeybees that are infected with the virus.
It reads

dm

dt
= β1(M −m)

y

x + y
− β2m

x

x + y
(2.1)

dx

dt
= µg(x)h(m)− β3m

x

x + y
− d1x (2.2)
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dy

dt
= β3m

x

x + y
− d2y (2.3)

In equation (2.1), the parameter M denotes the number of mites in the bee colony.
With the same arguments as in [10], we will treat M as a parameter rather than
a dependent variable; in particular, M is independent of m. By treating M as
a parameter we implicitly assume that the mite population reaches its carrying
capacity very rapidly; i.e., we make a quasi-steady state argument.

The parameter µ in (2.2) is the maximum birth rate, specified as the number of
worker bees born per day.

The parameter β1 in (2.1) is the rate at which mites that do not carry the virus
acquire it. The rate at which infected mites lose their virus to an uninfected host
is β2. The rate at which uninfected bees become infected is β3, in bees per virus
carrying mite and time.

Finally, d1 and d2 are the death rates for uninfected and infected honeybees. We
can assume that infected bees live shorter than healthy bees, thus d2 > d1.

The function g(x) expresses that a sufficiently large number of healthy worker
bees is required to care for the brood. The inclusion of this term is the only
difference between the model studied here and the model in [10], on which this
study is based. We think of g(x) as a switch function. If x falls below a critical
value, which may seasonally depend on time, essential work in the maintenance
of the brood cannot be carried out anymore and no new bees are born. If x is
above this value, the birth of bees is not hampered. Thus g(0, ·) = 0, dg(0)

dx ≥ 0,
limx→∞ g(x) = 1. A convenient formulation of such switch like behavior is given
by the sigmoidal Hill function

g(x) =
xn

Kn + xn
(2.4)

where the new parameter K is the size of the bee colony at which the birth rate is
half of the maximum possible rate and the exponent n > 1, see also Figure 1. If
K = 0 is chosen, then the original model of [10] is obtained. In this case the brood
is always reared at maximum capacity, independent of the actual bee population
size, since g(x) ≡ 1.
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Figure 1. Brood maintenance coefficient g(x) = xn

Kn+xn as a func-
tion of bee population size for various choices of K and n
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Table 1. Seasonal averages of model parameters, derived from
the data presented in [10].

Parameter Spring Summer Autumn Winter
β1 0.1593 0.1460 0.1489 0.04226
β2 0.04959 0.03721 0.04750 0.008460
β3 0.1984 0.1460 0.1900 0.03384
d1 0.02272 0.04 0.02272 0.005263
d2 0.2 0.2 0.2 0.005300
µ 500 1500 500 0

The function h(m) in (2.2) indicates that the birth rate is affected by the presence
of mites that carry the virus. This is in particular important for viruses like APV
that kill infected pupae before they develop into bees. The function h(m) is assumed
to decrease as m increases, h(0) = 1, dh

dm (m) < 0 and limm→∞ h(m) = 0; [10]
suggests that this is an exponential function h(m) ≈ e−mk, where k is a non-
negative function. We will use this in the computer simulations later on.

The parameters M ,µ, βi, di, g(x), h(m) are assumed to be non-negative. They
can change with time. In particular major differences may be observed between
seasons. For example, the life span of a worker bee in summer is much shorter
than in winter [1, 8]; the birth rate for bees is higher in summer than in spring and
autumn, and it drops down to 0 in winter [11]. Seasonal averages for the model
parameters β1,2,3, µ, d1,2 can be derived from the data in [10]. These are summarized
in Table 1. We will treat the remaining parameters M and K as unknown in the
next section of this study. We will investigate the long term behavior and fate of
the colony in dependence of these two parameters. The size of the mite population
M is a an obvious parameter to choose for such a study. This will give us insight in
how strong an infestation can be fought off by a bee colony. The brood maintenance
coefficient K is chosen as a free parameter, because we do not have a good estimate.
We will assume it to be in the order of several thousands; in [10] it is mentioned
that at least 3000 worker bees are required in the beginning of spring to maintain
the brood. In particular, we are interested how the maximum mite population size
M that can be tolerated by the bee colony depends on K.

For the discussion of the model in the subsequent sections, the following result
will be helpful.

Lemma 2.1. There exists a R̃ > 0 such that the set

KR := {(m,x, y) ∈ R3 : 0 < m < M∞, x > 0, y > 0, x + y < R}
is positively invariant under (2.1)-(2.3) for all R > R̃, where by M∞ we denote
M∞ := maxt M(t).

Proof. We apply the usual tangent criterion [12]. At m = 0 we have dm
dt =

β1M
y

x+y > 0 and at m = M we have dm
dt = −β2M

x
x+y < 0 for x > 0, y > 0.

Thus solutions with 0 < m(0) < M will satisfy 0 < m(t) < M for all t > 0. Sim-
ilarly, for y = 0 we have dy

dt = β3m
x

x+y > 0 and for x = 0 we have dx
dt = 0. Thus

our system (2.1)-(2.3) is positivity preserving.
The remaining boundary of the set KR is the plane R − x − y = 0, which has

the outer normal vector n = (0, 1, 1)T . To apply the tangent criterion we have to
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show that along R− x− y = 0 the inequality(dx

dt
+

dy

dt

)
R−x−y=0

= µg(x)h(m)− d1x− d2y ≤ 0

holds for all large enough R; i.e., that

µg(x)h(m) + (d2 − d1)x− d2R ≤ 0, for all x ≤ R. (2.5)

As noted above, we can assume d2 > d1. Thus we obtain with x < R and 0 ≤
g(x) ≤ 1, 0 ≤ h(m) ≤ 1 from (2.5) the inequality

µg(x)h(m) + (d2 − d1)x− d2R < µ− d1R.

Hence the assertion (2.5) holds certainly for R > R̃ = µ/d1. �

Note, however, that this inequality is not sharp; i.e., one can even find a smaller
R̃ with the same property.

Thus, all solutions of (2.1)-(2.3) that start in KR, R > R̃, remain there. In
particular they are positive and bounded from above by constants. Moreover, even
if initially m(0) > M , the solution will be attracted by KR.

3. The Autonomous Case

We start our investigation of the disease dynamics model (2.1)-(2.3) with the
simple case of constant coefficients as in [10], pointing out that these results only
have quantitative meaning if the characteristic time scale of the dynamics is shorter
than the period over which the parameters can be assumed to be constant. However,
in many cases, e.g. Table 1, parameter values are only available in form of seasonal
averages, and this is the situation that we have in mind. We have to distinguish
between three types of equilibria of (2.1)-(2.3).

3.1. Equilibrium points. Disease free equilibrium. This is the equilibrium
that is attained by an entirely healthy population,

m = 0, x = x∗, y = 0 (3.1)

where x∗ is a root of the function

F (x) = µg(x)− d1x. (3.2)

For maintenance functions of the form g(x) = xn

Kn+xn this reduces to finding the
positive roots of the polynomial of degree n, G(x) = xn− µ

d1
xn−1 +Kn. According

to Descarte’s rule of signs, there are at most two such roots. In the case n = 2
these are easily calculated as

x∗1,2 =
1
2

( µ

d1
±

√
µ2

d2
1

− 4K2
)
. (3.3)

They exist if µ/d1 > 2K. The Jacobian of the system (2.1)-(2.3) in general form
reads

J(m,x, y) =

 −β1y+β2x
x+y −y(β1(M−m)+β2m)

(x+y)2
x(β1(M−m)+β2m)

(x+y)2

µg(x)h′(m)− β3x
x+y µg′(x)h(m)− β3my

(x+y)2 − d1
β3mx
(x+y)2

β3x
x+y

β3my
(x+y)2

− β3mx
(x+y)2 − d2

 .

(3.4)
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In the case of the disease free equilibrium this reduces to

J(0, x∗, 0) =

 −β2 0 β1M
x∗

d1x
∗h′(0)− β3 µg′(x∗)− d1 0

β3 0 −d2

 . (3.5)

Its eigenvalues are

λ1 = µg′(x∗)− d1, λ2,3 = −1
2

(
β2 + d2 ∓

√
(β2 − d2)2 + 4

β1β3M

x∗

)
. (3.6)

We note that the eigenvalues depend on the specific form of the brood maintenance
term g(x) via x∗ and (3.2). For the special case g(x) = x2

K2+x2 , the eigenvalue λ1

takes the simpler form

λ1 = ∓d1

√
1− 4K2

(d1

µ

)2
. (3.7)

Particularly it is real. The disease free equilibrium with x = x∗2 is always unstable,
because λ1 > 0. On the other hand, for x∗1, the associated eigenvalue λ1 is negative.
The eigenvalues λ2,3 are always real, λ3 is always negative. Therefore, it is the
eigenvalue λ2 that decides the stability of the disease free equilibrium with x = x∗1.
Stability is achieved if it is negative, i.e. if

M <
β2d2x

∗
1

β1β3
=: Mcrit, (3.8)

where x∗1 depends on birth and death rate of the bee population as well as on K.
We plot Mcrit as a function of K in Figure 2 for the parameters in Table 1. We
note that the critical value for the model [10] is obtained for the special case K = 0.
Thus, if one includes the consideration that in order to rear the brood, a critical
bee population size is needed, a drastic reduction in the maximum number of mites
that can be fought off by the colony is observed.
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Figure 2. Critical mite population Mcrit as a function of the half
maintenance population size K.

Collapse equilibrium. This equilibrium describes the vanishing of the bee
population. These are the points

m = m∗, x = 0, y = 0 (3.9)
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Figure 3. Long-term behavior of model (2.1)-(2.3) in dependence
of number of mites M and maintenance size of the population K.
Plotted are healthy bees x (green) and infected bees y (red) at
steady state.

where m∗ > 0 can be any positive number. Moreover, since for m(0) < M we will
always have m(t) ≤ M . Therefore, we are only interested in 0 < m∗ < M . Of
course, from a practical point of view, the absence of bees will imply the absence
of mites, and thus m = 0 as a consequence.

The right hand side of (2.1)-(2.3) does not satisfy a Lipschitz condition for
x = y = 0, and some of the coefficients of the Jacobian (3.4) blow up. Using the
same Lyapunov argument as in Lemma 2.1, we note that inequality (2.5) is also
satisfied for all sufficiently small r > 0 and all x < r. To show this, we need to
show again for sufficiently small r that

µg(x)h(m) + (d2 − d1)x− d2r ≤ 0, for all x ≤ r. (3.10)
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By continuity and monotonicity of g(x), and because of h(m) ≤ 1, we obtain that
this is satisfied if

µg(r)− d1r ≤ 0.

The last inequality is certainly satisfied for all r with 0 < r ≤ x∗2 from (3.3)1. Thus,
Kr is positively invariant for 0 < r ≤ x∗2. Therefore, after small perturbations, the
solutions remain close to the collapse equilibrium, which is therefore stable. We
point out that the unconditional stability of the collapse equilibrium stems from
the fact that a large enough bee population is required to care for the brood in
our model. In models that do not make this assumption this is not the case. The
model of [10] is the special case K = 0 in (2.2), in which x∗2 vanishes.

If (3.8) is satisfied, we have several stable equilibria with y∗ = 0 (as well as
the always unstable steady state (0, x∗2, 0) above). Whether one of these equilibria
is attained, and if so, which one, therefore, depends on the initial strength of
the colony. If the initial bee population lies within Kr̃, which depends on the
parameters, then a collapse equilibrium is attained. Otherwise the disease can be
fought off.

Endemic equilibrium. In this state, the colony contains healthy and sick bees.
The equilibrium generally takes the form

m = m∗, x = x∗∗, y = y∗∗. (3.11)

The algebraic treatment of this steady state leads to involved expressions that do
not lend themselves to an insightful analysis. While the eigenvalues of a three-
dimensional system can be explicitly calculated, this involves look-up tables to
distinguish between a multitude of possible cases. Instead of presenting these cal-
culations here, which can be performed by computer algebra software, we demon-
strate the long-term behavior of the system in computational simulations, where we
use for β1,2,3, d1,2, µ the parameters in Table 1, for spring and summer conditions.

3.2. Computer simulations. In Figure 3, we plot the populations size of healthy
and infected bees, x and y, at steady state (all solutions do converge to a steady
state), in dependence of the number of mites M and the population size that
is required to maintain the population, K, for the maintenance function g(x) =

x2

K2+x2 . This is for the initial conditions m(0) = 0.2M , x(0) = 3000, y(0) = 0. We
show the results for spring and summer conditions. As can be seen from Table 1,
the fall parameter values are very similar to those in spring and one obtains very
similar results.

In both cases, spring and summer, we observe that for small values of K (i.e.
higher birth rates of healthy bees) and M (i.e. less risk to catch the disease) the
disease free equilibrium is attained, as expected from criterion (3.8). Equilibria
of the type x = x∗∗ > 0, y = y∗∗ > 0 are found for small values K and large
values M . However, in this case, the bee population x + y is small compared to
the size of an entirely healthy population. Thus, we conclude that such endemic
colonies, while in a stable equilibrium, are not functioning like healthy populations.
For large values of K (i.e. a strong colony is required to maintain the brood) and
M (i.e. high risk to be infected), the population dies out and attains the collapse
equilibrium. Moreover, the unconditional stability of the collapse equilibrium also

1Note: with the same argument, a better estimate for R̃ in Lemma 2.1 than R̃ = d1/µ is

obtained as R̃ := x∗1
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implies that colonies which are initially very small will never develop into healthy
colonies, because they will never reach the required population strength for brood
maintenance (not shown in our simulations). This is in particular important for the
spring season, because in winter no bees are born but the colony naturally declines
due to bee death. If at the end of the winter the colony is not strong enough to
rear the brood, it will die out.

We note that under winter conditions, the only and asymptotically stable equi-
librium is the trivial equilibrium x∗ = y∗ = 0. However, winter worker bees live
much longer than spring, summer or fall bees, namely several months compared to
several weeks, cf also [1]. Hence the winter bee death rate is small, therefore, decline
in the population is slow, compared to the duration of the season. Therefore, long
term analysis of the model for winter conditions, as we conducted here for the case
of constant parameters, does not lead to any useful insight. A bee colony that is
large enough at the beginning of winter that, by the end of winter it is big enough
to recover, will survive. A healthy population will decline exponentially according
to

dx

dt
= −d1x.

If infected bees are present at the beginning of the winter, this, however, gives only
an upper estimate. A lower estimate is obtained from

dx

dt
+

dy

dt
= −d1x− d2y > −d2(x + y).

4. Bee colonies through the seasons: the non-autonomous case

A rigorous qualitative analysis of the model for time varying parameters is es-
sentially more complicated than the autonomous case, even if we assume that the
parameters are time periodic with a period of one year. The quantitative data that
are available to us are seasonal averages. In principle we can construct an infinite
number of non-negative periodic functions with the same seasonal averages. How-
ever, on an objective basis, it is not possible to decide which of these interpolated
functions is more realistic or better than other ones. Therefore, we simply assume
the model parameters to be constant across four seasons of 91 days each, at their
average values, but varying between seasons, cf Table 1. The model parameters are
repeated in every year. In order to explore the dynamics of (2.1)-(2.3) through the
seasons we conduct computer simulations. The inclusion of the colony maintenance
term g(x, t) can cause the model to become stiff for small bee colony sizes. In order
to deal with this situation we implemented a simple first order Rosenbrock-Wanner
method for the integration of our governing equations.

We assume all parameters but K and M to be given and we investigate the
effect of these two parameters on the disease dynamics. Moreover, the analysis
above has shown several stable steady states can be found for the autonomous
system. Therefore, it can be expected that the initial data might play a role for
the fate of the bee colony in the simulations.

A numerical exploration cannot give a complete picture of the dynamics of the
model. Instead we aim at illustrating the possible outcomes for the model solutions
in examples.

4.1. Simulation I: effect of size of mite population M . In a first simulation
experiment we investigate the effect of the number of mites, M , on the fate of the
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bee colony. The analysis of the autonomous case has shown that there is a critical
number of mites, Mcrit [cf. (3.8) above]. For mite populations smaller than Mcrit

the virus can be fought off, while for values greater than Mcrit the disease will take
its toll and the bee population will die out.

In this simulation we test for mite populations M somewhat smaller than this
critical value, 0.8Mcrit ≤ M ≤ Mcrit. More specifically, we conduct the following 4
simulations

• K := 0.4µ/d1 (recall: K < 0.5µ/d1 is required for x∗1 to be stable),
• M = δMcrit where δ = 0.8, 0.85, 0.9, 0.95.

Note that thus defined K and M are piecewise constant periodic functions of time,
since they are defined relative to the other model parameters.

We assume that initially only a small number of mites carry the virus. Moreover
we assume that initially no sick bees are in the colony. The number of healthy bees
is chosen large enough to exceed K and x∗1 above.

• m(0) = 0.01M (1% of all mites carry virus),
• x(0) = x0 (10% larger than K and x∗1 of the autonomous case),
• y(0) = 0 (no bees initially sick).

The simulations were run over a period of 6000 days or until the colony dies out,
whichever came first. The results are plotted in Figure 4.
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Figure 4. Simulation of bee-mite-virus dynamics for varying mite
population size M = δMcrit

We observe that for the smallest value for M in our survey, M = 0.8Mcrit, the
virus infestation is fought off. While for the first few years virus carrying mites
can be found in the colony, their number decreases over the years. Like the bee
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population itself, the number of virus carrying mites is highest in summer and
decreases in fall. The maximum number of m decreases over the first 4 years, after
which the virus has virtually disappeared from the colony. The number of healthy
bees is periodic and seems to be little affected by the presence of the virus.

As the number of mites M in the population is increased to 85% of the critical
mite load, the qualitative picture changes. While the number of virus carrying
mites still follows the seasonal fluctuations, with highest numbers in summer, the
maximum number of virus carrying mites increases from year to year. Over the
first four years the healthy bee population appears to follow a pattern similar to the
previous case, although we do notice that the maximum population size becomes
slightly smaller each year. After the fourth year of the infestation, the colony
vanishes rapidly, during the spring season. Over the whole period of four years, the
number of virus carrying bees is small compared to the number of healthy bees.
The colony dies because the number of healthy bees drops below the levels required
to maintain the brood.

Increasing the number of mites M further to 90% and 95% of the critical value,
we observe qualitatively the same picture, but the decline of the bee population to
levels that cannot sustain the brood happens earlier, after two years and one year,
respectively.

The sudden decline of the bee population after several years is a consequence of
gradual changes. Eventually the population size falls below the critical threshold
that is required for it to recover, and then the colony dies rapidly.

4.2. Simulation II: effect of brood maintenance parameter K. In the second
simulation experiment we fix the number of mites M at 85% of the critical value
Mcrit and vary the brood maintenance coefficient K between 40% and 80% of the
value that is necessary to allow for a nontrivial disease free equilibrium. More
specifically

• K := κ ∗ 0.5µ/d1, where κ = 0.4, 0.6, 0.7, 0.8,
• M = 0.85Mcrit.

Note that the case κ = 0.8 is identical to δ = 0.85 in the previous simulation
experiment. The initial data are chosen as in the previous simulation experiment:

• m(0) = 0.01M (1% of all mites carry virus),
• x(0) = x0 (10% larger than K and x∗1),
• y(0) = 0 (no bees initially sick)

As before, the simulations were run over a period of 6000 days or until the colony
dies out, whichever came first. The results are plotted in Figure 5.

The simulation results are easily summarized: if the number of bees that is
required to maintain the brood is small compared to the birth/death rate ratio, i.e.
if relatively few worker bees are required for this task, an initially healthy population
can fight off a virus epidemic. Virus carrying mites can be found initially but, after
adjusting for seasonal fluctuations, their numbers decline. Eventually the colony is
disease free. The larger K is, the longer it will take to rid the colony from the virus.
As the parameter K increases; i.e., if the number of worker bees that is required
to care for the brood becomes large enough, the colony cannot fight off the disease
and eventually dies out, – 4 years in our simulations. Again, the number of sick
bees y is always small compared to the overall colony size.
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Figure 5. Simulation of bee-mite-virus dynamics for varying K = 0.5µ/d1κ

4.3. Simulation III: effect of initial number of virus carrying mites m(0).
In a third simulation experiment we fix the number of mites M to be 80% of the
critical mite load, and the brood maintenance parameter K to be at 60% of the
value that is needed to establish a stable bee population.

• K := 0.3µ/d1,
• M = 0.80Mcrit.

In the previous simulations, where the number of mites carrying the virus initially
was small, at m(0) being 1% of all the mites, it was found that these parameters are
small enough for the colony to fight of the diseases. In this simulation experiment,
we investigate whether this also holds true if at the starting point of our simulation
more mites carry the virus. We test the initial data

• m(0) = νM where ν = 0.1, 0.11, 0.12,
• x(0) = x0 (10% larger than K and x∗1),
• y(0) = 0 (no bees initially sick).

The results are plotted in Figure 6.
For the smallest value m(0) of initially virus carrying mites tested, the colony

can fight off the disease. The temporal patterns of the healthy population x(t) and
for the number of mites that carry the virus m(t) are qualitatively similar to the
ones observed before for small enough mite numbers M and brood maintenance co-
efficients K: m(t) oscillates over the years, but the peak value in summer decreases
until m virtually disappears; x(t) oscillates over the years as well, with increasing
maximum population sizes as the number of virus carrying mites decreases.
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Figure 6. Simulation of bee-mite-virus dynamics for varying
number of initially virus carrying mites m0

As m(0) is slightly changed from m(0) = 0.10M to m(0) = 0.11M , the long term
behavior changes drastically. The number of virus carrying mites, after adjusting
for seasonal fluctuations, increases slightly and the number of healthy bees, again
after adjusting for seasonal fluctuations, slightly decreases. After the third cycle,
the healthy bee population enters the spring too small to be able to fight off the
virus, and dies out. When increasing m(0) further to 12% of the total number of
mites, this is accelerated and the colony disappears after only two years. As before,
the number of sick bees is small compared to the overall colony size.

4.4. Conclusion. The mathematical model presented here is simple, yet it is too
complex for a complete rigorous analytical treatment. Therefore, we studied it with
a combination of analytical and computational arguments. It is a straightforward
extension of a model that was previously formulated and analyzed in [10]. We (i)
focus on the role of a brood maintenance term and how it affects the disease dynam-
ics of the Acute Paralysis Virus in a bee colony qualitatively, and (ii) investigate
how this affects the bee colony long-term, over several years.

Our results indicate that models that do not account for the fact that a certain
colony strength is required to maintain the brood and thus to sustain the colony
development might underestimate the maximum number of mites that a bee pop-
ulation can tolerate. Our mix of mathematical analysis and computer simulation
indicates that the long term behavior of a bee population can depend on a variety
of parameters, including the initial data. Our computer simulations have shown
that an infested colony might be able to function seemingly like a healthy colony
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for years and then suddenly can collapse and disappear. In all our simulations, if
this occurs it happens in the spring season because the bee population is too small
to rear the brood. These preliminary simulation results are in accordance with the
recent study [2] on wintering losses in Canada.

Many important processes that can affect the long term fate of a colony over
the years are not yet included in this model. Examples are gradual changes of the
environment; the size of the mite population as a dynamically varying variable; the
possible loss of the queen and its replacement by an emergency queen; or swarming
when a new queen emerges. Some such processes can be included in this model in a
rather straightforward manner, however, always at the expense of introducing new
unknown model parameters. Thus, increasing biological complexity of the model
is at the expense of increasing also the mathematical complexity. Therefore we
decided to keep the model simple in our first study of the topic.
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[12] Walter, W.; Gewöhnliche Differentialgleichungen, 7th ed., Springer, 2000.
[13] Winston, M. L.; Biology of the Honey Bee, Harvard University Press, Cambridge, MA, USA,

1987.

Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G
2W1, Canada

E-mail address, Hermann J. Eberl: heberl@uoguelph.ca

E-mail address, Mallory R. Frederick: mfrederi@uoguelph.ca

Peter G. Kevan

School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
E-mail address: pkevan@uoguelph.ca


	1. Introduction
	2. Mathematical Model
	3. The Autonomous Case
	3.1. Equilibrium points
	3.2. Computer simulations

	4. Bee colonies through the seasons: the non-autonomous case
	4.1. Simulation I: effect of size of mite population M
	4.2. Simulation II: effect of brood maintenance parameter K
	4.3. Simulation III: effect of initial number of virus carrying mites m(0)

	5. Conclusion
	References

