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COMPARISON OF TIME STEPPING SCHEMES ON THE
CABLE EQUATION

CHUAN LI, VASILIOS ALEXIADES

Abstract. Electrical propagation in excitable tissue, such as nerve fibers and
heart muscle, is described by a parabolic PDE for the transmembrane voltage

V (x, t), known as the cable equation,

1

ra

∂2V

∂x2
= Cm

∂V

∂t
+ Iion(V, t) + Istim(t)

where ra and Cm are the axial resistance and membrane capacitance. The

source term Iion represents the total ionic current across the membrane, gov-

erned by the Hodgkin-Huxley or other more complicated ionic models. Istim(t)
is an applied stimulus current.

We compare the performance of various low and high order time-stepping

numerical schemes, including DuFort-Frankel and adaptive Runge-Kutta, on
the 1D cable equation.

1. Biological Background

It has been known since the 1940’s that there is an electrical potential difference
between the inside and the outside of nerve cells. However, researchers lacked meth-
ods to measure the membrane potential directly at that time. In 1952, Hodgkin
and Huxley published a series of articles, based on experimental data obtained by
others, in which they established the first successful electrophysiological model and
unveiled the key properties of the ionic currents underlying the nerve action po-
tential [5]. Inspired by their work and by experimental developments, many other
Hodgkin-Huxley type ionic models have been created since then [4]. Due to limited
availability of human cardiomyocytes for experimental research, most detailed elec-
trophysiological models have been formulated from animal cardiomyocytes. Luo-
Rudy models [8, 9, 10], which were formulated for guinea pig ventricular cells, are
among the most widely used. In this paper, we focus on human cardiac cells with
the Luo-Rudy I (1991) ionic model [3].
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2. Mathematical Model

A chain of cells, and a single cell with its equivalent circuit, are represented
in Figure 1 [13] and Figure 2 [6], respectively. The membrane is represented by
discrete elements in parallel. The membrane capacitance is Cm, the membrane
resistance is rm and the intracellular resistance is represented by ra.

Figure 1. A typical single cell column model describing discon-
tinuous propagation

Figure 2. Cell with the axial and membrane currents and its
equivalent circuit

The equation which describes the electrical behavior of this system is a nonlinear
parabolic equation [7, 12], known as the cable equation:

1
ra

∂2V

∂x2
= Cm

∂V

∂t
+ I(V, t), with I(V, t) = Iion(V, t) + Istim(t), (2.1)

where V is the transmembrane voltage, ra and Cm are the axial resistance and
membrane capacitance. Iion represents the total ionic current, and Istim(t) is the
applied stimulus current.

In the Luo-Rudy 1991 model [8], Iion consists of several ionic currents generated
by sodium, potassium and calcium ions,

Iion(V, t) = INa(V ) + ISI(V ) + IK1(T )(V ). (2.2)

These three currents depend on seven activation and inactivation “gates”: m, h, j,
d, f , X, Cai, which are governed by ODEs of the form

dg

dt
= αg(V )(1− g)− βg(V )g, g = m,h, j, d, f, X, Cai, (2.3)

where the α’s and β’s, taking values between 0 and 1, are given by explicit formulas
as functions of voltage V [8].

The stimulus current Istim, is the key to exciting the system. In the heart, the
stimulus is supplied by the Sino-Atrial Node. Here we apply a single stimulus, of
duration 1 µs and strength −200 µA/cm2, on a short segment [0, 10 µm] at one
end of the cable.
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The membrane capacitance Cm is set at 1 µF/cm2 and the cable radius a is
set at 4 µm. The intracellular and extracellular cytoplasmic resistivities are set to
be Ri(0) = 340 kΩcm and Ri(1) = 1000 kΩcm, respectively. The corresponding
resistances ra are computed by

ra(k) = 2πa
Ri(k)
πa2

=
2Ri(k)

a
for k = 0, 1. (2.4)

We assume the cable has insulted boundaries, and the system starts from a steady
state with initial values of Vinit = −84.54816 mV , minit = 0.00167, hinit = 0.9833,
jinit = 0.98952, dinit = 0.00298, finit = 0.99998, Xinit = 0.0564 and Caiinit =
0.0002.

The model consists of the PDE (2.1), the seven ODEs (2.3) and the above initial
setup. See [3] for more details.

3. Numerical Schemes

We discretize the cable into M control volumes of uniform length ∆x such that
each cell contains multiple control volumes.

Using standard Finite Volume discretization of the PDE (2.1), and applying
equation (2.3) on each control volume yields a system of 8M ODEs,

dVk

dt
=

1
Cm

[Fk− 1
2
− Fk+ 1

2

∆x
− I(Vk, tn)

]
, I(Vk, tn) = Iion(Vk, tn) + Istim(tn),

dgk

dt
= αgk

(Vk)(1− gk)− βgk
(Vk)gk, k = 1, . . . ,M,

(3.1)
where Vk and gk = mk, hk, jk, dk, fk, Xk, Caik are the voltage and corresponding
gates on the kth control volume, and Fk− 1

2
and Fk+ 1

2
are the (diffusive) fluxes at

the left and right faces, respectively,

Fk− 1
2

=
1

rak− 1
2

Vk−1 − Vk

∆x
, k = 2, . . . ,M (3.2)

We apply the following numerical schemes to solve the ODE system (3.1).

Super-Time-Stepping (STS) Scheme. Super time-stepping is a simple way to
accelerate explicit schemes for parabolic problems [1]. One superstep ∆T consists
of N substeps ∆τ1,. . . ,∆τN , with optimal substeps ∆τj given explicitly by

∆τj = ∆texpl

[
(−1 + ν) cos

(2j − 1
N

π

2

)
+ 1 + ν

]−1

j = 1, . . . , N, (3.3)

where ∆texpl is the time step satisfying the CFL stability condition for the explicit
scheme. Thus, we choose an integer N and a small damping parameter ν > 0,
and instead of executing N uniform steps ∆texpl we execute N Chebyshev steps
∆τ1, . . . ,∆τN . One can show the relation

∆T =
N∑

j=1

∆τj = ∆texpl
N

2
√

ν

[ (1 +
√

ν)2N − (1−
√

ν)2N

(1 +
√

ν)2N + (1−
√

ν)2N

]
, (3.4)

which yields
∆T → N2∆texpl as ν → 0. (3.5)

Noting that N explicit steps, each of length ∆texpl, cover time N∆texpl, we see that
executing a superstep consisting of N substeps covers a time interval N times longer
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(when ν ≈ 0). Thus, superstepping is (up to) N times faster than the standard
explicit scheme, at essentially the same cost. This is where the speed-up comes
from.

Note that the method ensures stability only at the end of each superstep. Only
the values at the end of each superstep approximate the solution of the problem.
STS reduces to plain Forward Euler by setting parameters N = 1, ν = 0.

In addition to speeding up the computation, the super-time-stepping scheme is
extremely simple to implement in any existing explicit code.

Adaptive Runge Kutta (RK) Schemes. The package we chose to perform
adaptive Runge Kutta methods is RKSUITE from Netlib [2]. RKSUITE is a suite
of codes based on explicit Runge-Kutta methods for the numerical solution of the
initial value problem for a first order system of ordinary differential equations.
It supersedes some widely used codes. Three adaptive methods, namely, RK23,
RK45 and RK78 are provided in this suite. Adaptive time step ∆t is controlled
by two parameters, relative tolerance tol and threshold thres provided by the user.
To compare their performance, we set tol = 10−3 and thres = 10−5 in all three
methods for our tests.

DuFort-Frankel (DF) Scheme. DuFort-Frankel is an explicit, 2-step, second
order accurate in space and time, theoretically unconditionally stable scheme [11].
Applying centered finite difference in space and first order Forward Euler in time
on equation (2.1) results in

V n+1
k = V n

k +
∆t

Cm∆x2

(V n
k−1 − V n

k

rak− 1
2

−
V n

k − V n
k+1

rak+ 1
2

)
+

∆t

Cm
I(V n

k , tn). (3.6)

Then V n
k is replaced by the average over two time steps (V n+1

k + V n−1
k )/2,

producing a 2-step scheme. To avoid small oscillations near the steady state, and
keep the scheme explicit, the average of voltage at previous two time steps is used
to evaluate the ionic current Iion,

V n+1
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1
1 + ∆t

Cm∆x2
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2
, tn

)]
.

(3.7)
On the other hand, the ODEs (2.3) for the gates are discretized by forward Euler,

and again evaluated at the average of the two previous voltage values,

gn+1
k = gn

k + ∆t
[
αgn

k
(
V n

k + V n−1
k

2
)(1− gn

k )− βgn
k
(
V n

k + V n−1
k

2
)gn

k

]
. (3.8)

Being aware of when the stimulus takes place, a time-step factor dtfac is in-
troduced to speed up the computation here. That is, ∆texpl is used in a small
time period containing the moment stimulus happens, and a larger time step
∆tbig = dtfac∗∆texpl is used elsewhere. In the simulations, we used dtfac = 1 and
dtfac = 2, denoting the schemes as DF1 and DF2. They produce similar results.
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4. Numerical Simulations

To compare the performance of the above numerical schemes, besides execution
time, the following biological quantities are significant:

Action Potential Duration (APD). An action potential is a transient alteration
of the transmembrane potential (voltage) generated by the activity of voltage-gated
ion channels embedded in the cell membrane. The duration is determined by mea-
suring how long the potential V at a location stays above a certain cut-off value.
In our computations, APD is determined by setting a cut-off voltage 90% of the
initial equilibrium voltage.

Propagation Speed (speed). It measures how fast the action potential propa-
gates along the cable. It is measured by the difference of the starting time of APDs
on the first and the last nodes.

Maximum voltage (Vmax) and maximum rate of change (dV/dtmax). These
two quantities are calculated, for each scheme, at the nodes, excluding those stim-
ulated in the range [0, stim range].

A C program has been written implementing the schemes. The numerical exper-
iments have been performed on a workstation equipped with dual AMD Opteron
252 CPUs and 2GB memory, using the Portland Group pgCC compiler. The re-
sulting voltage history at several equally separated nodes, and gates history at the
first node are shown in Figure 3-5. All schemes produce essentially identical plots.
Table 1 lists values obtained with each scheme on a cable of length 5 mm and one
of length 10 mm. The last column shows the cost of each computation (in seconds
of CPU time).

Figure 3. Voltage history obtained by STS with N = 4 and ν =
0.07 on a 5mm cable

Based on our numerical experiments and results shown in Table 1, we observe
the following:
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• All numerical schemes produce identical APD and very similar propagation
speeds.

• The high order adaptive RK schemes are the most costly. High cost of
evaluation of the source term Iion is the key to this phenomenon. To make
RK family and other adaptive methods useful in large size problems, we
plan to test a “library” method in which α’s and β’s in the ODEs are
precomputed and evaluated by interpolation as needed.

• The first node, which receives full strength of the stimulus, has significantly
higher amplitude than the rest of the nodes which receive stimulus via
propagation. This indicates that the ionic currents are highly sensitive to
the change of voltage. This high sensitivity restricts the choice of dtfac
used in the DF scheme. In fact, dtfac = 2 is the best we can do. Larger
dtfac makes the sodium gate (m) oscillate after resting for a while and
eventually blow up.

• All schemes produce very similar Vmax and dV/dtmax for 5mm and 10mm
cables and also for longer cables we tested.

• On the basis of accuracy and efficiency (CPU time), STS and DF2 are the
winners among the schemes tested.

Figure 4. Voltage history obtained by DF with dtfac = 2 (DF2)
on a 10mm cable

Future Work. We plan to implement and compare other numerical schemes and
other cardiac ionic models. Meanwhile, parallel codes for 1-, 2- and 3- dimensional
models are under development to speed up the computations. Simulating cardiac
arrhythmias is the goal.
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Figure 5. Gates history at the 1st node obtained by RK45 on the
10mm cable

Table 1. Comparison of timings on 1D cables with ∆x = 4µm
up to tmax = 2000ms

scheme APD[ms] speed[cm/s] Vmax[mV] dV/dtmax[V/s] CPU[s]

5 mm cable
FWD 371 1.244 40 380 515
STS 371 1.212 42 385 284
RK23 371 1.258 41 371 2116
RK45 371 1.258 40 370 2815
RK78 371 1.258 41 369 5877
DF1 371 1.246 41 379 543
DF2 371 1.234 41 379 278

10 mm cable
FWD 371 1.242 40 380 1031
STS 371 1.210 42 385 573
RK23 371 1.256 41 371 4075
RK45 371 1.256 40 370 5630
RK78 371 1.256 41 369 10067
DF1 371 1.244 41 379 1075
DF2 371 1.232 41 379 553
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