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STEKLOV SPECTRUM AND NONRESONANCE FOR ELLIPTIC
EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS

NSOKI MAVINGA, MUBENGA N. NKASHAMA

Abstract. This article is devoted to the solvability of second order elliptic

partial differential equations with nonlinear boundary conditions. We prove

existence results when the nonlinearity on the boundary interacts, in some
sense, with the Steklov spectrum. We obtain nonresonance results below the

first Steklov eigenvalue as well as between two consecutive Steklov eigenvalues.
Our method of proof is variational and relies mainly on minimax methods in

critical point theory.

1. Introduction

This paper concerns existence results for second order elliptic partial differential
equations with (possibly) nonlinear boundary conditions

−∆u + c(x)u = 0 in Ω,

∂u

∂ν
= g(x, u) on ∂Ω,

(1.1)

where Ω ⊂ Rn is a bounded domain with boundary ∂Ω of class C0,1, and ∂/∂ν :=
ν · ∇ is the outward (unit) normal derivative on ∂Ω.

Throughout this paper we shall assume that n ≥ 2 and that the function c :
Ω → R, and the nonlinearity g : Ω× R → R satisfy the following conditions.

(C1) c ∈ Lp(Ω) with p ≥ n/2 when n ≥ 3 (p ≥ 1 when n = 2), and c ≥ 0 a.e. on
Ω with strict inequality on a set of positive measure; that is,

∫
Ω

c(x) dx > 0.
(C2) g ∈ C(Ω× R).
(C3) There exist constants a1, a2 > 0 such that

|g(x, u)| ≤ a1 + a2|u|s with 0 ≤ s <
n

n− 2
.

The purpose of this paper is to study the existence of weak solutions of problem
(1.1) in which the nonlinearity interacts, in some sense, with the Steklov spectrum.
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By a weak solution of (1.1) we mean a function u ∈ H1(Ω) such that∫
∇u∇v +

∫
c(x)uv =

∮
g(x, u)v for any v ∈ H1(Ω), (1.2)

where
∫

denotes the (volume) integral on Ω,
∮

denotes the (surface) integral on ∂Ω,
and throughout this paper, H1(Ω) denotes the usual real Sobolev space of functions
on Ω.

The nonlinear problem, (1.1), has been studied by many authors in the frame-
work of sub and super-solutions method. We refer e.g. to Amann [1], Mawhin
and Schmitt [11], and references therein. Restricting the domain of the nonlinear-
ity (through a slightly modified problem) to the sub and super solutions interval,
the methods used in that framework reduce the problem to essentially considering
bounded nonlinearities and then using a priori estimates and fixed points or topo-
logical degree arguments. Since it is based on (the so-called) comparison techniques,
the (ordered) sub-super solutions method does not apply when the nonlinearities
are compared with higher eigenvalues.

In recent years much work has been devoted to the study of the solvability of el-
liptic boundary value problems (with linear homogeneous bounday condition) where
the reaction nonlinearity in the differential equation interacts with the eigenvalues
of the corresponding linear differential equation with linear homogeneous bound-
ary condition (resonance and nonresonance problems). For some recent results in
this direction we refer to the papers by Castro [4], de Figueiredo and Gossez [6],
Rabinowitz [14], and the bibliography therein.

Concerning Problem (1.1) with boundary eigenparameters, there are some (scat-
tered) results in the literature by several authors. For the linear case, we mention
the work by Steklov [15] who initiated the problem on a disk in 1902, Amann [1],
Bandle [3], and more recently Auchmuty [2]. To the best of our knowledge, not
much has been done for the nonlinear problem (1.1) in the framework of the Steklov
spectrum. A few results on a disk (n = 2) were obtained by Klingelhöfer [7] and
Cushing [5]. (The results in [7] were significantly generalized to higher dimensions
in [1] in the framework of sub and super-solutions method as aforementioned.) We
also refer to Klingelhöfer [8] where monotonicity methods were used for nonlinear-
ities near the first eigenvalue.

In this paper, we prove existence results when the nonlinearity involved asymp-
totically interacts, in some sense, with the Steklov spectrum. We derive the so-called
nonresonance results below the first Steklov eigenvalue as well as between two con-
secutive Steklov eigenvalues. This appears to be the first time that the boundary
nonlinearity g is compared with higher Steklov eigenvalues. Our method of proof is
variational and relies mainly on a priori estimates and minimax methods in critical
point theory.

This paper is organized as follows. In Section 2 we have collected some rele-
vant preliminary results on linear Steklov eigenproblems which are needed for our
purposes. (The proofs of these auxiliary results may be found in a recent paper of
Auchmuty [2].) We also state our main results which consist of relating the asymp-
totic behavior of the nonlinearity involved with the Steklov spectrum. In Section 3
we first provide some auxiliary results on Critical Point Theory that are needed for
the proofs of our main results. Then we give the proofs of our main results, and a
few remarks to relate our results to the previous ones in the literature.
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Unlike some previous approaches to problems with nonlinear boundary condi-
tions, all of our results are based upon minimax methods in Critical Point Theory
(see e.g. Rabinowitz [14] and references therein).

2. Preliminaries on Steklov problems and main results

To put our results into context, we have collected some relevant results on linear
Steklov eigenproblems needed for our purposes. We refer to a very recent and
interesting paper of Auchmuty [2] for the proofs of the results regarding Steklov
eigenproblems. We then state the main results which consist of relating, in some
sense, the asymptotic behavior of the nonlinearity involved with the first Steklov
eigenvalue, then subsequently with two consecutive higher Steklov eigenvalues.

Consider the linear problem

−∆u + c(x)u = 0 in Ω,

∂u

∂ν
= µu on ∂Ω.

(2.1)

The Steklov eigenproblem is to find a pair (µ, ϕ) ∈ R×H1(Ω), ϕ 6≡ 0, such that∫
∇ϕ∇v +

∫
c(x)ϕv = µ

∮
ϕv for any v ∈ H1(Ω).

Picking v = ϕ, and subsequently v ∈ H1
0 (Ω) one immediately sees that if there is

such an eigenpair, then µ > 0 and ϕ ⊥ H1
0 (Ω) in the H1-c-inner product defined

by

(u, v)c =
∫
∇u∇v +

∫
c(x)uv, (2.2)

with the associated norm denoted by ‖u‖c; which is equivalent to the standard
norm on H1(Ω). This implies that one can split

H1(Ω) = H1
0 (Ω)⊕c [H1

0 (Ω)]⊥ (2.3)

as a direct orthogonal sum (in the sense of H1-c-inner product).
Besides the Sobolev spaces, we shall make use, in what follows, of the real

Lebesgue spaces Lq(∂Ω), 1 ≤ q ≤ ∞, and the compactness of the trace opera-
tor Γ : H1(Ω) → Lq(∂Ω) for 1 ≤ q < 2(n−1)

n−2 (see e.g. Kufner, John and Fuč́ık [9,
Chap. 6] and references therein). Sometimes we will just use u in place of Γu when
considering the trace of a function on ∂Ω. Throughout this paper we denote the
L2(∂Ω)-inner product by

(u, v)∂ =
∮

uv (2.4)

and the associated norm by ‖u‖∂ .
Assuming that the above assumptions are satisfied, Auchmuty [2] recently proved

that, for n ≥ 2, the Steklov eigenproblem (2.1) has a sequence of real eigenvalues

0 < µ1 ≤ µ2 ≤ . . . ≤ µj ≤ . . . →∞, as j →∞,

each eigenvalue has a finite-dimensional eigenspace. The eigenfunctions ϕj corre-
sponding to these eigenvalues form a complete orthonormal family in [H1

0 (Ω)]⊥,
which is also complete and orthogonal in L2(∂Ω). Moreover, the trace inequality

µ1

∮
(Γu)2 ≤

∫
|∇u|2 +

∫
c(x)u2 (2.5)
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holds for all u ∈ H1(Ω), where µ1 > 0 is the least Steklov eigenvalue for (2.1). If
equality holds in (2.5), then u is a multiple of an eigenfunction of (2.1) correspond-
ing to µ1.

Theorem 2.1 (Below the first Steklov eigenvalue). Assume (C1)–(C3) hold. Let
the potential G(x, u) =

∫ u

0
g(x, s) ds be such that the following condition holds.

(C4) There exists µ ∈ R such that

lim sup
|u|→∞

2G(x, u)
u2

≤ µ < µ1

uniformly for x ∈ Ω.
Then the nonlinear equation (1.1) has at least one solution u ∈ [H1

0 (Ω)]⊥.

Consequently, we derive nonresonance below the first eigenvalue associated with
the Steklov problem. Notice that we impose conditions on the potential of the
boundary nonlinearity g rather than on g itself as was done in the previous papers
[1, 5, 7, 8].

In the next result, we are concerned with the case where the asymptotic behavior
of the nonlinearity is related to two consecutive Steklov eigenvalues. We impose
conditions on the asymptotic behavior of the nonlinearity g(x, u) directly. These
conditions imply similar ones on the asymptotic behavior of the potential G(x, u).

Theorem 2.2 (Between consecutive Steklov eigenvalues). Assume (C1)–(C3) are
met, and that the following condition holds.

(C5) There exist constants a, b ∈ R such that

µj < a ≤ lim inf
|u|→∞

g(x, u)
u

≤ lim sup
|u|→∞

g(x, u)
u

≤ b < µj+1,

uniformly for x ∈ Ω.
Then the nonlinear equation (1.1) has at least one solution u ∈ [H1

0 (Ω)]⊥.

We will use a variational approach to prove Theorems 2.1–2.2.

3. Proofs of main results

We first state some auxiliary results which will be needed in the sequel. The
following result on the continuity of the Nemytsǩıi operator on the boundary readily
follows from the arguments similar to those used in the proof of [14, Proposition
B.1]. For the last two auxiliary results, we refer to [10] for the proofs.

Proposition 3.1. Suppose that g satisfies (C2) and there are constants p, q ≥ 1
and a1, a2 such that for all x ∈ Ω, ξ ∈ R,

|g(x, ξ)| ≤ a1 + a2|ξ|p/q,

Then the Nemytsǩıi operator ϕ(x) → g(x, ϕ(x)) is continuous from Lp(∂Ω) to
Lq(∂Ω).

Proposition 3.2. Assume that (C1)–(C3) hold. Then the functional associated
with (1.1) defined by I : H1(Ω) → R with

I(u) =
1
2

[ ∫
|∇u|2 +

∫
c(x)u2

]
−

∮
G(x, u), (3.1)
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is well-defined and of class C1 with Fréchet derivative I ′(u) in (H1(Ω))∗ given by

I ′(u)v =
∫
∇u∇v +

∫
c(x)uv −

∮
g(x, u)v for every v ∈ H1(Ω). (3.2)

Moreover, J(u) =
∮

G(x, u) is weakly continuous, and J ′ is compact.

The next result concerns the Palais-Smale condition (PS) which builds some
“compactness” into the functional I. It requires that any sequence {um} in H1(Ω)
such that (i) {I(um)} is bounded, (ii) limm→∞ I ′(um) = 0, be precompact.

Owing to the next proposition, to get (PS) it suffices to show that (i)–(ii) imply
that {um} is a bounded sequence.

Proposition 3.3. Assume that (C1)–(C3) hold. If {um} is a bounded sequence in
H1(Ω) such that limm→∞ I ′(um) = 0, then {um} has a convergent subsequence.

Now we prove Theorems 2.1–2.2. We will use of the Saddle Point Theorem and
its variant proved in [14].

Proof of Theorem 2.1. Observe that condition (C4) implies that for every ε > 0
there is r = r(ε) > 0 such that

2G(x, u)
u2

≤ µ + ε (3.3)

for all x ∈ Ω and all u ∈ R with |u| > r. Combining (3.3) and (C3), there exists a
constant Mε > 0 such that

∀x ∈ Ω, ∀u ∈ R, G(x, u) ≤ 1
2
(µ + ε)u2 + Mε. (3.4)

To prove that (1.1) has at least one solution, it suffices, according to [14, Theorem
2.7], to show that the functional I is bounded below and that it satisfies the (PS)
condition. Under the assumptions of Theorem 2.1, we shall show that the functional
I is coercive on H1(Ω); that is,

I(u) →∞ as ‖u‖c →∞, (3.5)

which would imply that I is bounded below and that the Palais-Smale is satisfied.
Now let us prove that I is coercive on H1(Ω). Assume ‖u‖c →∞, then by using

the continuity of the trace operator from H1(Ω) into L2(∂Ω), we get that either
‖u‖∂ → ∞ or ‖u‖∂ < K, where K is a positive constant. We claim that in either
case I(u) →∞.

First, suppose that ‖u‖∂ < K. Since I(u) = 1
2‖u‖

2
c −

∮
G(x, u), using (3.4), one

has that I(u) ≥ 1
2‖u‖

2
c − 1

2 (µ + ε)‖u‖2
∂ − C, where C is a positive constant. Hence

I(u) →∞ as ‖u‖c →∞.
Now, suppose ‖u‖∂ →∞. Using (2.5), one has I(u) ≥ 1

2 (µ1 − (µ + ε)) ‖u‖2
∂−C.

Since µ1 > µ, one gets that I(u) →∞ as ‖u‖c →∞. Thus I is coercive.
By combining condition (C3) and the coercivity of I, one deduces that I is

bounded from below; that is, there exists K ∈ R such that I(u) ≥ K, for all
u ∈ H1(Ω). It follows immediately from the coercivity of I in (3.5) and Proposition
3.3 that I satisfies (PS). By [14, Theorem 2.7], it follows that I has a critical point
u ∈ H1(Ω), that is, I ′(u) = 0. Hence, u satisfies (1.2), and thus (1.1) has at
least one solution. Note that u ∈ [H1

0 (Ω)]⊥ by the definition (1.2). The proof is
complete. �
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Proof of Theorem 2.2. Under the assumptions of Theorem 2.2 we need to show that
the conditions of the Saddle Point Theorem [14] are fulfilled. Let

V = span{ϕk| k ≤ j}, X = Y ⊕cH1
0 (Ω), where Y = span{ϕk : k ≥ j + 1}. (3.6)

It follows from (2.3) and (3.6) that

H1(Ω) = V ⊕c X. (3.7)

We need to prove that there exists a constant r > 0 such that

sup
∂D

I < inf
X

I, (3.8)

where D = {v ∈ V : ‖u‖c ≤ r}. Assuming that this is the case, and the Palais-
Smale condition is satisfied, we deduce by the Saddle Point Theorem [14] that I
has a critical point. Therefore, (1.1) has at least one solution.

We shall show that the functional I is coercive on X and −I is coercive on V
which would imply that (3.8) is satisfied by choosing r > 0 sufficiently large.

Notice that condition (C5) implies a similar condition on the potential G; that
is, the constants a, b ∈ R are such that for all x ∈ Ω,

a ≤ lim inf
|u|→∞

2G(x, u)
u2

≤ lim sup
|u|→∞

2G(x, u)
u2

≤ b. (3.9)

Combining (C3) and (3.9), one gets that for every ε > 0, all x ∈ Ω, all u ∈ R, we
have

(a− ε)
u2

2
− C ≤ G(x, u) ≤ (b + ε)

u2

2
+ C , (3.10)

where C = C(ε) is a positive constant.
On the one hand, it follows that for every u ∈ V one has that

I(u) =
1
2
‖u‖2

c−
∮

G(x, u) ≤ 1
2
‖u‖2

c−
1
2
(a−ε)

∮
u2+C̃ =

1
2
‖u‖2

c−
1
2
(a−ε)‖u‖2

∂ +C̃.

Using the Parseval identities obtained in [2, p. 331] it follows that

I(u) ≤ 1
2

(
1− a

µj
+

ε

µj

)
‖u‖2

c + C̃.

Since µj < a, it follows that 1 − a
µj

+ ε
µj

< 0, provided ε > 0 is sufficiently small.
Therefore, by going to the limit as ‖u‖c →∞, one gets

I(u) → −∞. (3.11)

On the other hand, for every u ∈ X, it follows from (3.6) that u = u0 +u, where
u0 ∈ H1

0 (Ω) and u ∈ Y . Taking into account the c-orthogonality of u and u0 in
H1(Ω), one has

I(u) =
1
2
‖u0‖2

c +
1
2
‖u‖2

c −
∮

G(x, u) ≥ 1
2
‖u0‖2

c +
1
2

(
‖u‖2

c − (b + ε)‖u‖2
∂

)
− C̃.

Therefore, using the Parseval identities obtained in [2, p. 331] it follows that

I(u) ≥ 1
2
‖u0‖2

c +
1
2

(
1− b

µj+1
− ε

µj+1

)
‖u‖2

c − C̃.

Since b < µj+1, it follows that for ε > 0 sufficiently small, 1 − b
µj+1

− ε
µj+1

> 0.
Therefore,

I(u) ≥ 1
2

(
1− b

µj+1
− ε

µj+1

)
‖u‖2

c − C̃.
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By going to the limit as ‖u‖c →∞, on gets

I(u) →∞ as ‖u‖c →∞.

Thus, I is coercive on X. Furthermore, it follows from the coercivity of I on X
and condition (C3) that I is bounded below by a constant on X. Therefore, using
(3.11) we obtain the assertion (3.8) for some constant r > 0.

It remains to prove that the functional I satisfies the Palais-Smale condition.
It suffices, according to Proposition 3.3, to show that for any sequence {um} in
H1(Ω) such that {I(um)} is bounded and limm→∞ I ′(um) = 0, it follows that
{um} is bounded.

Notice that Condition (C5) implies that for every ε > 0 there exists r > 0 such
that for |u| ≥ r,

a− ε ≤ g(x, u)
u

≤ b + ε for all x ∈ Ω. (3.12)

Let us define γ : Ω× R → R by

γ(x, u) =

{ g(x,u)
u for |u| ≥ r

g(x,r)+g(x,−r)
2r2 u + g(x,r)−g(x,−r)

2r for |u| < r.

The function γ is continuous in Ω× R since g is, moreover by (3.12) one has

a− ε ≤ γ(x, u) ≤ b + ε for all u ∈ R and all x ∈ Ω. (3.13)

Define h : Ω× R → R by

h(x, u) = g(x, u)− γ(x, u)u, (3.14)

then it follows from the continuity of g and γ that

|h(x, u)| ≤ K, (3.15)

for all (x, u) ∈ Ω× R, where K > 0 is a constant.
Now, let {um} ⊂ H1(Ω) be such that {I(um)} is bounded and limm→∞ I ′(um) =

0. By (3.7) one has um = vm +xm, where vm ∈ V and xm ∈ X. Moreover, by (3.6)
xm = x0

m + xm, where x0
m ∈ H1

0 (Ω) and xm ∈ Y.
Since limm→∞ I ′(um) = 0, it follows that for every ε > 0, there exists N > 0 such
that for all m ≥ N ,

sup
ϕ 6=0

|I ′(um)ϕ|
‖ϕ‖c

< ε.

Set ϕ = xm− vm for m large. Then, I ′(um)(xm− vm) < ε‖xm− vm‖c. Taking into
account the c-orthogonality of xm and vm in H1(Ω) and (3.14), one gets from the
definition of I ′ that

‖xm‖2
c − ‖vm‖2

c −
∮

γ(x, um)x2
m +

∮
γ(x, um)v2

m

< ε(‖xm‖c + ‖vm‖c) +
∮

h(x, um)xm −
∮

h(x, um)vm.

By using (3.13), (3.15) and the continuity of the trace operator, one obtains(
‖x0

m‖2
c + ‖xm‖2

c

)
− ‖vm‖2

c − (b + ε)‖xm‖2
∂ + (a− ε)‖vm‖2

∂

< ε(‖xm‖c + ‖vm‖c) + K̃‖xm‖c + K̃‖vm‖c,
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Now, using the Parseval identities obtained in [2, p. 331] it follows that

‖x0
m‖2

c +
(
1− b

µj+1
− ε

µj+1

)
‖xm‖2

c +
( a

µj
− ε

µj
− 1

)
‖vm‖2

c

< K0(‖xm‖c + ‖vm‖c).

Since b < µj+1 and µj < a, one has that, for ε > 0 sufficiently small,

δ
(
‖x0

m‖2
c + ‖xm‖2

c + ‖vm‖2
c

)
< K0(‖xm‖c + ‖vm‖c),

where 0 < δ < min
{(

1− b
µj+1

− ε
µj+1

)
,
(

a
µj
− ε

µj
− 1

)}
. Hence,

‖um‖2
c < K̃0‖um‖c,

which implies that {um} is bounded in H1(Ω). Therefore, by Proposition 3.3, I
satisfies the Palais-Smale condition. The proof is complete. �

Remark 3.4. This appears to be the first time that the boundary nonlinearity
g is compared with higher Steklov eigenvalues (also see e.g. [10]). Even at the
first Steklov eigenvalue, we impose conditions on the potential of the boundary
nonlinearity g rather than on g itself as was done in previous papers. Notice that,
in this case, we do not require a (one-sided) linear growth on g as was done in
[1, 7, 8] nor do we require monotonicity conditions as was done in [7, 8]. This work
is still in progress, and we hope that more general results will appear elsewhere.

Remark 3.5. Our results remain valid if one considers nonlinear equations with a
more general linear part (in divergence form) with variable coefficients.

−
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+ c(x)u = 0 in Ω,

∂u

∂ν
+ σ(x)u = g(x, u) on ∂Ω,

(3.16)

where σ ∈ L∞(∂Ω) with σ(x) ≥ 0 a.e. on ∂Ω, and ∂/∂ν := ν · A∇ is the outward
(unit) conormal derivative. The matrix A(x) :=

(
aij(x)

)
is symmetric with aij ∈

L∞(Ω) such that there is a constant γ > 0 such that for all ξ ∈ Rn,

〈A(x)ξ, ξ〉 ≥ γ|ξ|2 a.e. on Ω.
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[9] A. Kufner, O. John and S. Fuč́ık; Function Spaces, Noordhoff International Publishing, Ley-
den, The Netherlands, 1977.



EJDE-2010/CONF/19/ STEKLOV SPECTRUM AND NONRESONANCE 205

[10] N. Mavinga; Nonlinear Second Order Parabolic and Elliptic Equations with Nonlinear

Boundary Conditions, PhD Dissertation, University of Alabama at Birmingham, 2008.

[11] J. Mawhin and K. Schmitt; Corrigendum: Upper and lower solutions and semilinear sec-
ond order elliptic equations with non-linear boundary conditions, Proc. Royal Soc. Edinburg

A100 (1985), p. 361.

[12] R. C. McOwen; Partial Differential Equations: Methods and Applications, Prentice Hall,
Upper Saddle River, N.J., 1996.

[13] M. N. Nkashama; Saddle point theorem and nonlinear scalar Neumann boundary value prob-

lems, J. Austral. Math. Soc. (Series A) 55 (1993), 386-402.
[14] P. H. Rabinowitz; Minimax Methods in Critical Point Theory with Applications to Differen-

tial Equations, CBMS Regional Conf. Series in Math., no. 65, Amer. Math. Soc., Providence,

RI, 1986.
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