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CONTINUOUS DEPENDENCE OF SOLUTIONS FOR ILL-POSED
EVOLUTION PROBLEMS

MATTHEW FURY, RHONDA J. HUGHES

Abstract. We prove Hölder-continuous dependence results for the difference
between certain ill-posed and well-posed evolution problems in a Hilbert space.

Specifically, given a positive self-adjoint operator D in a Hilbert space, we
consider the ill-posed evolution problem

du(t)

dt
= A(t, D)u(t) 0 ≤ t < T

u(0) = χ.

We determine functions f : [0, T ] × [0,∞) → R for which solutions of the
well-posed problem

dv(t)

dt
= f(t, D)v(t) 0 ≤ t < T

v(0) = χ

approximate known solutions of the original ill-posed problem, thereby estab-

lishing continuous dependence on modelling for the problems under consider-

ation.

1. Introduction

Let D be a positive self-adjoint operator in a Hilbert space H, and consider the
evolution problem

du(t)
dt

= A(t,D)u(t) 0 ≤ t < T

u(0) = χ
(1.1)

where χ is an arbitrary element of H and

A(t,D) =
k∑

j=1

aj(t)Dj ,
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with aj : [0, T ] → R continuous and nonnegative for each 1 ≤ j ≤ k. In general,
(1.1) is ill-posed with formal solution given by

u(t) = exp
{ k∑

j=1

( ∫ t

0

aj(s)ds
)
Dj

}
χ.

Now let f : [0, T ] × [0,∞) → R be a function continuous in t and Borel in λ, and
consider the evolution problem

dv(t)
dt

= f(t,D)v(t) 0 ≤ t < T

v(0) = χ ,
(1.2)

where for each t ∈ [0, T ], f(t,D) is defined by means of the functional calculus
for self-adjoint operators in H. In particular, since D is positive, self-adjoint, the
spectrum σ(D) of D is contained in [0,∞) and for each t ∈ [0, T ],

f(t,D)x =
∫ ∞

0

f(t, λ)dE(λ)x,

for x ∈ Dom(f(t,D)) = {x ∈ H :
∫∞
0
|f(t, λ)|2d(E(λ)x, x) < ∞}, where {E(·)}

denotes the resolution of the identity for the self-adjoint operator D.
We determine conditions on f so that (1.2) is well-posed and such that solutions

of (1.2) approximate known solutions of (1.1). In this way, we illustrate how we
might stabilize problems against errors that arise when formulating mathematical
models such as (1.1) in attempts to describe some physical process. Ames and
Hughes [3] established such structural stability results for the problem in the au-
tonomous case, that is when A(t) = A is a positive self-adjoint operator in H,
independent of t. This paper generalizes such work and yields a comparable result
in the time-dependent case. Namely, if u(t) and v(t) are solutions of (1.1) and (1.2)
respectively, we prove the Hölder-continuous approximation

‖u(t)− v(t)‖ ≤ Cβ1− t
T M t/T ,

where 0 < β < 1, and C and M are constants independent of β. Our approximation
establishes continuous dependence on modelling, meaning “small” changes to our
model yield a “small” change in the corresponding solution.

In Section 2, we establish conditions under which (1.2) is well-posed using stable
families of generators of semigroups and Kato’s stability conditions [8, 11]; our
work also utilizes Tanaka’s results on evolution problems [14]. In Section 3, we
present our approximation theorem which achieves Hölder-continuous dependence
on modelling. Finally, Section 4 demonstrates our theorem with examples.

Below, for a closed operator A in a Banach space X, ρ(A) will denote the re-
solvent set of A, and for λ ∈ ρ(A), R(λ;A) will denote the resolvent operator
R(λ;A) = (λI −A)−1 in X.

2. The Well-Posed Evolution Problem

We first clarify what we mean by solutions of evolution problems as well as the
notions of ill-posed and well-posed evolution problems.
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Definition 2.1 ([11]). Let X be a Banach space and for every t ∈ [0, T ], let A(t)
be a linear operator in X. The initial value problem

du(t)
dt

= A(t)u(t) 0 ≤ s ≤ t < T

u(s) = x
(2.1)

is called an evolution problem. An X-valued function u : [s, T ] → X is a classical
solution of (2.1) if u is continuous on [s, T ], u(t) ∈ Dom(A(t)) for s < t < T , u is
continuously differentiable on (s, T ), and u satisfies (2.1).

Theorem 2.2 ([11, Theorem 5.1.1]). Let X be a Banach space and for every
t ∈ [0, T ], let A(t) be a bounded linear operator on X. If the function t 7→ A(t) is
continuous in the uniform operator topology then for every x ∈ X, the initial value
problem (2.1) has a unique classical solution u.

The proof of Theorem 2.2 (cf. [11, Theorem 5.1.1]) shows that the mapping
S : C([s, T ] : X) → C([s, T ] : X) defined by

(Su)(t) = x+
∫ t

s

A(τ)u(τ)dτ

is a well-defined mapping with a unique fixed point u. It is easily shown that u is
then a unique classical solution of (2.1). In this case we define the solution operator
of (2.1) by

U(t, s)x = u(t) for 0 ≤ s ≤ t ≤ T.

Theorem 2.3 ([11, Theorem 5.1.2]). Let U(t, s) be the solution operator associated
with (2.1) where A(t) is a bounded linear operator on X for each t ∈ [0, T ] and t 7→
A(t) is continuous in the uniform operator topology. Then for every 0 ≤ s ≤ t ≤ T ,
U(t, s) is a bounded linear operator such that

(i) ‖U(t, s)‖ ≤ e
R t

s
‖A(τ)‖dτ .

(ii) U(t, t) = I, U(t, s) = U(t, r)U(r, s) for 0 ≤ s ≤ r ≤ t ≤ T .
(iii) (t, s) 7→ U(t, s) is continuous in the uniform operator topology for 0 ≤ s ≤

t ≤ T .
(iv) ∂U(t,s)

∂t = A(t)U(t, s) for 0 ≤ s ≤ t ≤ T .
(v) ∂U(t,s)

∂s = −U(t, s)A(s) for 0 ≤ s ≤ t ≤ T .

We now turn to the notions of well-posedness and ill-posedness for evolution
problems.

Definition 2.4 ([6, Definition 7.1]). The evolution problem (2.1) is called well-
posed in 0 ≤ t < T if the following two assumptions are satisfied:

(i) (Existence of solutions for sufficiently many initial data) There exists a
dense subspace Y of X such that for every s ∈ [0, T ) and every x ∈ Y ,
there exists a classical solution u(t) of (2.1).

(ii) (Continuous dependence of solutions on their initial data) There exists a
strongly continuous B(X)-valued function U(t, s) defined in 0 ≤ s ≤ t ≤ T
such that if u(t) is a classical solution of (2.1), then

u(t) = U(t, s)x.

Equation (2.1) is called ill-posed if it is not well-posed.
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It is clear that under the hypotheses of Theorem 2.2, that Equation (2.1) is well-
posed with unique classical solution given by u(t) = U(t, s)χ where U(t, s), 0 ≤
s ≤ t ≤ T , is the solution operator given by Theorem 2.2. Otherwise, we use the
construction of an evolution system and the theory of stable families of operators
to obtain well-posedness of (2.1). We explore stability conditions for (2.1) first
developed by Kato [8, 11], and later by Tanaka [14].

Definition 2.5 ([11, Definition 5.1.3]). A two parameter family of bounded linear
operators U(t, s), 0 ≤ s ≤ t ≤ T , on a Banach space X is called an evolution system
if the following two conditions are satisfied:

(i) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T .
(ii) (t, s) 7→ U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .

Definition 2.6 ([11, Def. 5.2.1]). Let X be a Banach space. A family {A(t)}t∈[0,T ]

of infinitesimal generators of C0 semigroups on X is called stable if there are con-
stants M ≥ 1 and ω (called the stability constants) such that

ρ(A(t)) ⊇ (ω,∞) for t ∈ [0, T ]

and

‖
k∏

j=1

R(λ;A(tj))‖ ≤M(λ− ω)−k for λ > ω

and every finite sequence 0 ≤ t1 ≤ t2, . . . , tk ≤ T , k = 1, 2, . . . .

Remark. If for t ∈ [0, T ], A(t) is the infinitesimal generator of a C0 semigroup
{St(s)}s≥0 satisfying ‖St(s)‖ ≤ eωs, then by the Hille-Yosida theorem (cf. [11]),
the family {A(t)}t∈[0,T ] is stable with constants M = 1 and ω.

We now use the theory of stable families of operators to gain well-posedness of
(2.1) in the following way. Let X and Y be Banach spaces with norms ‖ · ‖ and
‖·‖Y respectively. Assume that Y is densely and continuously imbedded in X, that
is Y is a dense subspace of X and there is a constant C such that

‖y‖ ≤ C‖y‖Y for y ∈ Y.

For each t ∈ [0, T ], let A(t) be the infinitesimal generator of a C0 semigroup
{St(s)}s≥0 on X. Assume the following conditions (cf. [8, 11]):

(H1) {A(t)}t∈[0,T ] is a stable family with stability constants M , ω.
(H2) For each t ∈ [0, T ], Y is an invariant subspace of St(s), s ≥ 0, the restriction

S̃t(s) of St(s) to Y is a C0 semigroup in Y , and the family {Ã(t)}t∈[0,T ] of
parts Ã(t) of A(t) in Y , is a stable family in Y .

(H3) For t ∈ [0, T ], Dom(A(t)) ⊇ Y , A(t) is a bounded operator from Y into X,
and t 7→ A(t) is continuous in the B(Y,X) norm ‖ · ‖Y→X .

Theorem 2.7 ([8, Theorem 4.1], [11, Theorem 5.3.1]). For each t ∈ [0, T ], let A(t)
be the infinitesimal generator of a C0 semigroup {St(s)}s≥0 on X. If the family
{A(t)}t∈[0,T ] satisfies conditions (H1)–(H3), then there exists a unique evolution
system U(t, s), 0 ≤ s ≤ t ≤ T , in X satisfying

(E1) ‖U(t, s)‖ ≤Meω(t−s) for 0 ≤ s ≤ t ≤ T .
(E2) ∂+

∂t U(t, s)y
∣∣
t=s

= A(s)y for y ∈ Y , 0 ≤ s ≤ T .
(E3) ∂

∂sU(t, s)y = −U(t, s)A(s)y for y ∈ Y , 0 ≤ s ≤ t ≤ T ,
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where the derivative from the right in (E2) and the derivative in (E3) are in the
strong sense in X.

This theorem will help in obtaining a certain kind of classical solution of (2.1) in
the case where the family {A(t)}t∈[0,T ] of infinitesimal generators of C0 semigroups
on X satisfies conditions (H1)–(H3).

Definition 2.8 ([11, Definition 5.4.1]). Let X and Y be Banach spaces such that
Y is densely and continuously imbedded in X and let {A(t)}t∈[0,T ] be a family of
infinitesimal generators of C0 semigroups on X satisfying the assumptions (H1)–
(H3). A function u ∈ C([s, T ] : Y ) is a Y-valued solution of (2.1) if u ∈ C1((s, T ) :
X) and u satisfies (2.1) in X.

Remark. A Y -valued solution u of (2.1) is a classical solution of (2.1) such that
u(t) ∈ Y ⊆ Dom(A(t)) for t ∈ [s, T ] and u(t) is continuous in the stronger Y -norm
rather than merely in the X-norm.

Theorem 2.9 ([11, Thm. 5.4.3]). Let {A(t)}t∈[0,T ] satisfy the conditions of The-
orem 2.7 and let U(t, s), 0 ≤ s ≤ t ≤ T be the evolution system given in Theorem
2.7. If

(E4) U(t, s)Y ⊆ Y for 0 ≤ s ≤ t ≤ T and
(E5) For x ∈ Y , U(t, s)x is continuous in Y for 0 ≤ s ≤ t ≤ T ,

then for every x ∈ Y , U(t, s)x is the unique Y -valued solution of (2.1).

We now use the above theory of stable families of generators to give criteria for
well-posedness of the evolution problem (1.2). Let (2.2) denote the initial value
problem (1.2) with 0 replaced by s for s ∈ [0, T ); i.e.,

dv(t)
dt

= f(t,D)v(t) 0 ≤ s ≤ t < T

v(s) = χ.
(2.2)

We determine conditions on f so that the family of operators {f(t,D)}t∈[0,T ] is
stable and such that (2.2) is well-posed.

Proposition 2.10. Let f : [0, T ]× [0,∞) → R be continuous in t and Borel in λ.
Assume there exist ω ∈ R such that f(t, λ) ≤ ω for all (t, λ) ∈ [0, T ] × [0,∞) and
a Borel function r : [0,∞) → [0,∞) such that |f(t, λ)| ≤ r(λ) and Dom(f(t,D)) =
Dom(r(D)) for all t ∈ [0, T ]. Set Y = Dom(r(D)) and let ‖ · ‖Y denote the graph
norm associated with the operator r(D). Further, assume t 7→ f(t,D) is continuous
in the B(Y,H) norm ‖ · ‖Y→H . Then (2.2) is well-posed and for χ ∈ Y , V (t, s)χ =
e

R t
s

f(τ,D)dτχ is a unique Y -valued solution of (2.2).

Proof. By [5, Theorem XII.2.6], r(D) is a closed operator in H with dense domain.
Set Y = Dom(r(D)) and endow Y with the graph norm ‖ · ‖Y given by

‖y‖Y = ‖y‖+ ‖r(D)y‖
for all y ∈ Y . Since r(D) is a closed operator, it follows that (Y, ‖ · ‖Y ) is a
Banach space. It is also clear that Y is densely and continuously imbedded in H.
Since f(t, λ) ≤ ω for all (t, λ) ∈ [0, T ] × [0,∞), we have that for each t ∈ [0, T ],
f(t,D) is the infinitesimal generator of the C0 semigroup {St(s)}s≥0 on H given
by St(s) = esf(t,D). We show that the family {f(t,D)}t∈[0,T ] satisfies conditions
(H1)–(H3).
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Let t ∈ [0, T ], x ∈ H. Then

‖esf(t,D)x‖2 =
∫ ∞

0

|esf(t,λ)|2d(E(λ)x, x) ≤ (esω)2
∫ ∞

0

d(E(λ)x, x) = (esω)2‖x‖2,

showing that ‖St(s)‖ = ‖esf(t,D)‖ ≤ eωs. Thus, {f(t,D)}t∈[0,T ] is a stable family
with stability constants M = 1 and ω, and so (H1) is satisfied.

Next, let t ∈ [0, T ], y ∈ Y . For any s ≥ 0, since y ∈ Y = Dom(r(D)), we have∫ ∞

0

|r(λ)esf(t,λ)|2d(E(λ)y, y) ≤ (esω)2
∫ ∞

0

|r(λ)|2d(E(λ)y, y) <∞.

Thus, St(s)y ∈ Dom(r(D)) and so Y is an invariant subspace of St(s). Let S̃t(s)
be the restriction of St(s) to Y . For any positive constant c, for 0 ≤ s ≤ c,

|r(λ)(esf(t,λ) − 1)|2 ≤ |r(λ)|2(ecω + 1)2 ∈ L1(E(·)y, y).
Therefore, by Lebesgue’s Dominated Convergence Theorem,

lim
s→0+

‖r(D)(St(s)− I)y‖2 = lim
s→0+

∫ ∞

0

|r(λ)(esf(t,λ) − 1)|2d(E(λ)y, y)

=
∫ ∞

0

lim
s→0+

|r(λ)(esf(t,λ) − 1)|2d(E(λ)y, y) = 0,

and so

‖S̃t(s)y − y‖Y = ‖S̃t(s)y − y‖+ ‖r(D)(S̃t(s)y − y)‖
= ‖St(s)y − y‖+ ‖r(D)(St(s)− I)y‖
→ 0 as s→ 0+.

Thus, S̃t(s) is a C0 semigroup on Y .
Next, consider the family {f̃(t,D)}t∈[0,T ] of parts f̃(t,D) of f(t,D) in Y . For

each t ∈ [0, T ], f̃(t,D) is defined by

Dom(f̃(t,D)) = {x ∈ Dom(f(t,D)) ∩ Y : f(t,D)x ∈ Y }
and

f̃(t,D)x = f(t,D)x for x ∈ Dom(f̃(t,D)).

It is seen [11, Theorem 4.5.5] that f̃(t,D) is the infinitesimal generator of the C0

semigroup S̃t(s). Moreover, for y ∈ Y ,

‖S̃t(s)y‖Y = ‖S̃t(s)y‖+ ‖r(D)S̃t(s)y‖
= ‖St(s)y‖+ ‖r(D)St(s)y‖
≤ esω‖y‖+ esω‖r(D)y‖
= esω‖y‖Y .

Thus, ‖S̃t(s)‖Y ≤ eωs for all t ∈ [0, T ] and so the family {f̃(t,D)}t∈[0,T ] is stable
with stability constants M̃ = 1 and ω. We have shown that (H2) is satisfied.

Finally, let t ∈ [0, T ]. Since |f(t, λ)| ≤ r(λ), we have for y ∈ Y ,∫ ∞

0

|f(t, λ)|2d(E(λ)y, y) ≤
∫ ∞

0

|r(λ)|2d(E(λ)y, y) <∞.

Thus Dom(f(t,D)) ⊇ Y . Also, for y ∈ Y ,

‖f(t,D)y‖ ≤ ‖y‖+ ‖f(t,D)y‖ ≤ ‖y‖+ ‖r(D)y‖ = ‖y‖Y ,
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showing that f(t,D) is a bounded operator from Y into H. By assumption, t 7→
f(t,D) is continuous in the B(Y,H) norm ‖ · ‖Y→H and so (H3) is satisfied. By
Theorem 2.7, there exists a unique evolution system V (t, s), 0 ≤ s ≤ t ≤ T , in H
satisfying conditions (E1)-(E3) with the operators f(t,D), t ∈ [0, T ], and M = 1 in
the condition (E1); that is we have

‖V (t, s)‖ ≤ eω(t−s) for 0 ≤ s ≤ t ≤ T,

∂+

∂t
V (t, s)y

∣∣
t=s

= f(s,D)y for y ∈ Y, 0 ≤ s ≤ T,

∂

∂s
V (t, s)y = −V (t, s)f(s,D)y for y ∈ Y, 0 ≤ s ≤ t ≤ T,

where the derivatives are in the strong sense in H. It can be shown using the
Spectral Theorem that e

R t
s

f(τ,D)dτ is such an evolution system, and so by uniqueness
we must have V (t, s) = e

R t
s

f(τ,D)dτ . It is also readily seen that V (t, s) = e
R t

s
f(τ,D)dτ

satisfies (E4) and (E5). Therefore, by Theorem 2.9, for every χ ∈ Y , V (t, s)χ =
e

R t
s

f(τ,D)dτχ is the unique Y -valued solution of (2.2).
Finally, suppose v1 is a classical solution of (2.2). Then v1(q) ∈ Dom(f(q,D)) =

Dom(r(D)) for q ∈ (s, T ). As V (t, s), 0 ≤ s ≤ t ≤ T , satisfies condition (E3) with
the operators f(t,D), t ∈ [0, T ], the function q 7→ V (t, q)v1(q) is then differentiable
and

∂

∂q
V (t, q)v1(q) = −V (t, q)f(q,D)v1(q) + V (t, q)

d

dq
v1(q)

= −V (t, q)f(q,D)v1(q) + V (t, q)f(q,D)v1(q) = 0.

Thus V (t, q)v1(q) is constant for q ∈ (s, t). Since v1 is a classical solution, the
function V (t, q)v1(q) is also continuous for q ∈ [s, t]. Thus we have

v1(t) = V (t, t)v1(t) = V (t, s)v1(s) = V (t, s)χ.

Thus condition (ii) of Definition 2.4 is satisfied and we see that (2.2) is well-posed
with unique classical solution given by v(t) = V (t, s)χ. �

3. The Approximation Theorem

In order that solutions of (1.2) approximate known solutions of (1.1), we will
require additional conditions on f . The following definition is inspired by results
obtained by Ames and Hughes [3, Definition 1] for continuous dependence on mod-
elling in the autonomous case, that is when A(t) = A is independent of t.

Definition 3.1. Let f : [0, T ]× [0,∞) → R be a function continuous in t and Borel
in λ and assume the hypotheses of Proposition 2.10. Then f is said to satisfy the
approximation condition with polynomial p or simply Condition (A, p) if there exist
a constant β, with 0 < β < 1, and a nonzero polynomial p(λ) independent of β
such that for each t ∈ [0, T ], Dom(p(D)) ⊆ Dom(A(t,D)) ∩Dom(f(t,D)), and

‖(−A(t,D) + f(t,D))ψ‖ ≤ β‖p(D)ψ‖,

for all ψ ∈ Dom(p(D)).

Now assume f satisfies Condition (A, p). For each t ∈ [0, T ], set

g(t, λ) = −A(t, λ) + f(t, λ),
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and for each n ≥ |ω|, set

en = {λ ∈ [0,∞) : max
t∈[0,T ]

|g(t, λ)| ≤ n}.

Then

λ ∈ en ⇒ max
t∈[0,T ]

|g(t, λ)| ≤ n

⇒ |g(t, λ)| ≤ n ∀t ∈ [0, T ]

⇒ A(t, λ) ≤ n+ f(t, λ) ∀t ∈ [0, T ].

Since A(t, λ) ≥ 0 and f(t, λ) ≤ ω for all (t, λ) ∈ [0, T ]× [0,∞), we have that on en,

max
t∈[0,T ]

|A(t, λ)| ≤ n+ ω.

Since f(t, λ) = A(t, λ) + g(t, λ), it then follows that on en,

max
t∈[0,T ]

|f(t, λ)| ≤ 2n+ ω.

Set En = E(en) and let ψ ∈ H be arbitrary. Consider the following three evolution
problems:

dun(t)
dt

= A(t,D)Enun(t) 0 ≤ s ≤ t < T

un(s) = ψ,
(3.1)

dvn(t)
dt

= f(t,D)Envn(t) 0 ≤ s ≤ t < T

vn(s) = ψ,
(3.2)

dwn(t)
dt

= g(t,D)Enwn(t) 0 ≤ s ≤ t < T

wn(s) = ψ.
(3.3)

Problems (3.1)–(3.3), as we will see, are well-posed due to the action of En and
their solutions will aid in approximating known solutions of the ill-posed problem
(1.1).

Lemma 3.2. For each t ∈ [0, T ], A(t,D)En is a bounded operator on H such that

‖A(t,D)En‖ ≤ n+ ω,

and (3.1) has a unique classical solution un(t) = Un(t, s)ψ. The solution operator
Un(t, s) is a bounded operator on H with

‖Un(t, s)‖ ≤ eT (n+ω)

for all s, t such that 0 ≤ s ≤ t ≤ T . Furthermore, if ψ is replaced by ψn = Enψ in
(3.1), then

Un(t, s)ψn = e
R t

s
A(τ,D)dτψn.

Proof. Fix t ∈ [0, T ]. For all x ∈ H, by [5, Theorem XII.2.6],

‖A(t,D)Enx‖2 =
∫ ∞

0

|A(t, λ)|2d(E(λ)Enx,Enx)

=
∫

en

|A(t, λ)|2d(E(λ)x, x)

≤ (n+ ω)2
∫

en

d(E(λ)x, x)
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≤ (n+ ω)2
∫ ∞

0

d(E(λ)x, x)

= (n+ ω)2‖x‖2,
showing that A(t,D)En is a bounded operator on H with ‖A(t,D)En‖ ≤ n+ ω.

Next, let t0 ∈ [0, T ]. Since en is a bounded subset of [0,∞), we have that
DjEn ∈ B(H) for each 1 ≤ j ≤ k. Then by continuity of aj for each 1 ≤ j ≤ k, we
have

‖A(t,D)En −A(t0, D)En‖ = ‖
k∑

j=1

(aj(t)− aj(t0))DjEn‖

≤
k∑

j=1

|aj(t)− aj(t0)| ‖DjEn‖ → 0 as t→ t0,

showing that t 7→ A(t,D)En is continuous in the uniform operator topology. It fol-
lows from Theorem 2.2 that (3.1) has a unique classical solution un(t) = Un(t, s)ψ.
That

‖Un(t, s)‖ ≤ eT (n+ω)

follows directly from Theorem 2.3 (i) and the fact that ‖A(t,D)En‖ ≤ n+ω for all
t ∈ [0, T ].

Next, set ψn = Enψ and let (3.4) denote the evolution problem (3.1) with ψ
replaced by ψn; i.e.,

dun(t)
dt

= A(t,D)Enun(t) 0 ≤ s ≤ t < T,

un(s) = ψn.
(3.4)

Using the Spectral Theorem it can be shown that e
R t

s
A(τ,D)dτψn is a classical so-

lution of (3.4). In particular, using properties of the projection operator En, we
have

d

dt
e

R t
s

A(τ,D)dτψn = A(t,D)e
R t

s
A(τ,D)dτψn

= A(t,D)Ene
R t

s
A(τ,D)dτψn,

and
e

R s
s

A(τ,D)dτψn = ψn.

Therefore, by uniqueness guaranteed by Theorem 2.2, we have

Un(t, s)ψn = e
R t

s
A(τ,D)dτψn.

�

Lemma 3.3. For each t ∈ [0, T ], f(t,D)En is a bounded operator on H such that

‖f(t,D)En‖ ≤ 2n+ ω,

and (3.2) has a unique classical solution vn(t) = Vn(t, s)ψ. The solution operator
Vn(t, s) is a bounded operator on H with

‖Vn(t, s)‖ ≤ eT (2n+ω)

for all s, t such that 0 ≤ s ≤ t ≤ T . Furthermore, if ψ is replaced by ψn = Enψ in
(3.2), then

Vn(t, s)ψn = e
R t

s
f(τ,D)dτψn.
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Proof. Using the fact that on en, maxt∈[0,T ] |f(t, λ)| ≤ 2n+ω, it is easily shown that
for each t ∈ [0, T ], f(t,D)En is a bounded operator on H such that ‖f(t,D)En‖ ≤
2n + ω. Next, let t0 ∈ [0, T ]. Since EnH ⊆ Dom(f(t,D)) = Dom(r(D)) for all
t ∈ [0, T ], we have r(D)En ∈ B(H), and so

‖f(t,D)En − f(t0, D)En‖
= sup

x∈H, ‖x‖≤1

‖(f(t,D)− f(t0, D))Enx‖

≤ sup
x∈H, ‖x‖≤1

‖f(t,D)− f(t0, D)‖Y→H‖Enx‖Y

= sup
x∈H, ‖x‖≤1

‖f(t,D)− f(t0, D)‖Y→H(‖Enx‖+ ‖r(D)Enx‖)

≤ ‖f(t,D)− f(t0, D)‖Y→H(‖En‖+ ‖r(D)En‖) → 0 as t→ t0

by the assumption that t 7→ f(t,D) is continuous in the B(Y,H) norm ‖ · ‖Y→H .
Therefore, t 7→ f(t,D)En is continuous in the uniform operator topology. It follows
from Theorem 2.2 that (3.2) has a unique classical solution vn(t) = Vn(t, s)ψ. That

‖Vn(t, s)‖ ≤ eT (2n+ω)

follows directly from Theorem 2.3 (i) and the fact that ‖f(t,D)En‖ ≤ 2n + ω for
all t ∈ [0, T ]. The rest of the proof is similar to that of Lemma 3.2. �

Lemma 3.4. For each t ∈ [0, T ], g(t,D)En is a bounded operator on H such that

‖g(t,D)En‖ ≤ n,

and (3.3) has a unique classical solution wn(t) = Wn(t, s)ψ. The solution operator
Wn(t, s) is a bounded operator on H with

‖Wn(t, s)‖ ≤ eTn

for all s, t such that 0 ≤ s ≤ t ≤ T . Furthermore, if ψ is replaced by ψn = Enψ in
(3.3), then

Wn(t, s)ψn = e
R t

s
g(τ,D)dτψn.

Proof. Using the fact that on en, maxt∈[0,T ] |g(t, λ)| ≤ n, it is easily shown that for
each t ∈ [0, T ], g(t,D)En is a bounded operator on H such that ‖g(t,D)En‖ ≤ n.
Also, by the relation g(t,D)En = −A(t,D)En + f(t,D)En, it follows that t 7→
g(t,D)En is continuous in the uniform operator topology. Therefore, by Theorem
2.2, (3.3) has a unique classical solution wn(t) = Wn(t, s)ψ. That

‖Wn(t, s)‖ ≤ eTn

follows directly from Theorem 2.3 (i) and the fact that ‖g(t,D)En‖ ≤ n for all
t ∈ [0, T ]. The rest of the proof is similar to that of Lemma 3.2. �

Corollary 3.5. Let ψ ∈ H and ψn = Enψ. Then

Un(t, s)Wn(t, s)ψn = Vn(t, s)ψn = Wn(t, s)Un(t, s)ψn

for all 0 ≤ s ≤ t ≤ T .

The corollary above follows immediately from Lemmas 3.2, 3.3, and 3.4, and
from properties of the functional calculus for unbounded self-adjoint operators [5,
Corollary XII.2.7].

We now have all the necessary machinery to prove our approximation theorem.
Our strategy will be to extend the solutions un(t) of (3.1) with ψ = χn, and vn(t)
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of (3.2) with ψ = χn, into the complex strip S = {t + iη : t ∈ [0, T ], η ∈ R}, and
eventually employ Hadamard’s Three Lines Theorem (cf. [12]). To make use of
such extensions we will need the following results. Our approach is motivated by
work of Agmon and Nirenberg [1].

Definition 3.6 ([12, Definition 11.1]). Let φ(α) be a complex function defined in
a plane open set Ω. Assume all partial derivatives of φ exist and are continuous.
Define the Cauchy-Riemann operator ∂̄ as

∂̄ =
1
2

( ∂

∂t
+ i

∂

∂η

)
,

where α = t+ iη.

Theorem 3.7 ([12, Theorem 11.2]). Suppose φ(α) is a complex function in Ω such
that all partial derivatives of φ exist and are continuous. Then φ is analytic in Ω
if and only if the Cauchy-Riemann equation

∂̄φ(α) = 0

holds for every α ∈ Ω.

Lemma 3.8 ([1]). Let φ(z) be a complex function with z = x+ iy. Assume φ(z) is
continuous and bounded on S = {z = x+ iy : x ∈ [0, T ], y ∈ R}. For α = t+ iη ∈ S,
define

Φ(α) = − 1
π

∫ ∫
S

φ(z)
( 1
z − α

+
1

z̄ + 1 + α

)
dx dy.

Then Φ(α) is absolutely convergent, ∂̄Φ(α) = φ(α), and there exists a constant K
such that ∫ ∞

−∞

∣∣ 1
z − α

+
1

z̄ + 1 + α

∣∣dy ≤ K
(
1 + log

1
|x− t|

)
if x 6= t.

We now state and prove our approximation theorem.

Theorem 3.9. Let D be a positive self-adjoint operator acting on H and let A(t,D)
be defined as above for all t ∈ [0, T ]. Let f satisfy Condition (A, p), and assume that
there exists a constant γ, independent of β, ω, and t such that g(t, λ) ≤ γ, for all
(t, λ) ∈ [0, T ]×[0,∞). Then if u(t) and v(t) are classical solutions of (1.1) and (1.2)
respectively, and if there exist constants M ′,M ′′,M ′′′ ≥ 0 such that ‖u(T )‖ ≤M ′,
‖p(D)χ‖ ≤ M ′′, and ‖p(D)A(t,D)u(T )‖ ≤ M ′′′ for all t ∈ [0, T ], then there exist
constants C and M independent of β such that for 0 ≤ t < T ,

‖u(t)− v(t)‖ ≤ Cβ1− t
T M t/T .

Proof. Let χn = Enχ and set S = {t+ iη : t ∈ [0, T ], η ∈ R}. Letting ψ = χn and
s = 0 in (3.1) and (3.2), we extend the solutions un(t) and vn(t) into the complex
strip S in the following way. Since A(0, D) and f(0, D) are self-adjoint, eiηA(0,D)

and eiηf(0,D) are bounded operators on H for all η ∈ R, and so we define

un(α) = eiηA(0,D)Un(t, 0)χn,

vn(α) = eiηf(0,D)Vn(t, 0)χn,

for α = t+ iη ∈ S. Finally define φn : S → H by

φn(α) = un(α)− vn(α).
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We first determine ∂̄φn(α). Since eiηA(0,D) and eiηf(0,D) are bounded operators on
H, and A(t,D) and f(t,D) are bounded when acting on EnH, we have

∂

∂t
φn(α) =

∂

∂t
eiηA(0,D)Un(t, 0)χn −

∂

∂t
eiηf(0,D)Vn(t, 0)χn

= eiηA(0,D) d

dt
Un(t, 0)χn − eiηf(0,D) d

dt
Vn(t, 0)χn

= eiηA(0,D)A(t,D)Un(t, 0)χn − eiηf(0,D)f(t,D)Vn(t, 0)χn

= A(t,D)un(α)− f(t,D)vn(α).

Next, by standard properties of semigroups of linear operators (cf. [11, Theorem
1.2.4 (c)]), since Un(t, 0)χn ∈ Dom(A(0, D)), and Vn(t, 0)χn ∈ Dom(f(0, D)), we
have

∂

∂η
φn(α) =

∂

∂η
eiηA(0,D)Un(t, 0)χn −

∂

∂η
eiηf(0,D)Vn(t, 0)χn

= iA(0, D)eiηA(0,D)Un(t, 0)χn − if(0, D)eiηf(0,D)Vn(t, 0)χn

= i(A(0, D)un(α)− f(0, D)vn(α)).

Therefore,

∂̄φn(α) =
1
2

(
∂

∂t
φn(α) + i

∂

∂η
φn(α)

)
=

1
2
[(A(t,D)un(α)− f(t,D)vn(α))− (A(0, D)un(α)− f(0, D)vn(α))]

=
1
2
[(A(t,D)−A(0, D))un(α)− (f(t,D)− f(0, D))vn(α)].

(3.5)
Since, in general, this quantity is not identically zero, φn is not analytic and so
we cannot apply the Three Lines Theorem to φn. To amend this, we introduce a
related function. Define

Φn(α) = − 1
π

∫ ∫
S

ez2
∂̄φn(z)

( 1
z − α

+
1

z̄ + 1 + α

)
dx dy,

where z = x + iy and α = t + iη are in S. To apply Lemma 3.8, we show that
ez2

∂̄φn(z) is bounded and continuous on S. Let z = x + iy ∈ S be arbitrary. We
have from (3.5),

‖ez2
∂̄φn(z)‖ =

1
2
|ez2

| ‖(A(x,D)−A(0, D))un(z)− (f(x,D)− f(0, D))vn(z)‖

≤ 1
2
eT 2

(‖A(x,D)un(z)‖+ ‖A(0, D)un(z)‖

+ ‖f(x,D)vn(z)‖+ ‖f(0, D)vn(z)‖).

Since ‖eiyA(0,D)‖ = 1, we have by Lemma 3.2 and properties of En,

‖A(x,D)un(z)‖ = ‖A(x,D)eiyA(0,D)Un(x, 0)χn‖

= ‖A(x,D)Ene
iyA(0,D)Un(x, 0)χn‖

≤ (n+ ω)‖eiyA(0,D)Un(x, 0)χn‖
≤ (n+ ω)‖Un(x, 0)χn‖

≤ (n+ ω)eT (n+ω)‖χn‖.
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Note that since x ∈ [0, T ] is arbitrary, the same bound holds for ‖A(0, D)un(z)‖.
Similarly, ‖eiyf(0,D)‖ = 1, and using Lemma 3.3,

‖f(x,D)vn(z)‖ = ‖f(x,D)eiyf(0,D)Vn(x, 0)χn‖

= ‖f(x,D)Ene
iyf(0,D)Vn(x, 0)χn‖

≤ (2n+ ω)‖eiyf(0,D)Vn(x, 0)χn‖
≤ (2n+ ω)‖Vn(x, 0)χn‖

≤ (2n+ ω)eT (2n+ω)‖χn‖.

Again, since x ∈ [0, T ] is arbitrary, the same bound holds for ‖f(0, D)vn(z)‖. Set-
ting

Cn = (n+ ω)eT (n+ω) + (2n+ ω)eT (2n+ω),

we have
‖ez2

∂̄φn(z)‖ ≤ eT 2
Cn‖χn‖, (3.6)

showing that ez2
∂̄φn(z) is indeed bounded on S. It can also easily be shown using

continuity of A(t,D)En and f(t,D)En in the B(H) norm, continuity of Un(t, s)
and Vn(t, s) in the B(H) norm (Theorem 2.3 (iii)), and strong continuity of the
groups {eiyA(0,D)}y∈R and {eiyf(0,D)}y∈R, that ez2

∂̄φn(z) is continuous on S. Hav-
ing satisfied the hypotheses of Lemma 3.8, it follows that

Φn(α) = − 1
π

∫ ∫
S

ez2
∂̄φn(z)

( 1
z − α

+
1

z̄ + 1 + α

)
dx dy

is absolutely convergent,
∂̄Φn(α) = eα2

∂̄φn(α),
and there exists a constant K such that∫ ∞

−∞

∣∣ 1
z − α

+
1

z̄ + 1 + α

∣∣dy ≤ K
(
1 + log

1
|x− t|

)
for x 6= t.

We now construct a candidate for the Three Lines Theorem. Define Ψn : S → H
by

Ψn(α) = eα2
φn(α)− Φn(α).

For α in the interior of S, using the product rule and results from Lemma 3.8,

∂̄Ψn(α) = ∂̄[eα2
φn(α)]− ∂̄Φn(α)

= [(∂̄eα2
)φn(α) + eα2

∂̄φn(α)]− ∂̄Φn(α)

= [(0)φn(α) + ∂̄Φn(α)]− ∂̄Φn(α) = 0.

Therefore, by Theorem 3.7, Ψn is analytic on the interior of S. Next, for α =
t+ iη ∈ S, from (3.6) and the results from Lemma 3.8,

‖Φn(α)‖ = ‖ − 1
π

∫ ∫
S

ez2
∂̄φn(z)

( 1
z − α

+
1

z̄ + 1 + α

)
dx dy‖

≤ 1
π

∫ ∞

−∞

∫ T

0

eT 2
Cn‖χn‖

∣∣ 1
z − α

+
1

z̄ + 1 + α

∣∣ dx dy
=

1
π
eT 2

Cn‖χn‖
∫ T

0

( ∫ ∞

−∞

∣∣ 1
z − α

+
1

z̄ + 1 + α

∣∣dy)dx
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≤ K

π
eT 2

Cn‖χn‖
∫ T

0

(
1 + log

1
|x− t|

)
dx.

Also, using Lemmas 3.2 and 3.3,

‖φn(α)‖ = ‖eiηA(0,D)Un(t, 0)χn − eiηf(0,D)Vn(t, 0)χn‖
≤ (‖Un(t, 0)‖+ ‖Vn(t, 0)‖)‖χn‖

≤ (eT (n+ω) + eT (2n+ω))‖χn‖.

Therefore,

‖Ψn(α)‖ = ‖eα2
φn(α)− Φn(α)‖

≤ |eα2
| ‖φn(α)‖+ ‖Φn(α)‖

≤ eT 2
(eT (n+ω) + eT (2n+ω))‖χn‖

+
K

π
eT 2

Cn‖χn‖
{

max
t∈[0,T ]

∫ T

0

(
1 + log

1
|x− t|

)
dx

}
,

proving that Ψn is bounded on S. From (3.6) and the results from Lemma 3.8, it
follows via a dominated convergence argument that Φn is continuous on S. It is
also easily shown that φn is continuous on S, and therefore Ψn is continuous on S.

We have shown that Ψn is bounded and continuous on S, and analytic on the
interior of S. It follows from the Cauchy-Schwarz Inequality that for arbitrary
h ∈ H, the mapping

α 7→ (Ψn(α), h)

from S into C, where (·, ·) denotes the inner product in H, has the same properties.
Therefore, by the Three Lines Theorem,

|(Ψn(α), h)| ≤M(0)1−
t
T M(T )t/T ,

for t ∈ [0, T ], where α = t+ iη and

M(t) = max
η∈R

|(Ψn(t+ iη), h)|.

We aim to find bounds on M(0) and M(T ). First, for η ∈ R,

|(Ψn(iη), h)| ≤ ‖Ψn(iη)‖‖h‖

= ‖e−η2
(
eiηA(0,D)Un(0, 0)χn − eiηf(0,D)Vn(0, 0)χn

)
− Φn(iη)‖‖h‖

= ‖e−η2
(
eiηA(0,D)χn − eiηf(0,D)χn

)
− Φn(iη)‖‖h‖

≤
(
e−η2

‖eiηA(0,D)χn − eiηf(0,D)χn‖+ ‖Φn(iη)‖
)
‖h‖.

Now, since ‖eiηA(0,D)‖ = 1,

‖eiηA(0,D)χn − eiηf(0,D)χn‖ = ‖eiηA(0,D)χn − eiηA(0,D)eiηg(0,D)χn‖

= ‖eiηA(0,D)(I − eiηg(0,D))χn‖

≤ ‖(I − eiηg(0,D))χn‖.
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For ψ ∈ Dom(g(0, D)) and η ∈ R, we have by standard properties of semigroups
(cf. [11, Theorem 1.2.4]) that

‖(I − eiηg(0,D))ψ‖ = ‖ − i

∫ η

0

eisg(0,D)g(0, D)ψds‖ ≤ |η|‖g(0, D)ψ‖.

Note χn ∈ Dom(A(0, D))∩Dom(f(0, D)) ⊆ Dom(g(0, D)) and since en is a bounded
subset of [0,∞), χn ∈ Dom(p(D)). Thus we have by Condition (A, p) and the above
inequality that

‖eiηA(0,D)χn − eiηf(0,D)χn‖ ≤ β|η|‖p(D)χn‖.
Next we would like a bound on ‖Φn(iη)‖ in terms of β. Let z = x+ iy ∈ S. Then
from (3.5),

2‖∂̄φn(z)‖ = ‖(A(x,D)−A(0, D))un(z)− (f(x,D)− f(0, D))vn(z)‖
≤ ‖A(x,D)un(z)− f(x,D)vn(z)‖+ ‖A(0, D)un(z)− f(0, D)vn(z)‖.

Now,

‖A(x,D)un(z)− f(x,D)vn(z)‖

= ‖A(x,D)eiyA(0,D)Un(x, 0)χn − f(x,D)eiyf(0,D)Vn(x, 0)χn‖

≤ ‖A(x,D)eiyA(0,D)Un(x, 0)χn −A(x,D)eiyf(0,D)Un(x, 0)χn‖ (3.7)

+ ‖A(x,D)eiyf(0,D)Un(x, 0)χn −A(x,D)eiyf(0,D)Vn(x, 0)χn‖ (3.8)

+ ‖A(x,D)eiyf(0,D)Vn(x, 0)χn − f(x,D)eiyf(0,D)Vn(x, 0)χn‖. (3.9)

Set ψn = A(x,D)Un(x, 0)χn. We note that ψn ∈ Dom(A(t,D)) ∩ Dom(f(t,D)) ⊆
Dom(g(t,D)) for all t ∈ [0, T ], and ψn ∈ Dom(p(D)). Then expression (3.7) is
equal to

‖eiyA(0,D)ψn − eiyf(0,D)ψn‖ ≤ β|y|‖p(D)ψn‖,
as above.

Next, using Theorem 2.3, Lemma 3.4, and the assumption that g(t, λ) ≤ γ for
all (t, λ) ∈ [0, T ]× [0,∞), we have

‖(I −Wn(x, 0))ψn‖ = ‖(Wn(x, x)−Wn(x, 0))ψn‖

= ‖
∫ x

0

∂

∂s
Wn(x, s)ψnds‖

= ‖
∫ x

0

(−Wn(x, s)g(s,D)En)ψnds‖

≤
∫ x

0

‖Wn(x, s)g(s,D)ψn‖ds

≤
∫ x

0

(1 + eγT )‖g(s,D)ψn‖ds.

It then follows from Corollary 3.5 and Condition (A, p) that expression (3.8) is
equal to

‖eiyf(0,D)(Un(x, 0)− Vn(x, 0))A(x,D)χn‖
≤ ‖(Un(x, 0)− Vn(x, 0))A(x,D)χn‖
= ‖(Un(x, 0)−Wn(x, 0)Un(x, 0))A(x,D)χn‖
= ‖(I −Wn(x, 0))ψn‖
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≤
∫ x

0

(1 + eγT )‖g(s,D)ψn‖ds

≤
∫ x

0

(1 + eγT )β‖p(D)ψn‖ds

≤ βT (1 + eγT )‖p(D)ψn‖.

Finally, since Un(x, 0)χn ∈ Dom(p(D)), Corollary 3.5 and Condition (A, p) imply
that expression (3.9) is equal to

‖eiyf(0,D)Vn(x, 0)(−A(x,D) + f(x,D))χn‖
≤ ‖Vn(x, 0)(−A(x,D) + f(x,D))χn‖
= ‖Wn(x, 0)Un(x, 0)(−A(x,D) + f(x,D))χn‖
≤ (1 + eγT )‖(−A(x,D) + f(x,D))Un(x, 0)χn‖
≤ β(1 + eγT )‖p(D)Un(x, 0)χn‖.

Therefore, we have shown

‖A(x,D)un(z)− f(x,D)vn(z)‖
≤ β(1 + eγT ) ((|y|+ T )‖p(D)A(x,D)Un(x, 0)χn‖+ ‖p(D)Un(x, 0)χn‖) .

Since x is arbitrary, it follows similarly that

‖A(0, D)un(z)− f(0, D)vn(z)‖
≤ β(1 + eγT ) ((|y|+ T )‖p(D)A(0, D)Un(x, 0)χn‖+ ‖p(D)Un(x, 0)χn‖) .

From the assumptions ‖u(T )‖ ≤ M ′ and ‖p(D)A(t,D)u(T )‖ ≤ M ′′′ for all t ∈
[0, T ], it follows that ‖p(D)u(T )‖ ≤ N ′ for some constant N ′ ≥ 0. It then follows
from these estimates that for z = x+ iy ∈ S,

‖∂̄φn(z)‖ ≤ β(1 + eγT ) ((|y|+ T )M ′′′ +N ′) ,

so that by Lemma 3.8,

‖Φn(iη)‖

= ‖ − 1
π

∫ ∫
S

ez2
∂̄φn(z)

( 1
z − iη

+
1

z̄ + 1 + iη

)
dx dy‖

≤ 1
π

∫ ∞

−∞

∫ T

0

|ez2
|‖∂̄φn(z)‖

∣∣ 1
z − iη

+
1

z̄ + 1 + iη

∣∣ dx dy
≤ 1
π

∫ ∞

−∞

∫ T

0

ex2−y2
β(1 + eγT ) ((|y|+ T )M ′′′ +N ′)

∣∣∣∣ 1
z − iη

+
1

z̄ + 1 + iη

∣∣∣∣ dx dy
=

1
π

∫ ∞

−∞

∫ T

0

ex2
β(1 + eγT )

(
(|y|e−y2

+ Te−y2
)M ′′′ + e−y2

N ′
)

×
∣∣ 1
z − iη

+
1

z̄ + 1 + iη

∣∣ dx dy
≤ β

[ 1
π
eT 2

(1 + eγT ) ((1 + T )M ′′′ +N ′)
∫ T

0

( ∫ ∞

−∞

∣∣ 1
z − iη

+
1

z̄ + 1 + iη

∣∣dy)dx]
≤ β

[K
π
eT 2

(1 + eγT ) ((1 + T )M ′′′ +N ′)
∫ T

0

(
1 + log

1
x

)
dx

]
.
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Therefore,

M(0)

= max
η∈R

|(Ψn(iη), h)|

≤ max
η∈R

(
e−η2

‖eiηA(0,D)χn − eiηf(0,D)χn‖+ ‖Φn(iη)‖
)
‖h‖

≤ max
η∈R

(
β|η|e−η2

‖p(D)χn‖+ ‖Φn(iη)‖
)
‖h‖

≤ β
(
M ′′ +

[K
π
eT 2

(1 + eγT ) ((1 + T )M ′′′ +N ′)
∫ T

0

(
1 + log

1
x

)
dx

])
‖h‖.

(3.10)

Next, for η ∈ R,

|(Ψn(T + iη), h)|
≤ ‖Ψn(T + iη)‖‖h‖

= ‖e(T+iη)2
(
eiηA(0,D)Un(T, 0)χn − eiηf(0,D)Vn(T, 0)χn

)
− Φn(T + iη)‖‖h‖

≤
(
eT 2−η2

‖eiηA(0,D)Un(T, 0)χn − eiηf(0,D)Vn(T, 0)χn‖+ ‖Φn(T + iη)‖
)
‖h‖.

Using the assumption that ‖u(T )‖ ≤M ′,

‖eiηA(0,D)Un(T, 0)χn − eiηf(0,D)Vn(T, 0)χn‖
≤ ‖Un(T, 0)χn‖+ ‖Vn(T, 0)χn‖
= ‖Un(T, 0)χn‖+ ‖Wn(T, 0)Un(T, 0)χn‖
≤ (1 + (1 + eγT ))‖Un(T, 0)χn‖
≤ (2 + eγT )M ′.

Next, the assumptions ‖u(T )‖ ≤M ′ and ‖p(D)A(t,D)u(T )‖ ≤M ′′′ for all t ∈ [0, T ]
imply that ‖A(t,D)u(T )‖ ≤ N ′′ for all t ∈ [0, T ], for some constant N ′′ ≥ 0. Thus,
for z = x+ iy ∈ S, we have

‖(A(x,D)−A(0, D))un(z)‖

≤ ‖eiyA(0,D)A(x,D)Un(x, 0)χn‖+ ‖eiyA(0,D)A(0, D)Un(x, 0)χn‖
≤ ‖A(x,D)Un(x, 0)χn‖+ ‖A(0, D)Un(x, 0)χn‖
≤ 2N ′′.

Meanwhile, using Condition (A, p) and the fact that 0 < β < 1,

‖(f(x,D)− f(0, D))vn(z)‖

≤ ‖eiyf(0,D)f(x,D)Vn(x, 0)χn‖+ ‖eiyf(0,D)f(0, D)Vn(x, 0)χn‖
≤ ‖f(x,D)Vn(x, 0)χn‖+ ‖f(0, D)Vn(x, 0)χn‖
≤ ‖A(x,D)Vn(x, 0)χn‖+ ‖(−A(x,D) + f(x,D))Vn(x, 0)χn‖

+ ‖A(0, D)Vn(x, 0)χn‖+ ‖(−A(0, D) + f(0, D))Vn(x, 0)χn‖
≤ ‖Vn(x, 0)A(x,D)χn‖+ ‖Vn(x, 0)A(0, D)χn‖+ 2β‖p(D)Vn(x, 0)χn‖
≤ (1 + eγT )(‖A(x,D)Un(x, 0)χn‖+ ‖A(0, D)Un(x, 0)χn‖+ 2‖p(D)Un(x, 0)χn‖)
≤ 2(1 + eγT )(N ′′ +N ′).
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Therefore, for z = x+ iy ∈ S, from (3.5),

‖∂̄φn(z)‖ ≤ 1
2

(‖(A(x,D)−A(0, D))un(z)‖+ ‖(f(x,D)− f(0, D))vn(z)‖)

≤ N ′′ + (1 + eγT )(N ′′ +N ′)

so that by Lemma 3.8,

‖Φn(T + iη)‖

= ‖ − 1
π

∫ ∫
S

ez2
∂̄φn(z)

(
1

z − (T + iη)
+

1
z̄ + 1 + (T + iη)

)
dx dy‖

≤ 1
π

∫ ∞

−∞

∫ T

0

|ez2
|‖∂̄φn(z)‖

∣∣ 1
z − (T + iη)

+
1

z̄ + 1 + (T + iη)

∣∣ dx dy
≤ 1
π

∫ ∞

−∞

∫ T

0

eT 2
(N ′′ + (1 + eγT )(N ′′ +N ′))

×
∣∣ 1
z − (T + iη)

+
1

z̄ + 1 + (T + iη)

∣∣ dx dy
=

1
π
eT 2

(N ′′ + (1 + eγT )(N ′′ +N ′))

×
∫ T

0

( ∫ ∞

−∞

∣∣ 1
z − (T + iη)

+
1

z̄ + 1 + (T + iη)

∣∣dy)dx
≤ K

π
eT 2

(N ′′ + (1 + eγT )(N ′′ +N ′))
∫ T

0

(
1 + log

1
|x− T |

)
dx.

Thus,
M(T )

= max
η∈R

|(Ψn(T + iη), h)|

≤ max
η∈R

(
eT 2−η2

(2 + eγT )M ′ +
K

π
eT 2

(N ′′ + (1 + eγT )(N ′′ +N ′))

×
∫ T

0

(
1 + log

1
|x− T |

)
dx

)
‖h‖

≤
(
eT 2

(2 + eγT )M ′ +
K

π
eT 2

(N ′′ + (1 + eγT )(N ′′ +N ′))

×
∫ T

0

(
1 + log

1
|x− T |

)
dx

)
‖h‖.

(3.11)

It follows from (3.10) and (3.11) that there exist constants C ′ and M , independent
of β, such that for 0 ≤ t < T ,

|(Ψn(t), h)| ≤ (C ′β‖h‖)1− t
T (M‖h‖)t/T = (C ′β)1−

t
T M t/T ‖h‖.

Taking the supremum over all h ∈ H with ‖h‖ ≤ 1, we have constants C and M ,
independent of β, such that for 0 ≤ t < T ,

‖Ψn(t)‖ ≤ Cβ1− t
T M t/T .

Consequently,

‖un(t)− vn(t)‖ = ‖φn(t)‖

= e−t2‖Ψn(t) + Φn(t)‖
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≤ ‖Ψn(t)‖+ ‖Φn(t)‖

≤ Cβ1− t
T M t/T + ‖Φn(t)‖.

It follows from an earlier estimate on ‖Φn(iη)‖, that

‖Φn(t)‖ ≤ β
[K
π
eT 2

(1 + eγT ) ((1 + T )M ′′′ +N ′)
∫ T

0

(
1 + log

1
|x− t|

)
dx

]
.

Setting

K ′ =
K

π
eT 2

(1 + eγT ) ((1 + T )M ′′′ +N ′)
{

max
t∈[0,T ]

∫ T

0

(
1 + log

1
|x− t|

)
dx

}
,

we have

‖un(t)− vn(t)‖ ≤ Cβ1− t
T M t/T + ‖Φn(t)‖

≤ Cβ1− t
T M t/T + βK ′

=
(
C + βt/TK ′M− t

T

)
β1− t

T M t/T

≤ Cβ1− t
T M t/T ,

for a possibly different constant C. Letting n → ∞, we have found constants C
and M , independent of β, such that for 0 ≤ t < T ,

‖u(t)− v(t)‖ ≤ Cβ1− t
T M t/T ,

as desired. �

4. Examples

Below, we give examples illustrating our approximation theorem. Each is a
general case of the following universal example. Let H = L2(Rn) and D = −∆
where ∆ denotes the Laplacian defined by

∆h =
n∑

i=1

∂2h

∂x2
i

.

The operator −∆ is a positive self-adjoint operator on L2(Rn) and so we compare
the ill-posed evolution problem

∂

∂t
u(t, x) = A(t,−∆)u(t, x), (t, x) ∈ [0, T )× Rn

u(0, x) = h(x), x ∈ Rn
(4.1)

in L2(Rn) to the well-posed approximate problem

∂

∂t
v(t, x) = f(t,−∆)v(t, x), (t, x) ∈ [0, T )× Rn

v(0, x) = h(x), x ∈ Rn.
(4.2)

Example 4.1. As initially defined, let

A(t,D) =
k∑

j=1

aj(t)Dj .
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Let 0 < ε < 1 and set Bj = maxt∈[0,T ] |aj(t)| for each 1 ≤ j ≤ k. Consider the
problem

∂

∂t
v(t, x) = A(t,−∆)v(t, x)− ε(−∆)k+1v(t, x), (t, x) ∈ [0, T )× Rn

v(0, x) = h(x), x ∈ Rn.

Motivated by approximations used by Lattes and Lions, Miller, and Ames and
Hughes [2, 3, 9, 10], we define f : [0, T ]× [0,∞) → R by

f(t, λ) =
k∑

j=1

aj(t)λj − ελk+1.

Then for each (t, λ) ∈ [0, T ]× [0,∞),

f(t, λ) ≤ h(λ) :=
k∑

j=1

Bjλ
j − ελk+1.

The polynomial h(λ) has at most k + 1 real roots. If h(λ) has no real roots on
[0,∞), then h(λ) < 0 for all λ ≥ 0. Otherwise, let R be the maximum of all such
roots of h(λ) on [0,∞). Then h(λ) is bounded above on [0, R] and is negative on
(R,∞). Therefore, in any case, there exists ω ∈ R such that h(λ) ≤ ω for all λ ≥ 0.
Consequently,

f(t, λ) ≤ ω

for all (t, λ) ∈ [0, T ]× [0,∞). Also

|f(t, λ)| ≤ r(λ) :=
k∑

j=1

Bjλ
j + ελk+1

for all (t, λ) ∈ [0, T ] × [0,∞). We set Y = Dom(r(D)) and let ‖ · ‖Y denote the
graph norm associated with the operator r(D). We note that Y = Dom(r(D)) =
Dom(f(t,D)) for all t ∈ [0, T ], and that Y is the Sobolev space W 2(k+1),2(Rn),
consisting of functions h ∈ L2(Rn) whose derivatives, in the sense of distributions,
of order j ≤ 2(k + 1) are in L2(Rn) (cf. [11, Chapter 7.1]).

Now, let t0 ∈ [0, T ]. It follows from the definition of r(D) that Dj ∈ B(Y,H)
for each 1 ≤ j ≤ k. Then since aj is continuous for each 1 ≤ j ≤ k,

‖f(t,D)− f(t0, D)‖Y→H = ‖(A(t,D)− εDk+1)− (A(t0, D)− εDk+1)‖Y→H

= ‖A(t,D)−A(t0, D)‖Y→H

= ‖
k∑

j=1

(aj(t)− aj(t0))Dj‖Y→H

≤
k∑

j=1

|aj(t)− aj(t0)| ‖Dj‖Y→H → 0 as t→ t0,

showing that t 7→ f(t,D) is continuous in the B(Y,H) norm ‖ · ‖Y→H .
Next, set

p(λ) = λk+1.

Then Dom(p(D)) ⊆ Dom(Dj) for all 1 ≤ j ≤ k + 1 so that

Dom(p(D)) ⊆ Dom(A(t,D)) ∩Dom(f(t,D)) = Dom(f(t,D))
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for each t ∈ [0, T ]. Furthermore, for ψ ∈ Dom(p(D)) and t ∈ [0, T ],

‖(−A(t,D) + f(t,D))ψ‖ = ‖(−εDk+1)ψ‖ = ε‖Dk+1ψ‖.

Thus f satisfies Condition (A, p) with r(λ) =
∑k

j=1Bjλ
j + ελk+1, β = ε, and

p(λ) = λk+1. Moreover, g(t, λ) = −ελk+1 ≤ 0 for all (t, λ) ∈ [0, T ] × [0,∞), so we
may choose γ = 0. Theorem 3.9 then yields the result

‖u(t)− v(t)‖ ≤ Cβ1− t
T M t/T

for 0 ≤ t < T , where u(t) and v(t) are solutions of (4.1) and (4.2) respectively.

Example 4.2. As in Example 4.1, let

A(t,D) =
k∑

j=1

aj(t)Dj .

Let 0 < ε < 1 and set Bj = maxt∈[0,T ] |aj(t)| for each 1 ≤ j ≤ k. Consider the
problem

∂

∂t
v(t, x)−A(t,−∆)v(t, x) + ε(−∆)k ∂

∂t
v(t, x) = 0, (t, x) ∈ [0, T )× Rn

v(0, x) = h(x), x ∈ Rn.

Motivated by work of Showalter [13], we define f : [0, T ]× [0,∞) → R by

f(t, λ) =

∑k
j=1 aj(t)λj

1 + ελk
.

Then for each (t, λ) ∈ [0, T ]× [0,∞),

f(t, λ) ≤
∑k

j=1Bjλ
j

1 + ελk
.

The rational function r(λ) =
Pk

j=1 Bjλj

1+ελk is continuous on [0,∞) and tends to Bk

ε

as λ → ∞. Therefore, there exists ω ∈ R such that r(λ) ≤ ω for all λ ≥ 0.
Consequently,

f(t, λ) ≤ ω

for all (t, λ) ∈ [0, T ] × [0,∞). As r(λ) is a bounded Borel function on [0,∞), the
Spectral Theorem yields that r(D) is a bounded everywhere-defined operator on
H. Thus, we may choose Y = Dom(r(D)) = H.

Now, let t0 ∈ [0, T ]. It follows from the definition of r(D) that Dj(I + εDk)−1 ∈
B(H) for each 1 ≤ j ≤ k. Then since aj is continuous for each 1 ≤ j ≤ k,

‖f(t,D)− f(t0, D)‖ = ‖A(t,D)(I + εDk)−1 −A(t0, D)(I + εDk)−1‖

= ‖
k∑

j=1

(aj(t)− aj(t0))Dj(I + εDk)−1‖

≤
k∑

j=1

|aj(t)− aj(t0)| ‖Dj(I + εDk)−1‖ → 0 as t→ t0,

showing that t 7→ f(t,D) is continuous in the B(H) norm.
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Next, set

p(λ) =
k∑

j=1

Bjλ
k+j .

Then for each t ∈ [0, T ], Dom(p(D)) ⊆ Dom(A(t,D)). Next, note Dk is positive
since D is, and so 1

ε ∈ ρ(−D
k). Therefore, in view of the fact that

(I + εDk)−1 =
1
ε
R

(1
ε
;−Dk

)
,

we see that for each t ∈ [0, T ],

Dom(f(t,D)) = Dom(A(t,D)(I + εDk)−1) = H ⊇ Dom(A(t,D)).

Therefore,
Dom(p(D)) ⊆ Dom(A(t,D)) ∩Dom(f(t,D))

for all t ∈ [0, T ]. Next, fix t ∈ [0, T ] and assume ψ ∈ Dom(p(D)). Set

y = A(t,D)(I + εDk)−1ψ.

Since −Dk generates a C0 semigroup of contractions, we have by the Hille-Yosida
Theorem [11, Theorem 1.3.1] that

‖(I + εDk)−1‖ = ‖1
ε
R

(1
ε
;−Dk

)
‖ ≤ 1

ε

( 1
1/ε

)
= 1.

Thus,

‖(−A(t,D) + f(t,D))ψ‖ = ‖(−A(t,D) +A(t,D)(I + εDk)−1)ψ‖

= ‖ − εDky‖

= ε‖
( k∑

j=1

aj(t)Dk+j
)
(I + εDk)−1ψ‖

≤ ε‖
( k∑

j=1

aj(t)Dk+j
)
ψ‖

≤ ε‖
( k∑

j=1

BjD
k+j

)
ψ‖.

Then f satisfies Condition (A, p) with r(λ) =
Pk

j=1 Bjλj

1+ελk , β = ε, and p(λ) =∑k
j=1Bjλ

k+j . Moreover, g(t, λ) = −A(t, λ) + A(t, λ)(1 + ελk)−1 ≤ 0 for all
(t, λ) ∈ [0, T ] × [0,∞), so we may choose γ = 0. Again, Theorem 3.9 yields the
result

‖u(t)− v(t)‖ ≤ Cβ1− t
T M t/T

for 0 ≤ t < T , where u(t) and v(t) are solutions of (4.1) and (4.2) respectively.
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