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POPULATION MODELS WITH NONLINEAR BOUNDARY
CONDITIONS

JEROME GODDARD II, EUN KYOUNG LEE, RATNASINGHAM SHIVAJI

Abstract. We study a two point boundary-value problem describing the

steady states of a Logistic growth population model with diffusion and con-

stant yield harvesting. In particular, we focus on a model when a certain
nonlinear boundary condition is satisfied.

1. Introduction

Consider the Logistic growth population dynamics model with nonlinear bound-
ary conditions:

ut = d∆u + au− bu2 − ch(x) in Ω, (1.1)

dα(x, u)
∂u

∂η
+ [1− α(x, u)]u = 0 on ∂Ω, (1.2)

where Ω is a bounded domain in Rn with n ≥ 1, ∆ is the Laplace operator, d
is the diffusion coefficient, a, b are positive parameters, c ≥ 0 is the harvesting
parameter, h(x) : Ω → R is a C1 function, ∂u

∂η is the outward normal derivative,
and α(x, u) : Ω× R → [0, 1] is a nondecreasing C1 function.

The parameter c ≥ 0 represents the level of harvesting, h(x) ≥ 0 for x ∈ Ω,
h(x) = 0 for x ∈ ∂Ω, and ‖h‖∞ = 1. Here ch(x) can be understood as the rate of
the harvesting distribution. The nonlinear boundary condition (1.2) has only been
recently studied by such authors as [1, 2, 3], among others. Here

α(x, u) = α(u) =
u

u− d∂u
∂η

represents the fraction of the population that remains on the boundary when
reached. For the case when α(x, u) ≡ 0, (1.2) becomes the well known Dirich-
let boundary condition. If α(x, u) ≡ 1 then (1.2) becomes the Neumann boundary
condition. Here we will be interested in the study of positive steady state solutions
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of (1.1)–(1.2) when d = 1 and

α(x, u) =
u

u + 1
on ∂Ω.

Hence, we consider the model

−∆u = au− bu2 − ch(x) =: f(x, u) in Ω, (1.3)

u[
∂u

∂η
+ 1] = 0 on ∂Ω. (1.4)

We will present the results of the case when n = 1, Ω = (0, 1), and h(x) ≡ 1.
Thus, we study the nonlinear boundary-value problem

−u′′ = au− bu2 − c, x ∈ (0, 1), (1.5)

[−u′(0) + 1]u(0) = 0, (1.6)

[u′(1) + 1]u(1) = 0. (1.7)

It is easy to see that analyzing the positive solutions of (1.5)–(1.7) is equivalent to
studying the four boundary-value problems

−u′′ = au− bu2 − c, x ∈ (0, 1), (1.8)

u(0) = 0, u(1) = 0; (1.9)

−u′′ = au− bu2 − c, x ∈ (0, 1), (1.10)

u(0) = 0, u′(1) = −1; (1.11)

−u′′ = au− bu2 − c, x ∈ (0, 1), (1.12)

u′(0) = 1, u(1) = 0; (1.13)

−u′′ = au− bu2 − c, x ∈ (0, 1), (1.14)

u′(0) = 1, u′(1) = −1. (1.15)

Hence, the positive solutions of these four BVPs are the positive solutions of
(1.5)–(1.7). Notice that if u(x) is a solution of (1.10)–(1.11) then v(x) := u(1− x)
is a solution of (1.12)–(1.13). Thus, it suffices to only consider (1.8)–(1.9), (1.10)–
(1.11), and (1.14)–(1.15). The structure of positive solutions for (1.8)–(1.9) is known
(see [4] and [7]) via the quadrature method introduced by Laetsch in [8]. We develop
quadrature methods in Section 2 to completely determine the bifurcation diagram
of (1.5)–(1.7). In Section 3 we use Mathematica computations to show that for
certain subsets of the parameter space, (1.5)–(1.7) has up to exactly 8 positive
solutions. For higher dimensional results, in the case when α(x, u) = 0 on ∂Ω
(Dirichlet boundary conditions) see [9], and for the case when α(x, u) = u

u+1 on ∂Ω
see recent work in [5].

2. Results via the quadrature method

2.1. Positive solutions of (1.8)–(1.9). In this section we summarize the known
results (see [9]) for positive solutions of (1.8)–(1.9). Consider the boundary value
problem:

−u′′ = au− bu2 − c =: f(u), x ∈ (0, 1), (2.1)

u(0) = 0, u(1) = 0. (2.2)
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Figure 1. Typical solution of (2.1)–(2.2)

It is easy to see that positive solutions of (2.1)–(2.2) must resemble Figure 1
where `i for i = 1, 2 are the positive zeros of f(u). The following theorem details
the structure of positive solutions of (2.1)–(2.2) for the case when b = 1:

Theorem 2.1 ([4, 9]). (1) If a < λ1 then (2.1)–(2.2) has no positive solution
for any c ≥ 0.

(2) If λ1 ≤ a < λ∗ (some λ∗ > λ1) then there exists a c0 > 0 such that if
(a) 0 ≤ c < c0 then (2.1)–(2.2) has 2 positive solutions.
(b) c = c0 then (2.1)–(2.2) has a unique positive solution.
(c) c > c0 then (2.1)–(2.2) has no positive solution.

(3) If a > λ∗ then there exist c0, c̃ > 0 such that if
(a) c̃ < c < c0 then (2.1)–(2.2) has 2 positive solutions.
(b) 0 ≤ c < c̃ or c = c0 then (2.1)–(2.2) has a unique positive solution.
(c) c > c0 then (2.1)–(2.2) has no positive solution.

Figure 2 illustrates this theorem.
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Figure 2. a = 10, b = 1 (left), and a = 40, b = 1 (right)

2.2. Positive solutions of (1.10)–(1.11). In this subsection, we adapt the quad-
rature method in [8] to study

−u′′ = au− bu2 − c =: f(u), x ∈ (0, 1), (2.3)

u(0) = 0, u′(1) = −1. (2.4)

Now, define F (u) =
∫ u

0
f(s)ds, the primitive of f(u). Since (2.3) is an autonomous

differential equation, if u(x) is a positive solution of (2.3) with u′(x0) = 0 for some
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x0 ∈ (0, 1) then v(x) := u(x0 − x) and w(x) := u(x0 + x) both satisfy the initial
value problem,

−z′′ = f(z) (2.5)

z(0) = u(x0) (2.6)

z′(0) = 0 (2.7)

for all x ∈ [0, d) where d = min{x0, 1 − x0}. As a result of Picard’s existence and
uniqueness theorem, u(x0−x) ≡ u(x0+x). Thus, if we assume that u(x) is a positive
solution of (2.3)–(2.4) then it is symmetric around x0 with ρ := ‖u‖∞ = u(x0).
This implies that u′(x0) = 0, u′(x) > 0; [0, x0), and u′(x) < 0; (x0, 1]. Using
symmetry about x0, the boundary conditions (2.4), and the sign of u′′ given by
f(u) we see that positive solutions of (2.3)–(2.4) must resemble Figure 3, where
ρ = ‖u‖∞ and q = u(1). This implies that `1 < ρ < `2 and 0 ≤ q < ρ where `i,
i = 1, 2 are the zeros of f(u).

x

uHxL

{1

{2
Ρ

q

x0 1

Figure 3. Typical solution of (2.3) -(2.4)

Multiplying (2.3) by u′ gives

−u′u′′ = f(u)u′ (2.8)

Integration of (2.8) with respect to x gives,

−
( [u′(x)]2

2

)
= [F (u(x))] + K. (2.9)

Substituting x = 1 and x = x0 into (2.9) yields,

−K = F (q) +
1
2

(2.10)

K = −F (ρ). (2.11)

Combining (2.10) and (2.11), we have

F (ρ) = F (q) +
1
2
. (2.12)

Substituting (2.11) into (2.9) yields,

−
( [u′(x)]2

2

)
= [F (u(x))]− F (ρ). (2.13)
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Now, solving for u′ in (2.13) gives

u′(x) =
√

2
√

F (ρ)− F (u(x)), x ∈ [0, x0], (2.14)

u′(x) = −
√

2
√

F (ρ)− F (u(x)), x ∈ [x0, 1]. (2.15)

Integrating (2.14) and (2.15) with respect to x and using a change of variables, we
have ∫ u(x)

0

ds√
F (ρ)− F (s)

=
√

2x, x ∈ [0, x0], (2.16)∫ u(x)

ρ

ds√
F (ρ)− F (s)

= −
√

2(x− x0), x ∈ [x0, 1]. (2.17)

Substitution of x = x0 into (2.16) and x = 1 into (2.17) gives∫ ρ

0

ds√
F (ρ)− F (s)

=
√

2x0 (2.18)∫ q

ρ

ds√
F (ρ)− F (s)

= −
√

2(1− x0). (2.19)

Finally, subtracting (2.19) from (2.18), yields∫ ρ

0

ds√
F (ρ)− F (s)

+
∫ ρ

q

ds√
F (ρ)− F (s)

=
√

2, (2.20)

or equivalently,

2
∫ ρ

0

ds√
F (ρ)− F (s)

−
∫ q

0

ds√
F (ρ)− F (s)

=
√

2. (2.21)

We note that in order for
∫ ρ

0
ds√

F (ρ)−F (s)
to be well defined, F (ρ) > F (s) for all

s ∈ [0, ρ). Moreover, the improper integral is convergent if f(ρ) > 0. Thus, for
such a positive solution to exist, f(u) and F (u) must resemble Figure 4, where µ1,
`i, and θi are the zeros of f ′(u), f(u), and F (u) respectively for i = 1, 2.

u

f HuL
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u
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{2{1 Θ2Θ1

Figure 4. Graph of f(u) (left), and of F (u) (right)

From Figure 4, we note that if ρ ∈ (θ1, `2) then both of these conditions hold
and the integrals in (2.21) are well defined. From this and letting c1 := 3a2

16b and
c2 := a2

4b , we can arrive at the following result.

Theorem 2.2. If c > c∗(a, b) then (2.3)–(2.4) has no positive solution, where
c∗(a, b) = min{c1, c2} = 3a2

16b .
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Further, since x0 ∈ (0, 1) is fixed for each ρ > 0, we need a unique q < ρ
corresponding to each ρ-value such that (2.12) is satisfied. Otherwise, uniqueness
of solutions to the initial value problem, (2.5)–(2.7), would be violated. Let

H(x) := F (x) +
1
2
.

It follows that H ′(x) = −bx2 + ax− c, H(0) = 1/2, and H ′(0) = −c < 0. In order
for a unique q < ρ to exist such that H(q) = F (ρ), H(x) must have the following
structure in Figure 5, where H ′(`2) = 0. So, for such a unique q < ρ to exist
F (ρ) > 1/2.

1
2

FH Ρ L

Θ1 q {2

HH{2L

x

HHxL

Figure 5. Graph of H(x)

Since ρ ∈ (θ1, `2), for this to be true we will need H(`2) > 1/2. In fact, if

F (`2) >
1
2

(2.22)

then clearly for ρ ∈ (θ1, `2) with ρ ≈ `2 we have F (ρ) > 1/2. It is easy to see that
(2.22) will be satisfied if (solving using Mathematica)

c < c3 :=
9a2

144b
− 9(a4 − 96ab2)

144b
(
− a6 − 240a3b2 + 16

(
72b4 +

√
3
√

b2(a3 + 12b2)3
))1/3

− 9
144b

(
− a6 − 240a3b2 + 16

(
72b4 +

√
3
√

b2(a3 + 12b2)3
))

and for c3 to be positive (again using Mathematica)

a > a0 := 3
√

3b2

both hold. This leads to the following results.

Theorem 2.3. If a ≤ a0 then (2.3)–(2.4) has no positive solution for any c ≥ 0.

Theorem 2.4. If a > a0 then there is a c∗(a, b) ≤ min{c1, c2, c3} such that for
c ≥ c∗ (2.3)–(2.4) has no positive solution.

We now state and prove the main theorem of this subsection.

Theorem 2.5. If a > a0 and c < c∗(a, b) then there is a unique r(a, b, c) ∈ (θ1, `2)
such that F (r) = 1/2 and

G(ρ) := 2
∫ ρ

0

ds√
F (ρ)− F (s)

−
∫ q

0

ds√
F (ρ)− F (s)
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is well defined for all ρ ∈ [r, `2) where q < ρ is the unique solution of F (ρ) = H(q).
Moreover, (2.3)–(2.4) has a positive solution, u(x), with ρ = ‖u‖∞ if and only if
G(ρ) =

√
2 for some ρ ∈ [r, `2).

Proof. Let a, b > 0 s.t. a > a0 and c ∈ [0, c∗(a, b)). From the preceding discussion, it
follows that if u is a positive solution to (2.3)–(2.4) with ρ = ‖u‖∞ then G(ρ) =

√
2.

Next, suppose G(ρ) =
√

2 for some ρ ∈ [r, `2). Define u(x) : (0, 1) → R by∫ u(x)

0

ds√
F (ρ)− F (s)

=
√

2x, x ∈ [0, x0], (2.23)∫ u(x)

ρ

ds√
F (ρ)− F (s)

= −
√

2(x− x0), x ∈ [x0, 1]. (2.24)

Now, we show that u(x) is a positive solution to (2.3)–(2.4). It is easy to see that the
turning point is given by x0 = 1√

2

∫ ρ

0
ds√

F (ρ)−F (s)
. The function,

∫ u

0
ds√

F (ρ)−F (s)
, is

a differentiable function of u which is strictly increasing from 0 to x0 as u increases
from 0 to ρ. Thus, for each x ∈ [0, x0], there is a unique u(x) such that∫ u(x)

0

ds√
F (ρ)− F (s)

=
√

2x (2.25)

Moreover, by the Implicit Function theorem, u is differentiable with respect to x.
Differentiating (2.25) gives

u′(x) =
√

2[F (ρ)− F (u)], x ∈ [0, x0].

Similarly, u is a decreasing function of x for x ∈ [x0, 1] which yields,

u′(x) = −
√

2[F (ρ)− F (u)], x ∈ [x0, 1].

This implies
−(u′)2

2
= F (ρ)− F (u(x)).

Differentiating again, we have −u′′(x) = f(u(x)). Thus, u(x) satisfies (2.3). Now,
from our assumption, G(ρ) =

√
2, it follows that u(0) = 0 and u(1) = q(ρ). Since

F (ρ) = H(q(ρ)) = F (q)+ 1
2 , we have that u′(1) = −

√
2[F (ρ)− F (q)] = −1. Hence,

the boundary conditions (2.4) are both satisfied. �

2.3. Positive solutions of (1.14)–(1.15). A similar quadrature method can be
adapted to study

−u′′ = au− bu2 − c =: f(u), x ∈ (0, 1), (2.26)

u′(0) = 1, u′(1) = −1. (2.27)

Again, define F (u) =
∫ u

0
f(s)ds, the primitive of f(u). Using a similar argument

as before, symmetry about x0, the boundary conditions (2.26)–(2.27), and the sign
of u′′ given by f(u) ensure that positive solutions of (2.26)–(2.27) must resemble
Figure 6, where ρ = ‖u‖∞ and q = u(0) = u(1). Clearly, x0 = 1/2 in this case.

Through an almost identical approach as the one in Section 2.2, we can prove
the following results.

Theorem 2.6. If a ≤ a0 then (2.26)–(2.27) has no positive solution for any c ≥ 0.

Theorem 2.7. If a > a0 then there is a c∗(a, b) ≤ min{c1, c2, c3} such that for
c ≥ c∗ (2.26)–(2.27) has no positive solution.



142 J. GODDARD II, E. K. LEE, R. SHIVAJI EJDE/CONF/19

x

uHxL

{1

{2
Ρ

q

0.5 1

Figure 6. Typical solution of (2.3)–(2.4)

We now state the main theorem of this subsection.

Theorem 2.8. If a > a0 and c < c∗(a, b) then there is a unique r(a, b, c) ∈ (θ1, `2)
such that F (r) = 1

2 and

G̃(ρ) := 2
∫ ρ

0

ds√
F (ρ)− F (s)

− 2
∫ q

0

ds√
F (ρ)− F (s)

is well defined for all ρ ∈ [r, `2) where q < ρ is the unique solution of F (ρ) = H(q).
Moreover, (2.26)–(2.27) has a positive solution, u(x), with ρ = ‖u‖∞ if and only if
G̃(ρ) =

√
2 for some ρ ∈ [r, `2).

Remark. See [7] where Ladner et al. adapted the quadrature method to study
the case when α(x, u) = u

a on ∂Ω. Also, see [6] where the quadrature method was
adapted to study the case with a Strong Allee effect and α(x, u) = u

b on ∂Ω.

3. Computational results

3.1. Positive solutions of (1.10)–(1.11) and (1.12)–(1.13). We are particularly
interested in the case when b = 1. From Theorem 2.5, we plot the level sets of

G(ρ)−
√

2 = 0 (3.1)

for a > 3
√

3 and ρ ∈ [r, `2). By implementing a numerical root-finding algorithm in
Mathematica we were able to solve equation (3.1). Explicit formulas were used to
calculate the unique r = r(a, b, c) and q = q(ρ) values. Note that these computa-
tions are expensive due to the natural of the improper integral equations involved.
Figures 7 - 9 depict several level sets plotted within [r, `2)× [0, c∗]. In what follows,
the green curve represents ρ vs c while the upper and lower branches of the dotted
black curve represent `2 and r, respectively. The green curve’s lower branch begins
to shrink for a ≥ 10.1388. This is due to the fact that solutions of (3.1) are outside
of [r, `2). The bifurcation diagrams also indicate the following results.

Theorem 3.1. For b = 1, if a < a4 (for a4 ≈ 5.0407) then (1.10)–(1.11) and
(1.12)–(1.13) have no positive solution for any c ≥ 0.

Theorem 3.2. If b = 1 then c0(a) → c∗(a) as a → ∞. Furthermore, ρ → `2
as a → ∞ where u(x) is a positive solution to (1.10)–(1.11) or (1.12)–(1.13) with
‖u‖∞ = ρ.
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Figure 7. a = 6, b = 1 (left), and a = 10, b = 1 (right)
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Figure 8. a = 11, b = 1 (left), and a = 40, b = 1 (right)
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Figure 9. a = 100, b = 1

3.2. Positive solutions of (1.14)–(1.15). Again, we are particularly interested in
the case when b = 1. Recalling Theorem 2.8, we plot the level sets of

G̃(ρ)−
√

2 = 0 (3.2)

Using our numerical root-finding algorithm in Mathematica to solve equation (3.2)
and explicit formulas to calculate the unique r = r(a, b, c) and q = q(ρ) values, level
sets were plotted within [r, `2)× [0, c∗]. The blue curve breaks into two components
somewhere around a = 4.39, with the lower component vanishing for a > 10.1387.
This is due to the fact that the ρ-values, which are solutions of (3.2), are outside
of [r, `2). These bifurcation diagrams also indicate the following results.

Theorem 3.3. For b = 1, if a < a1 (for a1 ≈ 2.8324) then (1.14)–(1.15) has no
positive solution for any c ≥ 0.

Theorem 3.4. If b = 1 then c0(a) → c∗(a) as a → ∞. Furthermore, ρ → `2 as
a →∞ where u(x) is a positive solution to (1.14)–(1.15) with ‖u‖∞ = ρ.

3.3. Structure of Positive solutions to (1.5)–(1.7). Combining results from the
three cases, (1.8)–(1.9), (1.10)–(1.11), and (1.14)–(1.15) while recalling that the
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Figure 10. a = 4, b = 1 (left), and a = 4.4, b = 1 (right)
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Figure 11. a = 6, b = 1 (left), and a = 10, b = 1 (right)
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Figure 12. a = 11, b = 1 (left), and a = 40, b = 1 (right)

(1.10)–(1.11) case represents two symmetric solutions, we are able to completely
determine the structure of positive solutions to (1.5)–(1.7). As before, we are
primarily interested in the case when b = 1. Comparison of nonexistence Theorems
2.1, 2.3, and 2.6 from Section 3 yields the following nonexistence result for (1.5)–
(1.7).

Theorem 3.5. If a ≤ min[ 3
√

3b2, λ1] then (1.5)–(1.7) has no positive solution for
any c ≥ 0.

Moreover, our computational results for the case b = 1 provide the following
nonexistence result.

Theorem 3.6. For b = 1, if a < a1 (for a1 ≈ 2.8324) then (1.5)–(1.7) has no
positive solution for any c ≥ 0.

Also, our computations indicate the following existence results for b = 1. For
what follows, (1.8)–(1.9) is depicted in yellow, (1.10)–(1.11) and (1.12)–(1.13) both
in green, and (1.14)–(1.15) in blue.
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Theorem 3.7. For b = 1, if a ∈ [a1, a2) (for some a2 > a1) (for a2 ≈ 4.39) then
there exists a C0 > 0 such that if

(1) 0 ≤ c < C0 then (1.5)–(1.7) has exactly 2 positive solutions.
(2) c = C0 then (1.5)–(1.7) has a unique positive solution.
(3) c > C0 then (1.5)–(1.7) has no positive solution.

A bifurcation diagram of the case when b = 1 and a = 4 is shown in Figure 13.
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Figure 13. ρ vs c for a = 4, b = 1

Theorem 3.8. For b = 1, if a ∈ [a2, a3) (some a3 ∈ (4.4, 5)) then there exist
Ci > 0, i = 0, 1, 2, such that if

(1) 0 ≤ c ≤ C2 or C1 ≤ c < C0 then (1.5)–(1.7) has exactly 2 positive solutions.
(2) C2 < c < C1 or c = C0 then (1.5)–(1.7) has a unique positive solution.
(3) c > C0 then (1.5)–(1.7) has no positive solution.

Figure 14 illustrates Theorem 3.8.
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Figure 14. ρ vs c for a = 4.4, b = 1

Theorem 3.9. For b = 1, if a ∈ [a3, a4) (for a4 ≈ 5.0407) then there exist Ci > 0,
i = 0, 1, such that if

(1) 0 ≤ c ≤ C1 then (1.5)–(1.7) has exactly 2 positive solutions.
(2) C1 < c ≤ C0 then (1.5)–(1.7) has a unique positive solution.
(3) c > C0 then (1.5)–(1.7) has no positive solution.

Theorem 3.9 is illustrated in Figure 15.

Theorem 3.10. For b = 1, if a ∈ [a4, a5) (for a5 = π2) then there exist Ci > 0,
i = 0, 1, 2, such that if
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Figure 15. ρ vs c for a = 5.03, b = 1

(1) 0 ≤ c ≤ C2 then (1.5)–(1.7) has exactly 6 positive solutions.
(2) C2 < c < C1 then (1.5)–(1.7) has exactly 5 positive solutions.
(3) c = C1 then (1.5)–(1.7) has exactly 3 positive solutions.
(4) C1 < c ≤ C0 then (1.5)–(1.7) has a unique positive solution.
(5) c > C0 then (1.5)–(1.7) has no positive solution.

Theorem 3.10 is depicted in Figure 16.
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Figure 16. ρ vs c for a = 6, b = 1

Theorem 3.11. For b = 1, if a ∈ [a5, a6) (some a6 ∈ (10, 10.1388)) then there
exist Ci > 0, i = 0, 1, 2, 3, such that if

(1) 0 ≤ c < C3 then (1.5)–(1.7) has exactly 8 positive solutions.
(2) c = C3 then (1.5)–(1.7) has exactly 7 positive solutions.
(3) C3 < c ≤ C2 then (1.5)–(1.7) has exactly 6 positive solutions.
(4) C2 < c < C1 then (1.5)–(1.7) has exactly 5 positive solutions.
(5) c = C1 then (1.5)–(1.7) has exactly 3 positive solutions.
(6) C1 < c ≤ C0 then (1.5)–(1.7) has a unique positive solution.
(7) c > C0 then (1.5)–(1.7) has no positive solution.

Figure 17 shows the bifurcation diagram for a = 10, b = 1 along with Figure 18,
which gives two small cross sections of the diagram.

Theorem 3.12. For b = 1, if a ∈ [a6, a7) (for a7 ≈ 10.1388) then there exist
Ci > 0, i = 0, 1, 2, 3, such that if

(1) 0 ≤ c ≤ C3 then (1.5)–(1.7) has exactly 8 positive solutions.
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Figure 17. ρ vs c for a = 10, b = 1
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Figure 18. ρ vs c cross-sections for a = 10, b = 1

(2) C3 < c < C2 then (1.5)–(1.7) has exactly 7 positive solutions.
(3) c = C2 then (1.5)–(1.7) has exactly 6 positive solutions.
(4) C2 < c < C1 then (1.5)–(1.7) has exactly 5 positive solutions.
(5) c = C1 then (1.5)–(1.7) has exactly 3 positive solutions.
(6) C1 < c ≤ C0 then (1.5)–(1.7) has a unique positive solution.
(7) c > C0 then (1.5)–(1.7) has no positive solution.

The bifurcation diagram for a = 10.1, b = 1 is depicted in Figures 19 and 20.
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Figure 19. ρ vs c for a = 10.1, b = 1

Theorem 3.13. For b = 1, if a ∈ [a7, a8] (for a8 = 4π2) then there exist Ci > 0,
i = 0, 1, 2, 3, such that if
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Figure 20. ρ vs c cross-sections for a = 10.1, b = 1

(1) 0 ≤ c < C3 or C2 ≤ c < C1 then (1.5)–(1.7) has exactly 5 positive solutions.
(2) c = C3 then (1.5)–(1.7) has exactly 4 positive solutions.
(3) C3 < c < C2 or c = C1 then (1.5)–(1.7) has exactly 3 positive solutions.
(4) C1 < c ≤ C0 then (1.5)–(1.7) has a unique positive solution.
(5) c > C0 then (1.5)–(1.7) has no positive solution.

Figure 21 shows the bifurcation diagram for a = 11, b = 1.
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Figure 21. ρ vs c for a = 11, b = 1

Theorem 3.14. For b = 1, if a ∈ (a8,∞) then there exist Ci > 0, i = 0, 1, 2, 3,
such that if

(1) C3 ≤ c < C2 then (1.5)–(1.7) has exactly 5 positive solutions.
(2) 0 ≤ c < C3 or c = C2 then (1.5)–(1.7) has exactly 4 positive solutions.
(3) C2 < c ≤ C1 then (1.5)–(1.7) has exactly 3 positive solutions.
(4) C1 < c ≤ C0 then (1.5)–(1.7) has a unique positive solution.
(5) c > C0 then (1.5)–(1.7) has no positive solution.

The bifurcation diagram for a = 40, b = 1 is shown in Figure 22.
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