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A LANDESMAN-LAZER CONDITION FOR THE
BOUNDARY-VALUE PROBLEM −u′′ = au+ − bu− + g(u) WITH

PERIODIC BOUNDARY CONDITIONS

QUINN A. MORRIS, STEPHEN B. ROBINSON

Abstract. In this article we prove the existence of solutions for the boundary-
value problem

−u′′ = au+ − bu− + g(u)

u(0) = u(2π)

u′(0) = u′(2π),

where (a, b) ∈ R2, u+(x) = max{u(x), 0}, u−(x) = max{−u(x), 0}, and g :

R → R is a bounded, continuous function. We consider both the resonance
and nonresonance cases relative to the Fuc̆́ık Spectrum. For the resonance

case we assume a generalized Landesman-Lazer condition that depends upon

the average values of g at ±∞. Our theorems generalize the results in [1] by
removing certain restrictions on (a, b). Our proofs are also different in that

they rely heavily on a variational characterization of the Fuc̆́ık Spectrum given

in [3].

1. Introduction

We are interested in the boundary-value problem

−u′′ = au+ − bu− + g(u)

u(0) = u(2π)

u′(0) = u′(2π),

(1.1)

where (a, b) ∈ R2, u+(x) = max{u(x), 0}, u−(x) = max{−u(x), 0}, and g : R → R
is a bounded, continuous function.

It has been known since the 1970s with the work of Fuc̆́ık [5] that the existence
of solutions to (1.1) depends on the parameter values (a, b). Consider the related
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boundary-value problem
−u′′ = au+ − bu−

u(0) = u(2π)

u′(0) = u′(2π),

(1.2)

and define the Fuc̆́ık Spectrum

Σ := {(a, b) ∈ R2 : There exists a nontrivial solution to (1.2) }.
The Fuc̆́ık spectrum represents a nonlinear resonance set for our boundary-value
problem, and therefore, in analogy to the Fredholm Alternative for linear operators,
we expect that there should exist solutions to (1.1) without further restrictions when
(a, b) /∈ Σ; i.e., the nonresonance case. However, when (a, b) ∈ Σ; i.e., the resonance
case, we will require the use of a generalized orthogonality condition, referred to in
the literature as a Landesman-Lazer condition, in order to establish the existence
of solutions. For future reference we let {λk}∞k=1 represent the eigenvalues of (1.2)
for the special case a = b = λ, and {φk} represents the associated L2-normalized
eigenfunctions. We will assume throughout that for some fixed k we have λk < a <
λk+1 and b ≥ a.

In this work, we will prove existence theorems for both the resonance and non-
resonance cases. Our proofs make use of the variational characterization of Σ due to
Castro and Chang in [3], and a Saddle Point Theorem originally due to Rabinowitz
in [10]. We refer to a version of the theorem found in [11].

We improve upon the results in [1] by completely removing several restrictions
on (a, b). If those restrictions are translated into our setting, then the authors are
assuming λk < a < λk+1, b ≥ a, b < λk+2 and b < 9

4a. On the other hand our
assumptions about g are not as general as those in [1] where, for example, they allow
g(x, u) to be Caratheodory. An important goal of our analysis was to demonstrate
how the characterization of Σ in [3] can support an improved understanding of
related resonance and nonresonance problems. Our arguments rely more on that
general characterization and less on careful estimates of the Fuc̆́ık Spectrum, and
associated eigenfunctions, for this ODE case. Finally, we make some improvement
on the methods in [8] where the Landesman-Lazer condition also relied on the
average values of g at ±∞ rather than on the actual limits.

2. Preliminary material

Our problems will be set in the Hilbert space H := W 1,2
2π (R); i.e., the 2π periodic

functions inW 1,2(R). Standard embedding and compactness theorems can be found
in [6]. We use the inner products

〈u, v〉L2 :=
∫ 2π

0

u(x)v(x)dx,

〈u, v〉H := 〈u′, v′〉L2 + 〈u, v〉L2

The variational characterization of the Fuc̆́ık spectrum relies on an analysis of
the functional

J(u) =
1
2

∫ 2π

0

(u′)2dt− a

2

∫ 2π

0

(u+)2dt− b

2

∫ 2π

0

(u−)2dt, u ∈ H. (2.1)

It is straight forward to see that the critical points of this functional are weak
solutions to (1.2).
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We also consider the functional,

E(u) = J(u)−
∫ 2π

0

G(u)dt, u ∈ H, (2.2)

where G(t) :=
∫ t

0
g(s)ds. The critical points of E are weak solutions to (1.1).

The proofs of our existence theorems will apply the following saddle point theo-
rem found in [11].

Theorem 2.1 (Saddle point theorem). Let H be a Hilbert space, let X be a finite
dimensional subspace of H, and let E : H → R be a C1 functional. Let BR := {x ∈
X : ‖x‖ ≤ R}, let γ0 : ∂BR → H be a continuous function, and let Γ := {γ : BR →
H : γ ∈ C(BR, H), γ

∣∣
∂BR

≡ γ0}. If supx∈∂BR
E(γ0(x)) < infγ∈Γ supx∈BR

E(γ(x))
and if E satisfies (PS), then c := infγ∈Γ supx∈BR

E(γ(x)) is a critical value of E.

A large part of this article is devoted to proving the necessary inequalities to
guarantee the appropriate geometry of our functional, E, and then to establishing
the Palais-Smale compactness condition (PS). We will see that the geometry of
J dominates the geometry of E to a large extent, and that the geometry of J
is derived as a consequence of Castro and Chang’s characterization of Σ. A first
step towards that characterization will be to identify appropriate complementary
orthogonal subspaces, X and Y , of H, and then to use the concavity of J on the X
subspace to reduce the functional to a J̃ defined on Y . (See details below). Given
that background we will use the variational characterization of the Fuc̆́ık Spectrum:

Theorem 2.2. Let λk < a < λk+1 and define

b(a) := sup{b ≥ a : inf
‖y‖L2=1

J̃(y) > 0}.

Then,
(1) either (a, b(a)) ∈ Σ, or b(a) =∞,
(2) if a ≤ b < b(a), then (a, b) /∈ Σ, and
(3) b(a) ≥ λk+1.

To prove an existence theorem for the resonance case we will assume the following
generalized Landesman-Lazer condition.

Definition 2.3 (LLD). Let (a, b) ∈ Σ. If

G± = lim
u→±∞

G(u)
u

,

and [
G+

∫
Ψ>0

Ψ dt+G−
∫

Ψ<0

Ψ dt
]
< 0,

for every nontrivial eigenfunction Ψ associated with (a, b), then condition (LLD) is
satisfied.

Remark 2.4. The classic Landesman-Lazer condition, and associated existence
theorems, can be found in [7]. That condition requires g to have limits at infinity.
Here, however, we only require that g attain a finite limit on average at infinity.
Simple examples to consider are g(t) = arctan(u) + c sin(u) for c ∈ R. The classical
Landesman-Lazer condition is applicable for c = 0, but the generalized condition
above is applicable for arbitrary c. Related generalized conditions are found in
[1],[8] and [9] and references therein, where the latter two references are for the



106 Q. A. MORRIS, S. B. ROBINSON EJDE-2013/CONF/20

case a = b. We note that the condition in [1] does not require G(u)
u to have limits

at infinity, but rather expresses its condition in terms of lim inf and lim sup.

3. Properties of the functional J

We begin by defining X := span{φ1, φ2, . . . , φk} and let Y := X⊥; i.e, Y =
span{φk+1, φk+2, . . . , φn, . . .}, and let the parameter a ∈ (λk, λk+1). With this
splitting in hand, we prove the following lemmas.

Lemma 3.1. Choose ε such that a = (1 + ε)λk, and let s = b − a ≥ 0. Let
δ = min{ ε2λk,

ε
2} and let

D = 〈∇J(x2 + y2)−∇J(x1 + y1), x2 − x1〉,
where x1, x2 ∈ X and y1, y2 ∈ Y . Then

D ≤ −δ‖x2 − x1‖2H + s
(
‖x2 − x1‖L2 + ‖y2 − y1‖L2

)
‖y2 − y1‖L2 (3.1)

Proof. Observe that for u, v ∈ H,

∇J(u) · v =
∫ 2π

0

u′v′ − a
∫ 2π

0

u+v + b

∫ 2π

0

u−v

=
∫ 2π

0

u′v′ − a
∫ 2π

0

uv + s

∫ 2π

0

u−v,

so

D = 〈(x2 + y2)′ − (x1 + y1)′, (x2 − x1)′〉L2 − a〈(x2 + y2)− (x1 + y1), x2 − x1〉L2

+ s〈(x2 + y2)− − (x1 + y1)−, x2 − x1〉L2

Using the orthogonality of X and Y to cancel terms, and then recollecting we obain

D = ‖x′2 − x′1‖2L2 − a‖x2 − x1‖2L2 + s〈(x2 + y2)− − (x1 + y1)−, x2 − x1〉L2

To estimate the last part of this expression we make the substitution x2 − x1 =
(x2 + y2) − (x1 + y1) − (y2 − y1), use the monotonicity of the function f(t) = t−,
and the fact that |f(t2)− f(t1)| ≤ |t2 − t1|, to see that

〈(x2 + y2)− − (x1 + y1)−, x2 − x1〉L2 ≤ −〈(x2 + y2)− − (x1 + y1)−, y2 − y1〉L2

≤ ‖(x2 + y2)− − (x1 + y1)−‖L2‖y2 − y1‖L2

≤ ‖(x2 + y2)− (x1 + y1)‖L2‖y2 − y1‖L2

≤
(
‖x2 − x1‖L2 + ‖y2 − y1‖L2

)
‖y2 − y1‖L2

To estimate the other part we let a = (1 + ε)λk, and write

‖x′2−x′1‖2L2−a‖x2−x1‖2L2 = (1+
ε

2
)‖x′2−x′1‖2L2−

ε

2
‖x′2−x′1‖2L2−(1+ε)λk‖x2−x1‖2L2 .

Standard estimates show that ‖x′‖2L2 ≤ λk‖x‖2L2 for all x ∈ X, so

‖x′2 − x′1‖2L2 − a‖x2 − x1‖2L2 ≤ −
ελk
2
‖x2 − x1‖2L2 −

ε

2
‖x′2 − x′1‖2L2 .

The desired inequality now follows. �

Remark 3.2. While the necessity of the above lemma may not be immediately
obvious, it was determined after repeated estimations of the same type that such
an inequality would have wide application to this particular problem.

Theorem 3.3 (Reduction theorem).



EJDE-2013/CONF/20/ A LANDESMAN-LAZER CONDITION 107

(1) For fixed y ∈ Y , J is concave and anticoercive on the set y + X :=
{y + x : x ∈ X} and achieves a unique maximum on this set.

(2) Let r : Y → X such that J(r(y)+y) = maxx∈X J(x+y), then r is Lipschitz
continuous as a function of L2(0, 2π) into H, and r(cy) = cr(y) for any
c ≥ 0 and y ∈ Y .

(3) Let J̃ : Y → R : J̃(y) = J(r(y) + y), then
(a) J̃ ∈ C1(Y,R), and
(b) J̃(cy) = c2J̃(y) for all c ≥ 0 and y ∈ Y .

This theorem is well-known from works such as [3] and [2], but we reproduce
it here for completeness, because the properties of r and J play a crucial role in
subsequent proofs, and because the approach below is somewhat different in certain
details from that found in the references.

Proof. Let u1, u2 ∈ y + X. By definition of the set y + X, write u2 = y + x1 and
u1 = y + x1. Consider the quantity,

〈∇J(u2)−∇J(u1), u2 − u1〉 = 〈∇J(x2 + y)−∇J(x1 + y), x2 − x1〉
≤ −δ‖x2 − x1‖2H ,

by (3.1). Therefore, J is strictly concave on y+X. That J is anticoercive on y+X
follows from the strict concavity and the Fundamental Theorem of Calculus. The
concavity of J on y+X implies that J is weakly upper semicontinuous, and there-
fore, J must achieve a maximum. That this maximum is unique is a consequence
of the strict concavity.

The argument so far shows that r is well defined. To see that r(y) is a continuous
function, we let x1 = r(y1), x2 = r(y2) in (3.1) and note that D = 〈∇J(r(y2) +
y2) −∇J(r(y1) + y1), r(y2) − r(y1)〉 = 0, since r(y1), r(y2) are both critical points
with respect to X. Making these substitutions, we can solve (3.1) to get

‖r(y2)− r(y1)‖H ≤
(s+

√
s2 + 4δs
2δ

)
‖y2 − y1‖L2 . (3.2)

Remark 3.4. Note also that if {yk}∞k=1 is a bounded sequence in H, then {yk}∞k=1

has a convergent subsequence in L2(0, 2π), call it {yki}∞i=1, which, by (3.2), gives us
that {r(yki)}∞i=1 converges in H. Hence, r is a compact mapping, sending bounded
sets in L2(0, 2π) into precompact sets in H.

We now show that J̃ ∈ C1(Y,R).

Remark 3.5. While it may seem at first to be a trivial consequence of the Chain
Rule, we must be careful to note that r is not necessarily a C1 function, and
therefore, a more technical argument must be made.

Consider the quantity J̃(y2)− J̃(y1). We note that

J̃(y2)− J̃(y1) = J(r(y2) + y2)− J(r(y1) + y1)

= (J(r(y2) + y2)− J(r(y2) + y1))

+ (J(r(y2) + y1)− J(r(y1) + y1))

≤ (J(r(y2) + y2)− J(r(y2) + y1)) ,

(3.3)

since J(r(y1) + y1) maximizes J(x+ y1). Then

J̃(y2)− J̃(y1) ≤ ∇J(r(y2) + y1) · (y2 − y1) + o(‖y2 − y1‖H)



108 Q. A. MORRIS, S. B. ROBINSON EJDE-2013/CONF/20

since J ∈ C1(H,R). Then

J̃(y2)− J̃(y1) ≤
(
∇J(r(y1) + y1) +∇J(r(y2) + y1)−∇J(r(y1) + y1)

)
· (y2 − y1)

+ o(‖y2 − y1‖H)

= ∇J(r(y1) + y1) · (y2 − y1)

+
(
∇J(r(y2) + y1)−∇J(r(y1) + y1)

)
· (y2 − y1) + o(‖y2 − y1‖H)

= ∇J(r(y1) + y1) · (y2 − y1) + o(‖y2 − y1‖H),

since

lim
‖y2−y1‖H→0

∣∣ (∇J(r(y2) + y1)−∇J(r(y1) + y1)) · (y2 − y1)
‖y2 − y1‖H

∣∣
≤ lim
‖y2−y1‖H→0

‖∇J(r(y2) + y1)−∇J(r(y1) + y1)‖H = 0,

by the continuity of both ∇J and r. If, instead of adding and subtracting J(r(y2)+
y1) in (3.3), we had added and subtracted J(r(y1) + y2), we would have concluded
that

J̃(y2)− J̃(y1) ≥ ∇J(r(y1) + y1) · (y2 − y1) + o(‖y2 − y1‖H).
Combining these two results, we conclude that

J̃(y2)− J̃(y1) = ∇J(r(y1) + y1) · (y2 − y1) + o(‖y2 − y1‖H),

and therefore J̃ ∈ C1(Y,R) and ∇J̃(y) = ∇Y J(r(y) + y).
We finish the proof by showing two homogeneity properties, one of the function

r and another of the functional J̃ . The case c = 0 is trivial, so we assume c > 0.
For all u ∈ H,

J(cu) =
1
2

(∫ 2π

0

((cu)′)2
dt− a

∫ 2π

0

(
(cu)+

)2
dt− b

∫ 2π

0

(
(cu)−

)2
dt
)

=
1
2

(
c2
∫ 2π

0

((u)′)2
dt− ac2

∫ 2π

0

(
(u)+

)2
dt− bc2

∫ 2π

0

(
(u)−

)2
dt
)

= c2J(u),

(3.4)

since positive constants can be factored out of (·)+ and (·)−.
Now consider

J(x+ cy) = J
(
c
(x
c

+ y
))

= c2J
(x
c

+ y
)

(3.5)

Since J(x+cy) is uniquely maximized at x = r(cy) and c2J(xc +y) will be uniquely
maximized at x

c = r(y), then r(cy) = cr(y). Finally, combining (3.4) and (3.5) we
see that

J̃(cy) = J(r(cy) + cy) = J(cr(y) + cy) = c2J(r(y) + y) = c2J̃(y).

�

Remark 3.6. Note that some of the arguments above can be simplified using the
fact that X is finite dimensional, and so, for example, the L2 and H norms are
equivalent on X. We avoid that simplification to preserve some generality in the
arguments that is of interest in other situations. For example, for other choices of
boundary conditions we often have two primary curves emanating from the point
(λk+1, λk+1). The lower curve is characterized as we have described here, and the
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upper curve can be characterized via a similar process where the roles of X and
Y are switched in the reduction of J . Thus the arguments for X, above, must be
adapted to the infinite dimensional space Y .

The properties of J̃ above lead to the proof of Theorem 2.2. The main idea is to
obtain a critical value of J̃ on the set {y ∈ Y : ‖y‖L2 = 1} by minimization. One
then observes that a critical point of J̃ is only a critical point of J if the associated
critical value is 0. We leave the remaining details of this argument for the reader
to find in [2]. However, we do state the following lemma, which will be helpful in
the next section.

Lemma 3.7. Assume that a < b ≤ b(a) as in Theorem 2.2. Then
(i) If b < b(a), then there exists an ε > 0 such that J̃(y) ≥ ε for all y ∈ Y such

that ‖y‖L2 = 1.
(ii) If b = b(a), then J̃(y) ≥ 0 for all y ∈ Y such that ‖y‖L2 = 1, and J̃(y) = 0

if and only if f y is an eigenfunction associated with (a, b) ∈ Σ.

Now that we know something about the geometry of J , we can say something
about the geometry of E.

4. The geometry of the functional E

As noted previously, the geometry of E is dominated to a large extent by the
geometry of J . For the nonresonance case this leads to relatively straight forward
arguments to prove a saddle geometry, and later the (PS) condition. For the res-
onance case we will see that the nonresonance arguments are sufficient to reduce
both questions to analyzing what happens to the functional in the direction of an
eigenfunction. In that case the (LLD) condition will provide a sufficient tool for
finishing the analysis.

Lemma 4.1. Assume that b < b(a) and let Y := {r(y) + y : y ∈ Y }. There exists
some R >> 0 sufficiently large such that

sup
x∈X,‖x‖=R

E(x) < inf
u∈Y

E(u).

Proof. Consider the functional E restricted to the subspace X. If we assume that
g is bounded, then, since J is anticoercive on X, and in fact satisfies a quadratic
estimate, we can conclude that

E(x) ≤ −η‖x‖2H +M‖x‖L2 , (4.1)

for appropriate η > 0 and M > 0, and therefore E is anticoercive on X.
Now consider E restricted to the set Y . Note first that for y 6= 0

J̃(y) = J̃
(
‖y‖L2

y

‖y‖L2

)
= ‖y‖2L2 J̃(

y

‖y‖L2
), (4.2)

and so if inf‖y‖L2=1 J̃(y) ≥ ε, as in Theorem 3.7, we conclude that J̃(y) ≥ ε‖y‖2L2 .
Recall that r(y) is Lipschitz continuous, so ‖r(y)‖H ≤M ′‖y‖L2 , for some M ′ >

0, and we see that

E(r(y) + y) ≥ ε‖y‖2L2 −M‖r(y) + y‖L2 (4.3)

≥ ε‖y‖2L2 −M (‖r(y)‖L2 + ‖y‖L2) (4.4)

≥ ε‖y‖2L2 −M(M ′ + 1)‖y‖L2 . (4.5)
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Thus E is bounded below on Y (In fact, E is coercive, but that is not necessary
here).

It follows that there exists some R sufficiently large such that,

sup
‖x‖=R

E(x) < inf
u∈Y

E(u).

�

A similar estimate is possible in the resonance case, but the proof requires the
(LLD) condition.

Lemma 4.2. Assume that b = b(a) and that (LLD) is satisfied. There exists some
R >> 0 sufficiently large such that

sup
x∈X,‖x‖=R

E(x) < inf
u∈Y

E(u).

Proof. The argument that E is anticoercive on X remains the same as above.
The analysis of E restricted to Y requires more care. Once again we will show
that E restricted to Y is bounded below, but this time we use an argument by
contradiction.

Recall that for u = r(y) + y ∈ Y we have

E(u) = J̃(y)−
∫ 2π

0

G(u) .

Let {un} ⊂ Y be a minimizing sequence for E, with un = r(yn) + yn. If E(un) is
bounded below, then we are done, so we assume, without loss of generality, that
E(un) ↓ −∞. We know that J̃(yn) ≥ 0. If {yn} were L2 bounded, then {un} would
be bounded, and the integral of G(un) would be bounded and we would be done,
so, without loss of generality, ‖yn‖L2 →∞. Moreover, if there is an ε > 0 such that
J̃( yn

‖yn‖L2
) ≥ ε, then we have E(un) → ∞ by the estimates in the previous proof.

Thus J̃( yn

‖yn‖L2
) ↓ 0.

Let vn = yn/‖yn‖L2 and let wn = un/‖yn‖L2 = r(vn) + vn. It is clear that {vn}
is L2 bounded. It follows that {r(vn)} is bounded in H, and thus that {wn} is L2

bounded. Since the functional values J(wn) = J̃(vn) are also bounded, it follows
that {wn} is H bounded. Thus, without loss of generality, we have wn ⇀ w, vn ⇀ v
in H, and wn → w, vn → v in L2(0, 2π). By continuity, r(vn) → r(v) in H,
so w = r(v) + v ∈ Y . Moreover, v must be a unit vector in L2(0, 2π) so w is
nontrivial.

By weak lower semicontinuity, we have∫ 2π

0

(w′)2 ≤ lim inf
(∫ 2π

0

(w′n)2
)
,

but J(wn) = J̃(vn)→ 0, so

lim
(∫ 2π

0

(w′n)2
)

= lim
(
a

∫ 2π

0

(w+
n )2 +b

∫ 2π

0

(w−n )2
)

= a

∫ 2π

0

(w+)2 +b

∫ 2π

0

(w−)2.

Hence ∫ 2π

0

(w′)2 ≤ a
∫ 2π

0

(w+)2 + b

∫ 2π

0

(w−)2,
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i.e. J(w) = J̃(v) ≤ 0. But we already know that J̃(v) ≥ 0, so it must be that
we have equality. Hence w is a nontrivial eigenfunction associated with (a, b).
Moreover, it must be that

lim
(∫ 2π

0

(w′n)2
)

=
∫ 2π

0

(w′)2,

so wn → w in H. Applying (LLD) we obtain

1
‖yn‖L2

∫ 2π

0

G(un) =
∫ 2π

0

(G(un
un

)
wn → G+

∫ 2π

0

w+ −G−
∫ 2π

0

w− < 0.

Finally, this leads to

E(un) = J̃(yn)−
∫ 2π

0

G(un) ≥ −
∫ 2π

0

G(un)→∞,

which is a contradiction. The proof is complete. �

We now fix R� 0 such that

sup
x∈X,‖x‖=R

E(x) < inf
u∈Y

E(u).

The final element in establishing the geometry of E is the following linking lemma.

Lemma 4.3. Suppose that either a ≤ b < b(a), or that b = b(a) and (LLD), as
above. Let BR := {x ∈ X : ‖x‖L2 ≤ R}, and let

Γ := {γ : BR ⊆ X → H : γ|∂BR
(x) = x, γ ∈ C}.

Then
inf
γ∈Γ

sup
x∈BR

E(γ(x)) > sup
x∈∂BR

E(x).

Proof. Let γ : BR ⊆ X → H be a continuous function such that γ(∂BR) = {x+ y :
y = 0, ‖x‖L2 = R}. Let γ(x) = γX(x) + γY (x) where γX(x) ∈ X and γY (x) ∈ Y .
To show that γ(BR) ∩ Y 6= ∅, we wish to find x ∈ BR so that γX(x) = r(γY (x)).
Let F (x) = γX(x)− r(γY (x)). Now, let h(x, t) = tF (x) + (1− t)x. Note first that
if x ∈ ∂BR, then F (x) = x 6= 0, so h(x, t) = tx+ (1− t)x = x. Applying Brouwer
degree, we see that deg(F,BR, 0) = deg(I,BR, 0) = 1, and hence,

inf
γ∈Γ

sup
x∈BR

E(γ(x)) ≥ inf
u∈Y

E(u) > sup
x∈∂BR

E(x)

�

5. The Palais-Smale condition

In this section it is simpler to prove (PS) for both the nonresonance and resonance
cases in one theorem.

Theorem 5.1. If (a, b) /∈ Σ, or if (a, b) ∈ Σ and (LLD) is satisfied, then the
functional E satisfies (PS).

Proof. First, suppose that {uk}∞k=1 is a sequence such that {E(uk)}∞k=1 is bounded
and ∇E(uk)→ 0 in H. We must show that {uk} has a converging subsequence in
H. The crucial step is to show that some subsequence is L∞ bounded.
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Suppose to the contrary that ‖uk‖∞ →∞. Then let vk = uk/‖uk‖∞. Note that
if we divide the energy functional through by ‖uk‖2∞, we obtain

E(uk)
‖uk‖2∞

=
1
2

∫ 2π

0

(v′k)2 dt− a

2

∫ 2π

0

(v+
k )2 dt− b

2

∫ 2π

0

(v−k )2 dt−
∫ 2π

0

G(uk)
‖uk‖2∞

dt

If we take a limit, the term E(uk)/‖uk‖2∞ → 0, since {E(uk)}∞k=1 is bounded, and∫ 2π

0

G(uk)
‖uk‖2∞

dt→ 0,

since G′ = g is a bounded function, and thus |G(uk)| ≤ C|uk|, where |g(uk)| ≤ C

∀uk. Also note that ‖v±k ‖∞ ≤ 1, so
∫ 2π

0
(v±)2 dt is likewise bounded. Therefore, we

may conclude that
1
2

∫ 2π

0

(v′k)2 dt,

is bounded and therefore ‖vk‖H is bounded.
Thus, without loss of generality, there exists Ψ ∈ H such that vk ⇀ Ψ in H and

vk → Ψ in L2(0, 2π) and C[0, 2π], by Alaoglu’s theorem and a standard compact
embedding theorem. We know that ‖Ψ‖∞ = 1 since ‖vk‖∞ = 1 ∀k and convergence
is uniform, so Ψ is nontrivial. Using this convergence, we can now show that, for
any w ∈ H,

0 = lim
k→∞

∇E(uk)
‖uk‖∞

· w

= lim
k→∞

[ ∫ 2π

0

v′kw
′ dt− a

∫ 2π

0

v+
k w dt+ b

∫ 2π

0

v−k w dt−
∫ 2π

0

g(uk)
‖uk‖∞

w dt
]

=
∫ 2π

0

Ψ′w′ dt− a
∫ 2π

0

Ψ+w dt+ b

∫ 2π

0

Ψ−w dt

Thus Ψ is a weak solution of the Fuc̆́ık eigenvalue problem, (1.2), and hence Ψ is a
nontrivial Fuc̆́ık eigenfunction.

If (a, b) /∈ Σ, then this is a contradiction and ‖uk‖∞ is bounded as claimed. If
(a, b) ∈ Σ, then consider the quantity,

2E(uk)−∇E(uk) · uk
‖uk‖∞

= −2
∫ 2π

0

G(uk)
‖uk‖∞

+
∫ 2π

0

g(uk)
uk
‖uk‖∞

(5.1)

Note first that, by assumption,

lim
k→∞

2E(uk)−∇E(uk) · uk
‖uk‖∞

= 0.

We can rewrite the first term on the right hand side of (5.1) so that

lim
k→∞

∫ 2π

0

G(uk)
‖uk‖∞

dt = lim
k→∞

∫ 2π

0

G(uk)
uk

uk
‖uk‖∞

dt

= lim
k→∞

∫
Ψ<0

G(uk)
uk

uk
‖uk‖∞

dt+
∫

Ψ>0

G(uk)
uk

uk
‖uk‖∞

dt

= G−
∫

Ψ<0

v dt+G+

∫
Ψ>0

v dt,

(5.2)

where we have used the fact that Ψ is only 0 on a finite set, and that the integrands
converge uniformly to their limits.
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Now, we need only to determine what the last integral in (5.1) converges to in or-
der to reach a contradiction, which will show that ‖uk‖∞ is bounded. The following
two lemmas establish the convergence properties of the parts of the integrand.

Lemma 5.2. uk

‖uk‖∞ has a convergent subsequence in H.

Proof. Let

P (u) · v := 〈u, v〉H

S(u) · v := −(a+ 1)
∫ 2π

0

u+v dt+ (b+ 1)
∫ 2π

0

u−v dt

T (u) · v := −
∫ 2π

0

g(u)v dt

so that
∇E(u) · v = (P (u) + S(u) + T (u)) · v.

First, let us consider S(u). Since uk/‖uk‖∞
L2

→ Ψ, it follows that
(
uk/‖uk‖∞

)+ L2

→

Ψ+ and
(
uk/‖uk‖∞

)− L2

→ Ψ− by the Lebesgue Dominated Convergence Theorem.
Noting that

S(uk)
‖uk‖∞

· v = S
( uk
‖uk‖∞

)
· v

= −(a+ 1)
∫ 2π

0

( uk
‖uk‖∞

)+

v dt+ (b+ 1)
∫ 2π

0

( uk
‖uk‖∞

)−
v dt,

we conclude that S
(
uk/‖uk‖∞

)
· v → S(Ψ) · v for all v ∈ H. Since∣∣∣(S( uk

‖uk‖∞
)
− S(Ψ)

)
· v
∣∣∣

=
∣∣∣− (a+ 1)

∫ 2π

0

(( uk
‖uk‖∞

)+ −Ψ+
)
v dt+ (b+ 1)

∫ 2π

0

(( uk
‖uk‖∞

)− −Ψ−
)
v dt
∣∣∣

≤ (a+ 1)
∥∥( uk
‖uk‖∞

)+ −Ψ+
∥∥
L2 + (b+ 1)‖

( uk
‖uk‖∞

)− −Ψ−‖L2 ,

for ‖v‖L2 ≤ 1, then S(uk/‖uk‖∞)→ S(Ψ) in H∗.
Now, considering T (u), we see that

T (u) · v = −
∫ 2π

0

g(u)v dt,

so {T (uk)} is bounded in H∗ since

‖T (u)‖H∗ ≤ ‖g(u)‖L2 ≤ C.

So ‖T (uk)/‖uk‖∞‖H∗ → 0 as k →∞.
Finally we consider P . By the Riesz Representation Theorem, there is an iso-

morphism, i : H∗ → H such that i ◦ P (u) = u for all u ∈ H. So, P is an invertible
linear operator with continuous inverse.

Recalling that ∇E(u) = P (u) + S(u) + T (u) and that, by a hypothesis of the
Palais-Smale condition, ∇E(uk)→ 0 in H∗ as k →∞, we see that

∇E(uk)
‖uk‖∞

= P
( uk
‖uk‖∞

)
+ S

( uk
‖uk‖∞

)
+
T (uk)
‖uk‖∞
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can be rewritten as
uk
‖uk‖∞

= P−1
(∇E(uk)
‖uk‖∞

− S
( uk
‖uk‖∞

)
− T (uk)
‖uk‖∞

)
.

Therefore, invoking the continuity of P−1 and taking a limit as k →∞, we conclude
that

uk
‖uk‖∞

H→ P−1
(
0− S(Ψ)− 0

)
= P−1(−S(Ψ)) = Ψ.

�

Lemma 5.3.
g(uk) ⇀ G+χΨ>0 +G−χΨ<0

Proof. By Alaoglu’s Theorem, we know that {g(uk)}∞k=1 has a weakly convergent
subsequence since {g(uk)}∞k=1 is bounded in L2[0, 2π]. Let g(uk) ⇀ G . Now we
need only to show that

G = G+χΨ>0 +G−χΨ<0

It will be helpful to recall some standard properties of Fuc̆́ık eigenfunctions, Ψ,
namely that they are continuously differentiable and have a finite number of critical
points. For a proof of such properties and an explicit formulation for such Ψ, see
[1].

Let v = χ[c,d] be the characteristic function of some closed interval where 0 ≤
c < d ≤ 2π and [c, d] ⊂ {x : Ψ(x) > 0,Ψ′(x) > 0}. Then we may write∫ 2π

0

g(uk)χ[c,d] =
∫ d

c

g(uk)

=
∫ d

c

g(uk)
(

1−
u′k
‖uk‖∞
Ψ′(e)

)
+
∫ d

c

g(uk)
( u′k
‖uk‖∞
Ψ′(e)

)
,

(5.3)

where c < e < d such that Ψ′(e) = Ψ(d)−Ψ(c)
d−c , as guaranteed by the Mean Value

Theorem. Analyzing the second term, we find∫ d

c

g(uk)
( u′k
‖uk‖∞
Ψ′(e)

)
=

1
Ψ′(e)‖uk‖∞

∫ d

c

g(uk)u′k

=
1

Ψ′(e)‖uk‖∞
(G(uk(d))−G(uk(c)))

=
1

Ψ′(e)

(G(uk(d))
uk(d)

uk(d)
‖uk‖∞

− G(uk(c))
uk(c)

uk(c)
‖uk‖∞

)
Now, taking a limit of both sides, we see that

lim
k→∞

∫ d

c

g(uk)
( u′k
‖uk‖∞
Ψ′(e)

)
= lim
k→∞

1
Ψ′(e)

(G(uk(d))
uk(d)

uk(d)
‖uk‖∞

− G(uk(c))
uk(c)

uk(c)
‖uk‖∞

)
=

1
Ψ′(e)

(
G+Ψ(d)−G+Ψ(c)

)
= (d− c)G+

=
∫ 2π

0

G+χ[c,d]
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Focusing now on the first term of (5.3), we note that,(
1−

u′k
‖uk‖∞
Ψ′(e)

)
→
(

1− Ψ′(x)
Ψ′(e)

)
,

in L2(0, 2π), so ∫ d

c

g(uk)
(

1−
u′k
‖uk‖∞
Ψ′(e)

)
→
∫ d

c

G
(

1− Ψ′(x)
Ψ′(e)

)
.

Let ε > 0 and define M := ‖G ‖∞. The fact that M exists is a consequence of the
boundedness of g. Choose ci, di, ei such that

∪ni=i[ci, di] = [c, d], |d− c| =
n∑
i=1

|di − ci|, and |1− Ψ′(x)
Ψ′(ei)

| < ε

M
∀x ∈ [ci, di].

Then∫ 2π

0

g(uk)χ[c,d] =
n∑
i=1

∫ di

ci

g(uk)

=
n∑
i=1

∫ di

ci

g(uk)
(

1−
u′k
‖uk‖∞
Ψ′(ei)

)
+

n∑
i=1

∫ di

ci

g(uk)
( u′k
‖uk‖∞
Ψ′(ei)

)
.

We see that
n∑
i=1

∫ di

ci

g(uk)
( u′k
‖uk‖∞
Ψ′(ei)

)
→

n∑
i=1

∫ di

ci

G+χ[ci,di] =
∫ d

c

G+χ[c,d],

while
n∑
i=1

∫ di

ci

g(uk)
(

1−
u′k
‖uk‖∞
Ψ′(ei)

)
→

n∑
i=1

∫ di

ci

G
(

1− Ψ′(x)
Ψ′(ei)

)
and∣∣ n∑

i=1

∫ di

ci

G
(
1− Ψ′(x)

Ψ′(ei)
)∣∣ ≤ n∑

i=1

∫ di

ci

∣∣G (1− Ψ′(x)
Ψ′(ei)

)∣∣ ≤ n∑
i=1

ε|di − ci| = ε(d− c)

Since ε was chosen arbitrarily, we may let ε→ 0, and hence

lim
k→∞

∫ 2π

0

g(uk)χ[c,d] =
∫ 2π

0

G+χ[c,d] ∀[c, d] ⊂ {x : Ψ(x) > 0,Ψ′(x) > 0}. (5.4)

The exact same calculations will show that, given [c, d] ⊂ {x : Ψ(x) > 0,Ψ′(x) < 0},
we get the same conclusion as in (5.4). For [c, d] ⊂ {x : Ψ(x) < 0,Ψ′(x) > 0} and
[c, d] ⊂ {x : Ψ(x) < 0,Ψ′(x) < 0}, we can complete the same calculations, but will
this time find that

lim
k→∞

∫ 2π

0

g(uk)χ[c,d] =
∫ 2π

0

G−χ[c,d].

Hence, we may recombine the integrals to see that

lim
k→∞

∫ 2π

0

g(uk)χ[c,d] =
∫ 2π

0

(
G+χΨ>0 +G−χΨ<0

)
χ[c,d]. (5.5)

We proceed, via standard arguments, to replace χ[c,d] in (5.5) by arbitrary
v ∈ L2(0, 2π). So far the closed intervals above avoid critical points of ψ. If
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an interval does include critical points, however, we may delete an arbitrarily small
neighborhood of each of the finitely many critical points so that the total change in
the integral is less than some ε. Hence (5.5) holds for arbitrary [c, d] up to an arbi-
trary ε. Let ε go to zero and we have (5.5) for all closed subintervals of [0, 2π]. We
can immediately generalize to step functions, and then to arbitrary v ∈ L2(0, 2π)
by taking limits of approximating step functions. Thus we have

lim
k→∞

∫ 2π

0

g(uk)v =
∫ 2π

0

(
G+χΨ>0 +G−χΨ<0

)
v,

which proves the lemma. �

As a consequence of this lemma we have∫ 2π

0

g(uk)
uk
‖uk‖∞

→ G+

∫
Ψ>0

Ψ +G−
∫

Ψ<0

Ψ. (5.6)

Combining (5.1), (5.2), and (5.6), we now find that

0 = −
[
G+

∫
Ψ>0

Ψ +G−
∫

Ψ<0

Ψ
]
,

a contradiction of (LLD). Hence, {uk}∞k=1 is a bounded sequence in L∞.
We note that {E(uk)}∞k=1 is bounded by hypothesis and all the integral terms,

except the one involving u′k, are bounded by virtue of {uk}∞k=1 being bounded in
L∞. Hence, {uk}∞k=1 is a bounded sequence in H.

Now, as before, consider ∇E(uk) = P (uk) + S(uk) + T (uk). Since {uk}∞k=1 is

bounded in H, then there exists a subsequence such that uk
H
⇀ u and uk

L2, C→ u.
Now, taking a limit, we see that

0 = lim
k→∞

∇E(uk) = lim
k→∞

(P (uk) + S(uk) + T (uk))

and since P is invertible, S(uk)→ S(u), and T (uk)→ T (u), we may rearrange the
equation to see that

uk
H→ u = P−1(−S(u)− T (u)).

Hence {uk}∞k=1 has a subsequence which converges in H, and therefore we have
satisfied (PS). �

6. Main Result

Theorem 6.1. Assume that g : R → R is bounded and continuous. If (a, b) /∈ Σ
or if (a, b) ∈ Σ and (LLD) is satisfied, then there exists at least one weak solution
to (1.1).

Proof. Recall that the functional E satisfies (PS) due to Theorem 5.1. Also, if

Γ := {γ : BR ⊆ X → H : γ
∣∣
∂BR

(x) = x, γ cont. },

then
inf
γ∈Γ

sup
x∈BR

E(γ(x)) > sup
x∈∂BR

E(x),

due to Lemma 4.3. Hence, by Theorem 2.1,

c := inf
γ∈Γ

sup
x∈X

E(γ(x))

is a critical value, and so (1.1) has a weak solution. �
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