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BOUNDED SOLUTIONS OF NONLINEAR PARABOLIC
EQUATIONS

NSOKI MAVINGA, MUBENGA N. NKASHAMA

Abstract. We are concerned with bounded solutions existing for all times for
nonlinear parabolic equations with possibly nonlinear boundary conditions. A

counterexample shows that, without an additional condition, a (weak) max-

imum principle does not hold for linear problems defined on the entire real
line in time. We consider solutions bounded for all times and derive a (weak)

maximum principle which is valid on the entire real line. Using comparison

techniques, a priori estimates and approximation methods, we prove the ex-
istence and, in some cases, positivity and uniqueness of bounded solutions

existing for all times.

1. Introduction

Let Ω ⊂ RN be a bounded, open and connected set with boundary ∂Ω. We
consider nonlinear second order parabolic boundary value problems of the form

∂u

∂t
(x, t)− Lu(x, t) = f(x, t, u) in Ω× R,

Bu = ϕ(x, t, u) on ∂Ω× R,

sup
Ω×R

|u(x, t)| < ∞,

(1.1)

where L is a second order, uniformly elliptic differential operator with time depen-
dent coefficients and B is a linear first-order boundary operator. The coefficients
of the operators L and B are (locally) Hölder continuous and bounded. We are
interested in bounded solutions existing for all times. Steady-state solutions, time-
periodic as well as almost-periodic solutions are special cases of bounded solutions
existing for all times.

Many papers have been devoted to the study of solutions of parabolic equations
existing for all times. To the best of our knowledge, the time-dependent bounded
coefficients case was initiated by Fife in [5] for linear equations with Dirichlet bound-
ary conditions. (We also refer to Cannon [3, pp. 101–110] for the one-dimensional
heat equation with constant coefficients.) Some recent results and a bibliography
may be found in Castro and Lazer [4], Fife [5], Hess [9], Krylov [10] and Shen and
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Yi [17], among others. We also refer to [7, 15] and references therein for the ordi-
nary differential equations case. In [5, 10] a linear problem is considered where it is
assumed that the coefficients of the differential equations and all data are bounded
and uniformly Hölder continuous. In [9], the existence of periodic solutions for non-
linear problems was proved by assuming that the coefficients of the operator and
all the data are time-periodic. In the periodic case considered in [9], the bound-
ary conditions were still linear and time-independent. Since we are dealing with
solutions existing for all times for equations with possibly nonlinear boundary con-
ditions, many tools used for compact or semi-infinite time interval are not directly
applicable, mainly due to the lack of compactness. Also, unlike ordinary differential
equations, forward bounded solutions to nonlinear parabolic equations cannot be
extended in the past unless very stringent conditions are imposed.

This paper is organized as follows. In Section 2, we first show with a counterex-
ample that the (weak) maximum principle fails when solutions exist for all times,
even when the coefficients in the equation are very smooth. We then establish
L∞-a priori estimates for bounded solutions to linear boundary value problems
and derive a weak maximum principle which is valid on the entire real line in time.
The counterexample shows that an additional condition is needed for the maxi-
mum or comparison principle to hold. We then formulate the general assumptions
and state our main result concerning the existence and, in some cases, positivity
and uniqueness of bounded solutions existing for all times for nonlinear problems
with (possibly) nonlinear boundary conditions. In Section 3, we prove some auxil-
iary results which are needed for the proof of our main result. Using these results
with comparison techniques, Gagliardo-Nirenberg type interpolation inequalities, a
priori estimates obtained herein and approximation methods, we prove our main
result. In the proof of our main result, we use an approximation argument. How-
ever, a delicate point in the proof lies in the obtainment of the a priori estimates for
the derivatives of the approximating solutions since we are dealing with solutions
existing for all times, and hence there is some lack of compactness. A couple of
examples are given at the end of the paper.

2. Main results

One of the principal ingredients used in the study of second order parabolic
partial differential operators is the (weak) maximum or comparison principle. We
show with a counterexample that this principle fails when solutions exist for all
times, even when the coefficients are very smooth. This lack of maximum principle
is in sharp contrast with the initial-boundary value problem, the time-periodic
boundary value problem, or the steady-state (elliptic) problem for which solutions
exist for all times as well (see e.g. [1, 9, 14, 16]). Therefore, consider the linear
boundary-value problem

∂u

∂t
− ∂2u

∂x2
+ λu = 0 in (0, π)× R,

u(0, t) = 0 = u(π, t) for all t ∈ R,

where λ ∈ R. Letting u = −e−γt sinx, with γ > 1+λ, one has that ∂u
∂t −

∂2u
∂x2 +λu >

0 in (0, π) × R, whereas u < 0 in (0, π) × R. Thus, the (weak) maximum (or
comparison) principle does not hold; i.e., there is no positivity or order-preservation
of the operator solution, even when λ > 0. An analysis of this counterexample
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suggests that one has to consider a condition on the behavior of the function u(x, t)
at−∞ in time. In our case, we will consider functions that are bounded for all times.
As illustrated by this counterexample, this condition is needed for the comparison
result, if any, to hold on the entire real line in time. Since our results hold true for
more general operators with time-dependent coefficients, we first introduce some
notation and general assumptions.

Throughout this paper all functions are real-valued. We denote by Ω a bounded
domain in RN with boundary ∂Ω and closure Ω. We assume that ∂Ω belongs to
C2+µ with µ ∈ (0,1). We consider the second order parabolic operator in Ω × R
given by

∂u

∂t
− Lu, (2.1)

where

Lu :=
N∑

i,j=1

aij(x, t)
∂2u

∂xi∂xj
+

N∑
i=1

bi(x, t)
∂u

∂xi
+ c(x, t)u

with symmetric positive definite coefficient-matrix (aij). We assume that

(i) aij , bi, c ∈ C
µ,µ/2
loc (Ω× R) ∩ L∞(Ω× R);

(ii) there are constants c0 ≥ 0 and γ0 > 0 such that for all (x, t) ∈ Ω × R,
c(x, t) ≤ −c0 and

∑N
i,j=1 aij(x, t)ξiξj ≥ γ0|ξ|2 for all ξ ∈ RN .

For every x ∈ ∂Ω, we denote by η(x) := (η1(x), . . . , ηN (x)) the (unit) outer normal
to ∂Ω at x. Let ν = (ν1, . . . , νN ) be such that for every i, νi ∈ C

1+µ,(1+µ)/2
loc (∂Ω×

R) ∩ L∞(Ω × R) and for all (x, t) ∈ ∂Ω × R,
∑N

i=1 νi(x, t)ηi(x) > 0; i.e., ν is an
outward pointing nowhere tangent vector on ∂Ω. Let ∂u

∂ν :=
∑N

i=1
∂u
∂xi

(x, t)νi(x, t)
denote the outward directional derivative of u with respect to ν on the boundary
∂Ω.

Let ε denote a variable which takes on the values 0 and 1 only. We define the
boundary operator Bε by

Bεu := ε
∂u

∂ν
+ α(x, t)u, (2.2)

where α ∈ C
1+µ,(1+µ)/2
loc (∂Ω × R) ∩ L∞(Ω × R) such that for all (x, t) ∈ ∂Ω × R,

α(x, t) ≥ α0 ≥ 0. The constant α0 is such that α0 > 0 if ε = 0, and α0 ≥ 0 if ε = 1.
Moreover, we assume that

c0 + α0 > 0; (2.3)

which implies that the coefficients c(x, t) and α(x, t) do not vanish simultaneously.
Thus, for ε = 0, B0u is a Dirichlet boundary condition, whereas for ε = 1, B1u
corresponds to a Neumann or a regular oblique derivative boundary condition.

We denote by

a+ := max{a, 0} and a− := max{−a, 0}.

We first obtain L∞-a priori estimates for solutions to linear boundary value
problems by assuming that the solutions are bounded for all times. As a conse-
quence we derive a maximum (or comparison) principle which is valid on the entire
real line. These results will play an important role in the proofs of our main re-
sults. Some of the techniques used in the proof of the following proposition were
somewhat inspired by [10].
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Proposition 2.1. Let u ∈ C2,1(Ω × R) ∩ Cε,0
loc(Ω × R) ∩ L∞(Ω × R), where ε is

either 0 or 1. Then there exists a constant K such that

sup
Ω×R

|u±| ≤ K
(

sup
Ω×R

∣∣(∂u

∂t
− Lu

)
±

∣∣ + sup
∂Ω×R

∣∣(Bεu)±
∣∣ )

. (2.4)

Thus,

sup
Ω×R

|u| ≤ K
(

sup
Ω×R

∣∣∂u

∂t
− Lu

∣∣ + sup
∂Ω×R

∣∣Bεu
∣∣).

The constant K depends only on the dimension N , the parabolicity constant γ0,
diam (Ω), and the L∞-bounds of the coefficients of the operators L and Bε.

It follows immediately from Proposition 2.1 that the (weak) maximum principle
holds.

Corollary 2.2 (Weak Comparison Principle). Suppose the conditions of Proposi-
tion 2.1 are met. Assume that ∂u

∂t −Lu ≥ 0 in Ω×R and that Bεu ≥ 0 on ∂Ω×R.
Then u ≥ 0 in Ω× R.

Proof of Proposition 2.1. Since the inequalities in (2.4) are proved in a similar
manner, it suffices to prove only the first inequality and for the sign + only.
We set ∂u

∂t − Lu := f , Bεu := ϕ, and denote by F+ := supΩ×R |f+(x, t)| and
Φ+ := sup∂Ω×R |ϕ+(x, t)|. We will consider only the case when F+ and Φ+ are
finite. Otherwise, the above inequalities hold true automatically.

Assume that ε = 1 and that α(x, t) ≥ α0 > 0 (i.e., a regular oblique derivative
condition). We first consider the special case when c(x, t) ≤ −c0 < 0. For n ∈ N,
consider the set Ω× (−n, T ). Owing to a possibility of letting T > 0 go to ∞, we
assume that T < ∞. Now, define

w(t) := e−c0t, rn :=
1

w(−n)
sup
Ω

u+(x,−n).

For the function

v(x, t) =
1
c0

F+ +
1
α0

Φ+ + rnw(t)− u(x, t),

we have that

∂v

∂t
− Lv = −c(x, t)

( 1
c0

F+ +
1
α0

Φ+

)
+ rnw(t) (−c0 − c(x, t))−

(∂u

∂t
− Lu

)
≥ F+ − f ≥ 0 in Ω× (−n, T ),

v(x,−n) =
1
c0

F+ +
1
α0

Φ+ + rnw(−n)− u(x,−n)

≥ sup
Ω

u+(x,−n)− u(x,−n) ≥ 0 in Ω,

and

B1v = α(x, t)
(

1
c0

F+ +
1
α0

Φ+ + rnw(t)
)
− B1u ≥ Φ+ − ϕ ≥ 0 on ∂Ω× (−n, T ].



EJDE-2010/CONF/19/ BOUNDED SOLUTIONS 211

By the standard maximum principle (see e.g. [16, 6, 12]) we have that v ≥ 0 on
Ω× [−n, T ]. Therefore,

u(x, t) ≤ 1
c0

F+ +
1
α0

Φ+ + rnw(t)

=
1
c0

F+ +
1
α0

Φ+ + e−c0te−c0n sup
Ω

u+(x,−n), ∀(x, t) ∈ Ω× [−n, T ].

Since u ∈ L∞(Ω × R), it follows that e−c0n supΩ u+(x,−n) → 0 as n → ∞. We
deduce that u(x, t) ≤ 1

c0
F+ + 1

α0
Φ+ for every (x, t) ∈ Ω× R. Thus,

sup
Ω×R

|u+| ≤ K
(

sup
Ω×R

∣∣(∂u

∂t
− Lu

)
+

∣∣ + sup
∂Ω×R

|(Bεu)+|
)
.

Note that the bound is independent of the time T .
For the more general case when c(x, t) ≤ 0 for all (x, t) ∈ Ω×R, we consider the

auxiliary function u(x, t) = z(x)w(x, t) where z is a positive bounded function on
Ω to be determined. A direct calculation shows that w satisfies

∂w

∂t
−

( n∑
i,j=1

aij(x, t)
∂2w

∂xixj
+

n∑
i=1

b̃i(x, t)
∂w

∂xi
+

(1
z
Lz

)
w

)
=

f

z
in Ω× R,

∂w

∂ν
+

(
α(x, t) +

1
z

∂z

∂ν

)
w =

ϕ

z
on ∂Ω× R,

where b̃i = 1
z (aij + aj i) ∂z

∂xj
+ bi. We pick z(x) = A + y(x), where y is a bounded

function in Ω which satisfies Ly < 0 in Ω×R (and which, without loss of generality,
may be chosen such that y ≥ κ in Ω×R for some constant κ > 0 depending only on
N, γ0,Ω, the L∞-bounds of the coefficients of L ,B1 and ν), and let A be a positive
constant chosen sufficiently large such that α(x, t)+ 1

z
∂z
∂ν ≥

1
2α0. (There are several

examples of such a function z, see [8, p. 32], [10, p. 77 and p. 108]). This reduces
to the case discussed above. Applying the result above to w we get that

sup
Ω×R

|u+| ≤ K
(

sup
Ω×R

|f+(x, t)|+ sup
∂Ω×R

|ϕ+(x, t)|
)
.

Notice that for ε = 0 (i.e., the Dirichlet boundary condition) we proceed in the
same way as for the regular oblique derivative case. (Also see [10, p. 107-108].)

Now, for ε = 1 and α ≡ 0 (i.e., the Neumann boundary condition), we assume
that c(x, t) ≤ −c0 < 0 as stipulated in (2.3). We reduce the problem to the
case with regular oblique derivative boundary condition by choosing an auxiliary
function u(x, t) = z(x)w(x, t) where now z(x) = A+y(x) and y satisfies the Laplace-
Dirichlet equation ∆y = 1 in Ω with y = 0 on ∂Ω. Choosing the constant A
sufficiently large such that Lz = c(x, t)A + Ly < 0 in Ω × R and z = A + y > 0,
it follows from the standard maximum principle that 0 < ∂y

∂ν = ∂z
∂ν . The estimates

(2.4) are therefore obtained in a way similar to the regular oblique derivative case.
The proof is complete. �

In what follows, we will need the following notation for ordered real-valued func-
tions. Let S be a nonempty set, if u, v : S → R are two functions such that
u(s) ≤ v(s) for every s ∈ S, then we write u ≤ v. Finally, by an order-interval [u, v]
between u and v we mean the set of all functions w : S → R such that u ≤ w ≤ v.
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We now consider the nonlinear boundary-value problem
∂u

∂t
(x, t)− Lu(x, t) = f(x, t, u) in Ω× R,

Bεu = Φε(x, t, u) on ∂Ω× R,

sup
Ω×R

|u(x, t)| < ∞.

(2.5)

We will use the following definitions for bounded sub- and super-solutions.

Definition 2.3. A function u ∈ C2,1(Ω× R) ∩ C
ε+µ,(ε+µ)/2
loc (Ω× R) ∩ L∞(Ω× R),

where ε is either 0 or 1, is a subsolution of (2.5) if

(1) ∂u
∂t − Lu ≤ f(x, t, u) in Ω× R, and

(2) Bεu ≤ Φε(x, t, u) on ∂Ω× R.

A supersolution of (2.5) is defined by reversing the inequality signs in (1) and
(2). In order to state the main result for the nonlinear equation (2.5), we assume
the following conditions on the reaction function f and the boundary term Φε.

The reaction function f satisfies the following conditions.
(A1) f ∈ Cµ

loc(Ω×R×R); that is, for [c, d] ⊂ R with X = Ω×R× [c, d], there is
a constant K(X) such that |f(x, t, u)− f(y, s, v)| ≤ K(|x− y|2 + |t− s|+
|u− v|2)µ/2 for all (x, t, u), (y, s, v) ∈ X.

(A2) There is a constant M0 ∈ R such that |f(x, t, 0)| ≤ M0 for all (x, t) ∈ Ω×R.
The function Φε(x, t, u) = (1 − ε)ϕ0(x, t) + εϕ1(x, t, u) satisfies the following

conditions.
(A3) – If ε = 0, then Φ0 = ϕ0 ∈ C

2+µ,(2+µ)/2
loc (∂Ω× R) ∩ L∞(∂Ω× R).

– If ε = 1, then Φ1 = ϕ1 ∈ C1+µ
loc (∂Ω × R × R) is such that (A2) is

satisfied; that is, the functions ϕ1,
∂ϕ1
∂x , ∂ϕ1

∂u satisfy (A1) and (A2).
Note that conditions (A1)–(A2) are fulfilled by any function of the form f(x, t, u) =
p(x, t)g(u) where p ∈ Cµ,µ/2(Ω×R) and g ∈ Cµ

loc(R). (A similar observation holds
for the boundary term Φ1.)

It should also be pointed out that (A1) and (A2) imply that f sends sets bounded
in u into bounded sets; that is,

(A2’) for every r > 0, there is Mr > 0 such that |f(x, t, u)| ≤ Mr for all (x, t, u) ∈
Ω× R× [−r, r].

In addition, (A3) implies that the function ϕ1 is locally Lipschitz in u, uniformly
in (x, t); that is,

(A3’) for [c, d] ⊂ R, there is a constant %1 = %1([c, d]) > 0 such that |ϕ1(x, t, u)−
ϕ1(x, t, v)| ≤ %1|u− v| for all u, v ∈ [c, d] and all (x, t) ∈ ∂Ω× R.

Our main result for (2.5) is given by the following theorem in which we assume
the following one-sided (local) Lipschitz condition.

(LL) Given c, d ∈ R with c ≤ d, there is a constant k0 ≥ 0 such that f(x, t, u)−
f(x, t, v) ≥ −k0(u− v) for all (x, t, u), (x, t, v) ∈ Ω× R× [c, d] with v ≤ u.

Theorem 2.4. Let (A1)–(A3) and (LL) hold. Suppose that there exist a superso-
lution u and a subsolution u of (2.5) such that u ≤ u in Ω× R. Then (2.5) has a
least one solution u ∈ C

2+µ,(2+µ)/2
loc (Ω×R) such that u ≤ u ≤ u in Ω×R. Moreover,

there exist a minimal solution v∗ and a maximal solution u∗ in [u, u]; that is, if w
is any solution of (2.5) such that u ≤ w ≤ u, then v∗ ≤ w ≤ u∗.
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In the proof of Theorem 2.4, we will use an approximation argument. However,
the main difficulty lies in the obtainment of the required a priori estimates for the
derivatives of the solutions since we are dealing with solutions existing for all times,
and hence there is some lack of compactness.

As an immediate consequence of Theorem 2.4, we have the following corollary
on the existence of positive solutions that are bounded for all times.

Corollary 2.5 (Positive Solutions). Assume that the assumptions in Theorem 2.4
are satisfied. Suppose that f, Φε are nonnegative and there exists a supersolution
u of (2.5) such that 0 ≤ u in Ω × R. Then (2.5) has a nonnegative solution
u ∈ C

2+µ,(2+µ)/2
loc (Ω×R) such that u ≤ u in Ω×R. Moreover there exist nonnegative

minimal solution v∗ and maximal solution u∗ in [0, u]; that is, if w is any solution
of (2.5) such that 0 ≤ w ≤ u, then v∗ ≤ w ≤ u∗.

Notice that if f(t, ·, 0) 6≡ 0 in the above corollary, then it immediately follows
from Nirenberg’s Strong Maximum Principle for parabolic equations that v∗(x, t) >
0 in Ω×R. We cannot assert that the solution obtained in Theorem 2.4 is unique.
However, in order to guarantee uniqueness of solutions to (2.5), one way is to require
that f and Φε be monotone nonincreasing in u.

Proposition 2.6 (Uniqueness). Let u, u be ordered subsolution and supersolution
of (2.5) and suppose that f and Φε are nonincreasing in u, for u ∈ [u, u]. Then
(2.5) has at most one solution u such that u ≤ u ≤ u.

Proof. Let u, v be two solutions of (2.5) with u ≤ u, v ≤ u. We need to show
that u = v. Indeed, first set U := {(x, t) ∈ Ω × R : u(x, t) < v(x, t)}. By the
monotonicity of f and Φε, we get that

∂(u− v)
∂t

− L(u− v) ≥ 0 in U,

Bε(u− v) ≥ 0 on ∂U ∩ (∂Ω× R),

u− v = 0 on ∂U ∩ (Ω× R),

sup
Ω×R

|u− v| < ∞.

If U is bounded below in time, then by the classical maximum principle (see e.g.
[16]) it follows that u ≥ v in U . This contradiction to the definition of U implies
that U should be unbounded below in time. But, by using an argument similar
to that in the proof of Proposition 2.1, we get that u ≥ v in U ; which is again a
contradiction. Hence, U is empty. Reversing the role of u and v, we deduce that
u = v on Ω× R. The proof is complete. �

Remark 2.7. An analysis of the proof of Theorem 2.4 will show that the condition
(A1) on the function f can (slightly) be generalized by assuming the following
conditions (A1’) and (A1”). (Notice that (A1’) is a local condition in t ∈ R.)

(A1’) f ∈ Cµ
loc(Ω× R× R); that is, for a, b, c, d ∈ R with X = Ω× [a, b]× [c, d],

there exists a constant K(X) such that |f(x, t, u) − f(y, s, v)| ≤ K(|x −
y|2 + |t− s|+ |u− v|2)µ/2, for all (x, t, u), (y, s, v) ∈ X.

(A1”) f is locally Hölder in u uniformly in x and t; that is, there exists %0 > 0
such that
|f(x, t, u)− f(x, t, v)| ≤ %0|u− v|µ for all u, v ∈ [c, d] and all (x, t) ∈ Ω×R.
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3. Preliminary Results and Proof of the Main Result

To prove the main result stated above, we need some auxiliary results on the
linear problem. In the following result, we use Proposition 2.1 to obtain existence
and uniqueness of solutions for the linear problem. This result plays an important
role in the approximation argument used in the proof of the nonlinear problem. (It
should be observed that, in contrast to [5, 10], we assume that the coefficients in
the linear operator are only locally Hölder continuous in time.)

Proposition 3.1. Consider the linear boundary-value problem

∂u

∂t
− Lu = f in Ω× R,

Bεu = ϕ on ∂Ω× R,

sup
Ω×R

|u(x, t)| < ∞,

(3.1)

where f ∈ C
µ,µ/2
loc (Ω × R) ∩ L∞(Ω × R) and ϕ ∈ W

2−ε− 1
p ,(2−ε− 1

p )/2

p,loc (∂Ω × R) ∩
L∞(∂Ω×R) with p = N+2

1−µ . Then there exists a unique function u ∈ C2,1(Ω×R)∩
C

1+µ,(1+µ)/2
loc (Ω× R) ∩ L∞(Ω× R) satisfying (3.1).

Proof. Uniqueness follows immediately from Corollary 2.2. We now proceed to
prove the existence. For every n ∈ N, pick a cut-off function ξn ∈ C∞(R) such
that 0 ≤ ξn ≤ 1, and ξn(s) = 1 if s ≥ −n, ξn(s) = 0 if s ≤ −(n + 1). Define
fn(x, t) = ξnf(x, t), for all (x, t) ∈ Ω×R, ϕn(x, t) = ξnϕ(x, t), for all (x, t) ∈ ∂Ω×R.

It follows that fn ∈ C
µ,µ/2
loc (Ω×R)∩L∞(Ω×R) and ϕn ∈ W

2−ε− 1
p ,(2−ε− 1

p )/2

p,loc (∂Ω×
R) ∩ L∞(∂Ω× R).

Fix n ∈ N. Let Tn = −(n + 1) and T ≥ −n, and consider the initial-boundary
value problem

∂u

∂t
− Lu = fn in Ω× (Tn, T ],

Bεu = ϕn on ∂Ω× (Tn, T ],

u(x, Tn) = 0 ∀ x ∈ Ω.

(3.2)

It follows from [11, pp. 341-343 and p. 351] that the problem (3.2) has a (unique)
solution wn ∈ W 2,1

p (Ω× (Tn, T )). We extend wn by setting wn(x, t) = 0 for all
(x, t) ∈ Ω × (−∞, Tn]. Thus, wn ∈ W 2,1

p,loc(Ω × R). It follows from the Imbedding

Theorem that wn ∈ C
1+µ,(1+µ)/2
loc (Ω × R). Moreover, by the (interior) regularity

of generalized solutions [11, pp. 223-224], we get that wn ∈ C2,1(Ω × R). Using
the a priori estimate in Proposition 2.1 we get that supΩ×R |wn| < M , where M is
independent of n.

Next, we will prove that a subsequence of {wn} converges (on compact sets) to
a solution u of the linear problem (3.1). Indeed, consider Q1 = Ω × (−1, 1) and
X = Ω×(−2, 2) with X = Ω×[−2, 2]. For each n ∈ N, define zn(x, t) = ζ(t)wn(x, t)
for all (x, t) ∈ Ω×[−2, 2], where ζ ∈ C∞(R) is a cut-off function such that 0 ≤ ζ ≤ 1
and ζ(s) = 0 if s ≤ −2, ζ(s) = 1 if s ≥ −(2 − δ) with 0 < δ < 1. Observe that



EJDE-2010/CONF/19/ BOUNDED SOLUTIONS 215

zn = wn in Ω× [−1, 1] and zn satisfies the initial-boundary value problem
∂z

∂t
− Lz = hn in Ω× (−2, 2],

Bεz = ζϕn on ∂Ω× (−2, 2],

z(x,−2) = 0 ∀ x ∈ Ω,

(3.3)

where hn = dζ
dt wn + ζfn. We have that hn ∈ Lp(X) and

ζϕn ∈ W
2−ε− 1

p ,(2−ε− 1
p )/2

p,loc (∂Ω× (−2, 2)).

From the solvability results for linear problems [11, pp. 341–343 and p. 351], it
follows that (3.3) has a unique solution zn ∈ W2,1

p (X) and that

|zn|W 2,1
p (X) ≤ K

(
|hn|Lp(X) + |ζϕn|

W
2−ε− 1

p
,(2−ε− 1

p )/2
p (∂Ω×(−2,2))

)
(3.4)

for all n ∈ N, where K depends only on X. Since wn and fn are uniformly bounded,
it follows that there is a constant C > 0 such that |hn|Lp(X) < C for all n ∈ N.

Since for n sufficiently large ζϕn = ϕn = ϕ ∈ W
2−ε− 1

p ,(2−ε− 1
p )/2

p (∂Ω× (−2, 2)),
it follows that |zn|W 2,1

p (Q1)
< C. We claim that {zn} has a subsequence which

converges to a solution of the boundary-value problem in Q1.
Indeed, define T :

(
W 2,1

p (Q1), | · |W 2,1
p (Q1)

)
→

(
Lp(Q1), | · |Lp(Q1)

)
by T (v) :=

∂v
∂t −Lv. Clearly, T is a continuous linear operator, and hence is weakly continuous
(see e.g. [2, pp. 39]). Since W 2,1

p (Q1) is a reflexive Banach space which is compactly
imbedded into C1+µ,(1+µ)/2(Q1) and |zn|W 2,1

p (Q1)
≤ C, it follows that there is a

subsequence {w1n} of {zn} such that w1n → u1 in C1+µ,(1+µ)/2(Q1) and w1n ⇀ u1

in W 2,1
p (Q1). This implies that T (w1n) ⇀ T (u1). But, for n sufficiently large, one

has that T (w1n) = f in Q1. Therefore, by the uniqueness of the limit, we deduce
that T (u1) = f in Q1. Moreover, Bεw1n → Bεu1 in Cµ,µ/2(∂Ω× [−1, 1]) and, since
Bεw1n = ϕ on ∂Ω × [−1, 1], we get that Bεu1 = ϕ. Thus, u1 is a solution of the
boundary value problem ∂z

∂t −Lz = f in Ω× (−1, 1), Bεz = ϕ on ∂Ω× [−1, 1] with
supΩ×[−1,1] |z(x, t)| < ∞. By the regularity of generalized solutions [11, pp. 223-
224], one has that u1 ∈ C2,1(Ω × (−1, 1)). Thus u1 ∈ C1+µ,(1+µ)/2(Ω̄ × [−1, 1]) ∩
C2,1(Ω× (−1, 1)) and supΩ×[−1,1] |u1| < M .

Next, for k ≥ 2, set Qk = Ω × (−k, k) and consider instead the subsequence
denoted by {w(k−1)n}. Using a similar argument as above, we get a subsequence
{wkn} of {w(k−1)n} such that {wkn} converges to uk in C1+µ,(1+µ)/2(Ω× [−k, k]).
Moreover, uk satisfies the boundary value problem

∂u

∂t
− Lu = f in Ω× (−k, k),

Bεu = ϕ on ∂Ω× [−k, k],

sup
Ω×[−k,k]

|u(x, t)| < ∞.

As above uk ∈ C1+µ,(1+µ)/2(Ω̄× [−k, k])∩C2,1(Ω× (−k, k)) and supΩ×[−k,k] |uk| <
M .

Now, by the diagonalization argument, choose the sequence {wjj} located on the
‘diagonal.’ Observe that, by construction, {wjj} is a subsequence of {wkn}∞n=1 for
k ≤ j, and hence is a subsequence of {wn}. We shall prove that {wjj} converges
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to a solution u of (3.1). Indeed, let Ω × [−k, k] and ε > 0. Since {wkn} converges
to uk in C1+µ,(1+µ)/2(Ω × [−k, k]), as n → ∞, it follows that there exists N =
N(k) ∈ N such that for all n ≥ N, |wkn − uk|C1+µ,(1+µ)/2(Ω×[−k,k]) < ε. Using
the fact that wjj ∈ {wkn}∞n=1 for all j ≥ k, we get that for all j ≥ max{k,N},
|wjj − uk|C1+µ,(1+µ)/2(Ω×[−k,k]) < ε. Thus {wjj} is subsequence of {wn} and it
converges to a function u in C1+µ,(1+µ)/2(Ω × [−k, k]), where u|Ω×[−k,k] = uk.

Since k ∈ N is arbitrarily chosen, u ∈ C
1+µ,(1+µ)/2
loc (Ω × R) ∩ C2,1(Ω × R) with

supΩ×R |u| ≤ M , and u satisfies the linear problem (3.1). The proof is complete. �

To obtain the a priori estimates needed in the proof of the nonlinear problem,
we will need the following interpolation inequalities of Gagliardo-Nirenberg type
(see e.g. [13] for the proof).

Lemma 3.2. Let Ω × I ⊂ Rn × R and 1 ≤ p < ∞, where I is a bounded open
interval. Then, there is a constant C > 0 such that for all u ∈ W 2,1

p (Ω × I) one
has

|u|
W

1,1/2
p (Ω×I)

≤ C|u|W 2,1
p (Ω×I)|u|Lp(Ω×I). (3.5)

Moreover, for every ε > 0,

|u|
W

1,1/2
p (Ω×I)

≤ C
(
ε|u|W 2,1

p (Ω×I) +
1
4ε
|u|Lp(Ω×I)

)
. (3.6)

We are in a position to prove our main result contained in Theorem 2.4. Delicate
a priori estimates on the derivatives of the approximating solutions are derived in
the proof.

Proof of Theorem 2.4. Setting k = max(%1, k0), it follows from (A3’) and (LL) that,
for (x, t) ∈ Ω×R, the functions Φε(x, t, w)+kw and f(x, t, w)+kw are nondecreasing
in w in the interval [u, u]. Moreover, (A2’) implies that f(·, ·, w) ∈ L∞(Ω × R)
whenever w ∈ [u, u]. To prove the existence of the solutions u∗ and v∗ of (2.5),
we proceed with a (linear) approximation as follows. First, we construct monotone
sequences {un} and {vn} successively from the (linear) iteration process

∂un

∂t
− Lun + kun = f(x, t, un−1) + k un−1 in Ω× R,

Bεun + εk un = Φε(x, t, un−1) + εk un−1 on ∂Ω× R,

sup
Ω×R

|un(x, t)| < ∞,

(3.7)

where for n = 1, we set u0 = u. Since f(·, ·, u)+ ku ∈ C
µ′,µ′/2
loc (Ω×R)∩L∞(Ω×R)

and Φε(·, ·, u) + εk u ∈ C
2−ε+µ′,(2−ε+µ′)/2
loc (∂Ω× R) ∩ L∞(∂Ω× R) with µ′ ≤ µ2, it

follows from Proposition 3.1 that (3.7) has a unique solution u1 ∈ C2,1(Ω × R) ∩
C

1+µ′,(1+µ′)/2
loc (Ω × R) ∩ L∞(Ω × R) which is such that u ≤ u1 ≤ u by Corollary

2.2. For n ≥ 2, a similar argument shows that (3.7) has a unique solution un ∈
C2,1(Ω × R) ∩ C

1+µ,(1+µ)/2
loc (Ω × R) ∩ L∞(Ω × R) such that u ≤ un ≤ un−1 ≤ u

in Ω × R. In a similar manner, it is shown that if we set u0 = u, we have v1 ∈
C2,1(Ω×R)∩C

1+µ′,(1+µ′)/2
loc (Ω×R)∩L∞(Ω×R), vn ∈ C2,1(Ω×R)∩C

1+µ,(1+µ)/2
loc (Ω×

R) ∩ L∞(Ω× R) for n ≥ 2, with u = v0 ≤ v1 ≤ v2 ≤ . . . ≤ vn−1 ≤ vn ≤ . . . ≤ un ≤
un−1 ≤ . . . ≤ u2 ≤ u1 ≤ u0 = u. Since the sequences {un} and {vn} are monotone
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and (uniformly) bounded, the pointwise limits

u∗(x, t) = lim
n→∞

un(x, t), v∗(x, t) = lim
n→∞

vn(x, t)

exist with u ≤ v∗ ≤ u∗ ≤ u. We now proceed to show that u∗ and v∗ are solutions
of (2.5).

For that purpose, consider Q1 = Ω × (−1, 1) and Q2 = Ω × (−2, 2). For each
n ∈ N, define zn(x, t) = ζ(t)un(x, t) for all (x, t) ∈ Ω × [−2, 2], where ζ ∈ C∞(R)
is a cut-off function such that 0 ≤ ζ ≤ 1 and ζ(s) = 0 if s ≤ −2, ζ(s) = 1 if
s ≥ −(2− δ) with 0 < δ < 1. Observe that zn = un in Ω× [−1, 1] and satisfies the
linear initial-boundary value problem

∂zn

∂t
− Lzn + kzn =

dζ

dt
un + ζgn in Ω× (−2, 2],

Bεzn + εkzn = ζΨn on ∂Ω× (−2, 2],

zn(x,−2) = 0 on Ω,

(3.8)

where, for each n ∈ N, gn = f(·, ·, un−1)+k un−1 and Ψn = Φε(·, ·, un−1)+ εk un−1.
By the solvability results for linear IBVP [11, pp. 341–343 and p. 351], it follows
that the linear IBVP (3.8) has a unique solution zn ∈ W2,1

p (Q2) where p = N+2
1−µ .

Moreover,

|zn|W 2,1
p (Q2)

≤ K0

(∣∣dζ

dt
un + ζgn

∣∣
Lp(Q2)

+ |ζΨn|
W

2−ε− 1
p

,(2−ε− 1
p

)/2
p (∂Ω×(−2,2))

)
, (3.9)

for all n ∈ N, where K0 is a constant which depends on Q2. Observe that for ε = 0,
we get immediately that |zn|W 2,1

p (Q2)
≤ const, for all n, since ϕ0 does not depend

on n. To show that |zn|W 2,1
p (Q2)

≤ const for ε = 1, we proceed as follows. Using
(A3) we compute |ζΨn|

W
1− 1

p
,(1− 1

p
)/2

p (∂Ω×(−2,2))
to get that

|ζΨn|
W

1− 1
p

,(1− 1
p

)/2
p (∂Ω×(−2,2))

≤ Ĉ
(
1 + |zn−1|

W
1− 1

p
,(1− 1

p
)/2

p (∂Ω×(−2,2))

)
, (3.10)

where Ĉ is independent of n since |ζΨn|Lp(∂Ω×(−2,2)) ≤ const, for all n ∈ N. Com-
bining (3.10) with (3.9) we obtain that

|zn|W 2,1
p (Q2)

≤ C0

(
1 + |zn−1|

W
1− 1

p
,(1− 1

p
)/2

p (∂Ω×(−2,2))

)
,

where C0 is independent of n but depends on |dζ
dt un + ζgn|Lp(Q2), |ζΨn|Lp , and

Ω× [−2, 2]. Using the continuity of the trace operator, we deduce that

|zn|W 2,1
p (Q2)

≤ K
(
1 + |zn−1|W 1,1/2

p (Ω×(−2,2))

)
, (3.11)

where K does not depend on n. By the interpolation inequality (3.6), we get that

|zn|W 2,1
p (Q2)

≤ K
(
1 + Cε|zn−1|W 2,1

p (Q2)
+

C

4ε
|zn−1|Lp(Q2)

)
. (3.12)

Now, we proceed inductively as follows. It follows from (3.11) that

|z1|W 2,1
p (Q2)

≤ K
(
1 + |ζu|

W
1,1/2
p (Ω×(−2,2))

)
; (3.13)
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which when combined with the inequality (3.12) implies that

|z2|W 2,1
p (Q2)

≤ K
(
1 + Cε|z1|W 2,1

p (X) +
C

4ε
|z1|Lp(Q2)

)
≤ K

(
1 + KCε + KCε|ζu|

W
1,1/2
p (Q2)

+
C

4ε
|z1|Lp(Q2)

)
.

Proceeding by induction, we have that for every n ∈ N with n ≥ 2,

|zn|W 2,1
p (Q2)

≤ K
( n−1∑

i=0

(KCε)i + (KCε)n−1|ζu|
W

1− 1
p

,(1− 1
p

)/2
p (∂Ω×(−2,2))

+
MC

4ε

n−2∑
i=0

(KCε)i
)
,

where K depends on C0 and Ω× [−2, 2], and the constant M ≥ Mn = |zn|Lp(Q2) for
all n ∈ N. Therefore, we obtain the following estimate which involves a geometric
series

|zn|W 2,1
p (Q2)

≤
(
K + K|ζu|

W
1− 1

p
,(1− 1

p
)/2

p (∂Ω×(−2,2))
+

MCK

4ε

) ∞∑
i=0

(KCε)i.

Thus,

|zn|W 2,1
p (Q2)

≤ C̃, for all n ∈ N,

provided ε > 0 is chosen sufficiently small such that KCε < 1.
Now, we need to show that in Q1 the sequence {zn} = {un} has a subse-

quence which converges to a solution of the problem (2.5). Indeed, define T :(
W 2,1

p (Q1), | · |W 2,1
p (Q1)

)
→

(
Lp(Q1), | · |Lp(Q1)

)
by T (v) := ∂v

∂t − Lv + kv. Hence,
T is (weakly) closed. Since W 2,1

p (Q1) is a reflexive space which is compactly
imbedded into C1+µ,(1+µ)/2(Q1) and |zn|W 2,1

p (Q1)
≤ C̃ for all n, there is a sub-

sequence {u1n} of {zn} = {un} such that u1n ⇀ v1 in W 2,1
p (Q1) and u1n → v1 in

C1+µ,(1+µ)/2(Q1) as n → ∞. Moreover, since T is (weakly) closed and T (u1n) =
gn → f(·, ·, v1) + k v1 uniformly in Q1, it follows that T (v1) = f(·, ·, v1) + k v1.
In addition, Bεu1n + εku1n → Bεv1 + εk v1 in Cµ,µ/2(∂Ω × [−1, 1]) and Bεu1n +
εk u1n = Ψn → Φε(·, ·, v1)) + εk v1 uniformly on ∂Ω × [−1, 1]; which implies that
Bεv1 + εkv1 = Φε(·, ·, v1) + εk v1. Thus, v1 satisfies the following nonlinear BVP

∂v1

∂t
− Lv1 + kv1 = f(x, t, v1) + k v1 in Ω× (−1, 1),

Bεv1 + εk v1 = Φε(x, t, v1) + εk v1 on ∂Ω× [−1, 1],

sup
Ω×[−1,1]

|v1(x, t)| < ∞.

By the interior regularity of generalized solutions [11, pp. 223-224], v1 ∈ C2,1(Ω×
(−1, 1)). Thus, v1 ∈ C1+µ,(1+µ)/2(Ω× [−1, 1]) ∩ C2,1(Ω× (−1, 1)) ∩ L∞(Ω× R).

Next, for k ≥ 2 let Qk = Ω× (−k, k). Consider the subsequence {u(k−1)n}, and
use an argument similar to the above to extract a subsequence {ukn} of {u(k−1)n}
such that ukn → vk in C1+µ,(1+µ)/2(Ω × [−k, k]) and such that vk satisfies the
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nonlinear equation

∂vk

∂t
− Lvk + k vk = f(x, t, vk) + kvk in Ω× (−k, k),

Bεvk + εkvk = Φε(x, t, vk) + εkvk on ∂Ω× [−k, k],

sup
Ω×[−k,k]

|vk| < ∞.

Note that by construction, vk|Ω×[−(k−1),k−1] = vk−1 for all k ≥ 2; that is, vk is an
extension of vk−1.

Using a ‘diagonalization’ process and proceeding as in the proof of Proposition
3.1, we choose a subsequence {ujj} (located on the ‘diagonal’ of the subsequences
{ukn}∞n=1) which converges to the function v in C1+µ,(1+µ)/2(Ω × [−k, k]), where
v|Ω×[−k,k] = vk. Therefore, v ∈ C

1+µ,(1+µ)/2
loc (Ω×R)∩C2,1(Ω×R), supΩ×R |v| ≤ M

and v satisfies (2.5). By the uniqueness of the (pointwise) limit we have that
v = u∗. By the regularity properties of solutions to parabolic problems, we have
that u∗ ∈ C

2+µ,(2+µ)/2
loc (Ω × R) ∩ L∞(Ω × R). Similar arguments show that v∗ ∈

C
2+µ,(2+µ)/2
loc (Ω × R) ∩ L∞(Ω × R) and that it is also a solution of (2.5). Thus,

u ≤ v∗ ≤ u∗ ≤ u.
We finally establish that u∗ and v∗ are maximal and minimal solutions respec-

tively in the interval [u, u]. Let w be a solution of (2.5) with u ≤ w ≤ u, then
the functions w, u are ordered supersolution and subsolution. The above conclu-
sion implies that u ≤ v∗ ≤ w. A similar reasoning leads to w ≤ u∗ ≤ u. Thus
u∗ ≤ w ≤ v∗, and the proof is complete. �

We conclude this section with a couple of examples.
A Fisher-Dirichlet problem with time-dependent bounded coefficients. Consider

the boundary value problem

∂u

∂t
−∆u = u(a(x, t)− b(x, t)u) in Ω× R,

u = 0 on ∂Ω× R,

sup
Ω×R

|u(x, t)| < ∞,

(3.14)

where a, b ∈ C
µ,µ/2
loc (Ω × R) with λ1 < α ≤ a(x, t) ≤ A, 0 < β ≤ b(x, t) ≤ B,

∀ (x, t) ∈ Ω × R, for some constants α, β, A,B ∈ R, where λ1 is the principal
eigenvalue of the Laplace operator with homogeneous Dirichlet boundary condition
and associated eigenfunction ϕ. Choosing u(x, t) = εϕ(x) where 0 < ε < (α −
λ1)/B, and u(x, t) = C where C ∈ R with C ≥ A/β, it follows from Corollary 2.5
that (3.14) has a positive solution u such that u ≤ u ≤ u in Ω × R. Thus, u does
not tend to zero as t → ±∞.

A Neumann problem with nonlinear boundary conditions. Consider the boundary
value problem

∂u

∂t
−∆u = un(a(x, t)− b(x, t)u2k+1) in Ω× R,

∂u

∂ν
= um (δ − u) on ∂Ω× R,

sup
Ω×R

|u(x, t)| < ∞,

(3.15)
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where n, k,m ∈ N, 0 < δ ∈ R are fixed. We assume that a, b ∈ C
µ,µ/2
loc (Ω× R) with

0 < α ≤ a(x, t) ≤ A, 0 < β ≤ b(x, t) ≤ B, for all (x, t) ∈ Ω× R, for some constants
α, β, A,B ∈ R. Choosing u(x, t) = D where 0 < D < δ such that D2k+1 < α/B,
and u(x, t) = C where C ∈ R with C ≥ max(1 + A/β, δ), it follows from Corollary
2.5 that (3.15) has a positive solution u such that u ≤ u ≤ u in Ω × R. Thus, u
does not tend to zero as t → ±∞.
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