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S-SHAPED BIFURCATION CURVES FOR LOGISTIC GROWTH
AND WEAK ALLEE EFFECT GROWTH MODELS WITH

GRAZING ON AN INTERIOR PATCH

DAGNY BUTLER, RATNASINGHAM SHIVAJI, ANNA TUCK

Abstract. We study the positive solutions to the steady state reaction diffu-

sion equations with Dirichlet boundary conditions of the form

−u′′ =

(
λ[u− 1

K
u2 − c u2

1+u2 ], x ∈ (L, 1− L),

λ[u− 1
K
u2], x ∈ (0, L) ∪ (1− L, 1),

u(0) = 0, u(1) = 0

and

−u′′ =

(
λ[u(u+ 1)(b− u)− c u2

1+u2 ], x ∈ (L, 1− L),

λ[u(u+ 1)(b− u)], x ∈ (0, L) ∪ (1− L, 1),

u(0) = 0, u(1) = 0.

Here, λ, b, c,K, and L are positive constants with 0 < L < 1
2

. These types of

steady state equations occur in population dynamics; the first model describes

logistic growth with grazing, and the second model describes weak Allee effect
with grazing. In both cases, u is the population density, 1

λ
is the diffusion

coefficient, and c is the maximum grazing rate. These models correspond to

the case of symmetric grazing on an interior region. Our goal is to study
the existence of positive solutions. Previous studies when the grazing was

throughout the domain resulted in S-shaped bifurcation curves for certain

parameter ranges. Here, we show that such S-shaped bifurcations occur even
if the grazing is confined to the interior. We discuss the results via a modified

quadrature method and Mathematica computations.

1. Introduction

In [8], the authors studied the nonlinear boundary-value problem

−∆u = λ[u− 1
K
u2 − c u2

1 + u2
], x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.1)

Here, ∆u = div
(
∇u
)

is the Laplacian of u, and Ω is a smooth bounded region with
∂Ω ∈ C2. Also, λ,K, and c are positive constants where u is the population density

2000 Mathematics Subject Classification. 34B18.
Key words and phrases. Grazing on an interior patch; positive solutions;
S-shaped bifurcation curves.
c©2013 Texas State University - San Marcos.

Published October 31, 2013.
15



16 D. BUTLER, R. SHIVAJI, A. TUCK EJDE-2013/CONF/20

and 1
λ is the diffusion coefficient. The term u− 1

Ku
2 represents logistic growth; this

means that as a given population grows, its per capita growth rate declines linearly
(see [9] and [10]).

Figure 1. Grazing

It is interesting to study natural phenomena affecting the population such as
grazing. Here, the term c u2

1+u2 corresponds to the grazing rate by a fixed number of
grazers on the population, where the coefficient c is the maximum grazing rate (see
Figure 1). This type of model can be used to describe several ecological systems
such as the dynamics of fish (see [9] and [13]) and spruce budworm populations (see
[14] and Figure 2).

Figure 2. Examples of Fish and Spruce Budworms

The authors in [8] proved the existence of at least one positive solution for
all λ > λ1(Ω), where λ1(Ω) is the principal eigenvalue of the operator −∆ with
Dirichlet boundary conditions. Also, the authors discuss the existence of at least
three positive solutions for certain ranges of λ.

In [11], the authors studied the one-dimensional reaction diffusion model:

−u′′ = λ[u(u+ 1)(b− u)− c u2

1 + u2
], x ∈ (0, 1),

u(0) = 0, u(1) = 0.
(1.2)
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Here, λ, b, and c are all positive parameters where u is the population density and 1
λ

is the diffusion coefficient. The term u(u+1)(b−u) represents weak Allee effect (see
[1] and [12]). Under a weak Allee effect, for small populations the per capita growth
begins positive and initially increases. This differs from logistic growth whose per
capita growth rate is decreasing. The initial increase in population growth can be
caused by a number of factors such as shortage of mates or predator saturation.
Two examples of populations that experience weak Allee effect are the apple snail
and the smooth cordgrass plant (see [3] and [6] and Figure 3). Furthermore, the
term c u2

1+u2 is the same grazing rate described previously.

Figure 3. Examples of an Apple Snail Shell with Eggs and
Smooth Cordgrass

The authors in [11] were able to show the evolution of the bifurcation curve over
a range of c-values, for a fixed value of b. In particular, they discuss S-shaped
bifurcation curves for certain ranges of b and c.

We are interested in extending some of the results in [8] and [11] regarding the
S-shaped bifurcation curve in the one dimensional case when the grazing is con-
fined to an interior patch. Previous studies have been done examining population
dynamics on split domains; by a split domain, we mean that phenomena such as
grazing or harvesting are only allowed on part of the domain. In [2], the authors
studied logistic growth with constant yield harvesting in both the symmetric and
asymmetric cases. We are interested in pursuing a similar study by analyzing mod-
els which describe grazing of a fixed number of grazers within the interior of the
domain on a logistically growing species and a species subject to weak Allee effect,
respectively.

We study the positive solutions to the steady state reaction diffusion equations
with Dirichlet boundary conditions of the form

−u′′ =

{
λ[u− 1

Ku
2 − c u2

1+u2 ], x ∈ (L, 1− L),
λ[u− 1

Ku
2], x ∈ (0, L) ∪ (1− L, 1),

u(0) = 0, u(1) = 0

(1.3)

and

−u′′ =

{
λ[u(u+ 1)(b− u)− c u2

1+u2 ], x ∈ (L, 1− L),
λ[u(u+ 1)(b− u)], x ∈ (0, L) ∪ (1− L, 1),

u(0) = 0, u(1) = 0.

(1.4)
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Here, λ, b, c,K, and L are positive constants with 0 < L < 1
2 . These models

correspond to the case of symmetric grazing on an interior region. We follow the
ideas used in [2], that is, modify the quadrature method discussed in [7] to analyze
these problems.

In Section 2, we will discuss the quadrature method in the case of a split domain.
Section 3 is concerned with presenting our computational results via Mathematica
for the logistic growth model. In Section 4, we will discuss similar results for the
weak Allee effect model.

2. Preliminaries

We consider a general model of the form

−u′′ =

{
λf̃(u), x ∈ (L, 1− L),
λf(u), x ∈ (0, L) ∪ (1− L, 1),

u(0) = 0, u(1) = 0.

(2.1)

We will study solutions u that are symmetric about x = 1/2 such that u(L−) =
u(L+) and u′(L−) = u′(L+) where ‖u‖∞ = ρ and σ(ρ) = u(L). A typical solution
to (2.1) can be seen in Figure 4.

1

2
1

ΣHΡL

Ρ

1 - LL
x

u

Figure 4. Typical Solution u

First, we will focus on the region (L, 1
2 ). Suppose u is a positive solution to (2.1).

On the interval (L, 1
2 ), we have −u′′ = λf̃(u).

Multiplying by u′, integrating, and using the fact that u′(1/2) = 0 and u(1/2) =
ρ, we obtain

u′(x) =
√

2λ[F̃ (ρ)− F̃ (u)] L < x ≤ 1
2

where F̃ (s) :=
∫ s
0
f̃(t)dt. Integrating again, we see that on the interval (L, 1

2 )
solutions will satisfy ∫ ρ

u(x)

1√
F̃ (ρ)− F̃ (v)

dv =
√

2λ[
1
2
− x].
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Let σ := u(L). Then, if we evaluate the equation above at x = L, we have∫ ρ

σ

1√
F̃ (ρ)− F̃ (v)

dv =
√

2λ[
1
2
− L].

Simplifying we obtain

λ =
[ 1√

2( 1
2 − L)

∫ ρ

σ

1√
F̃ (ρ)− F̃ (v)

dv
]2

=: G1(σ, ρ). (2.2)

Next, we consider the region (0, L). On the interval (0, L), we have −u′′ = λf(u).
If we use similar calculations as before and if u′(0) = m, then we obtain

u′(x) =
√

2

√
m2

2
− λF (u(x)).

Integrating again we obtain∫ u(x)

0

1√
m2

2 − λF (v)
dv =

√
2x.

Letting σ = u(L), we find that∫ σ

0

1√
m2

2 − λF (v)
dv =

√
2L. (2.3)

Recall u′(L−) = u′(L+) which implies

m2

2
= λ[F̃ (ρ)− F̃ (σ) + F (σ)].

Substituting the above into (2.3), we obtain

λ =
[ 1√

2L

∫ σ

0

1√
F̃ (ρ)− F̃ (σ) + F (σ)− F (v)

dv
]2

=: G2(σ, ρ). (2.4)

Therefore,
G1(σ, ρ) = G2(σ, ρ).

Thus, if u is a solution of (2.1) with u(L) = σ(ρ) and ‖u‖∞ = ρ, then ρ and σ must
satisfy G1(σ, ρ) = λ and G2(σ, ρ) = λ.

Suppose that given a ρ, there exists σ(ρ) such that G1(σ(ρ), ρ) = G2(σ(ρ), ρ).
Then

√
λ =

1√
2( 1

2 − L)

∫ ρ

σ(ρ)

1√
F̃ (ρ)− F̃ (v)

dv

=
1√
2L

∫ σ(ρ)

0

1√
F̃ (ρ)− F̃ (σ(ρ)) + F (σ(ρ))− F (v)

dv.

(2.5)

In fact, given λ and ρ such that (2.5) is satisfied where σ(ρ) satisfies G1(σ, ρ) =
G2(σ, ρ), we can back track and use the Implicit Function Theorem to obtain a
solution of the form seen in Figure 4. Further, λ = G1(σ(ρ), ρ) (or λ = G2(σ(ρ), ρ))
provides the bifurcation diagram for these positive solutions. The following theorem
summarizes the above discussion:
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Theorem 2.1. Let ρ > 0 and σ(ρ) ∈ (0, ρ) be such that G1(ρ, σ) = G2(ρ, σ).
Then, (2.1) has a positive solution symmetric about x = 1

2 with ‖u‖∞ = ρ and
u(L) = σ(ρ) if and only if

√
λ = G1(ρ, σ(ρ)) (= G2(ρ, σ(ρ))).

3. Results for logistic growth with grazing

In this section, we consider a model with logistic growth with grazing only in an
interior region (see Figure 5),

−u′′ =

{
λf̃(u) = λ[u− 1

Ku
2 − c u2

1+u2 ], x ∈ (L, 1− L),
λf(u) = λ[u− 1

Ku
2], x ∈ (0, L) ∪ (1− L, 1),

u(0) = 0, u(1) = 0.

(3.1)

u

fHuL

u

f
�

HuL

(a) f(u) = u− 1
Ku

2 (b) f̃(u) = u− 1
Ku

2 − c u2

1+u2

Figure 5. Logistic growth with grazing only in an interior region

We know from [8] that for certain parameter ranges the authors were able to
establish the occurrence of an S-shaped bifurcation curve for (1.1) when grazing
was allowed over the entire domain (case when L = 0). In fact, they found that
given c < 2 then for K >> 1 the bifurcation curve for model (1.1) will be S-shaped
(see Figure 6). That is, there exist m1,m2,m3 > 0 such that (1.1) has:

• no positive solution for λ ∈ (0,m1]
• exactly one positive solution for λ ∈ (m1,m2)
• exactly two positive solutions for λ = m2

• exactly three positive solutions for λ ∈ (m2,m3)
• exactly two positive solutions for λ = m3

• exactly one positive solution for λ ∈ (m3,∞)
We hope to obtain similar results even when grazing is restricted to an interior

patch. To plot the bifurcation curve for our model, we use Mathematica. For a
fixed K, c, and L, we input a ρ value and use Mathematica to solve for the value of
σ where G1(σ, ρ) = G2(σ, ρ).

Given a ρ, does there exist a unique σ = σ(ρ) such that G1(σ, ρ) = G2(σ, ρ)?
From our computations, we observe that for any given ρ-value there will be a unique
σ (see Figure 7). Our calculations imply that G1 and G2 will intersect only once
for any given ρ-value; the value where the intersection occurs is σ.

Once we find σ, we substitute the values of σ and ρ back into either G1 or G2.
Thus, for a given ρ, we can find the corresponding value of λ which we then use to
plot the bifurcation curve. From our Mathematica computations, we observe that
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Figure 6. Symmetric grazing: λ versus ρ
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Σ

Figure 7. Graph of G1 and G2

even when the grazing is confined to a small interior patch an S-shaped bifurcation
curve similar to the results from [8] still occurs.

For example, we fix c = 1.5, and we let L = .05, .25, .4, and .4999 to show the
evolution of the bifurcation curve as grazing is restricted to a smaller interior region.
For each case, we find K >> 1 such that an S-shape bifurcation curve occurs (see
Figures 8 and 9).
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(a) K = 10, c = 1.5, and L = .05 (b) K = 25, c = 1.5, and L = .25

Figure 8. Asymmetric grazing: λ versus ρ
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(a) K = 50, c = 1.5, and L = .40 (b) K = 16000, c = 1.5, and L = .4999

Figure 9. Asymmetric grazing: λ versus ρ

4. Results for weak Allee effect with grazing

We will now consider a model with weak Allee effect with grazing only in an
interior region (see Figure 10):

−u′′ =

{
λf̃(u) = λ[u(u+ 1)(b− u)− c u2

1+u2 ], x ∈ (L, 1− L),
λf(u) = λ[u(u+ 1)(b− u)], x ∈ (0, L) ∪ (1− L, 1),

u(0) = 0, u(1) = 0.

(4.1)

u

fHuL

u

f
�

HuL

(a) f(u) = u(u+ 1)(b− u) (b) f̃(u) = u(u+ 1)(b− u)− c u2

1+u2

Figure 10. Weak Allee effect with grazing only in an interior region

In [11], the authors found the occurrence of an S-shaped bifurcation curve for
certain parameter ranges when grazing was through out the entire domain (case
when L = 0). Specifically, they noted that if b > b0 (some) and c ∈ (b−1, c0 (some))
then the bifurcation curve for model (1.1) will be S-shaped (see Figure 11). That
is, there exist m1,m2,m3 > 0 such that (1.1) has

• no positive solution for λ ∈ (0,m1)
• exactly one positive solution for λ = m1
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• exactly two positive solutions for λ = (m1,m2]
• exactly three positive solutions for λ ∈ (m2,m3)
• exactly two positive solutions for λ = m3

• exactly one positive solution for λ ∈ (m3,∞)

m1

m2

m3

Λ

Ρ

Figure 11. Symmetric grazing: λ versus ρ

The bifurcation curve for model (1.1) can be calculated using a similar method
as in Section 4. For a given ρ, we must find a σ such that G1(σ, ρ) = G2(σ, ρ); then,
substituting ρ and σ back into G1 or G2 will give us λ. We use this information
to then plot the bifurcation curve of λ versus ρ with Mathematica. As we observed
with the logistic model, we have computational evidence that for a given ρ there
will be a unique σ value (see Figure 12).

G1

G2

Σ

Figure 12. Graph of G1 and G2

Based on our observations using Mathematica, we find that even when the do-
main is split and grazing is only allowed within the interior an S-shaped bifurcation
curve similar to the results from [11] will still occur.

For instance, we fix b = 5, and we let L = .01, .15, .25, and .40 to show the
evolution of the bifurcation curve as grazing is restricted to a smaller interior patch.
In each case, we find c ∈ (b − 1, c0(some)) such that an S-shape bifurcation curve
occurs (see Figures 13 and 14).
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Figure 13. Asymmetric grazing: λ versus ρ
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