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SOLVING OSCILLATORY PROBLEMS USING A BLOCK
HYBRID TRIGONOMETRICALLY FITTED METHOD WITH

TWO OFF-STEP POINTS

FIDELE F. NGWANE, SAMUEL N. JATOR

Abstract. A continuous hybrid method using trigonometric basis (CHMTB)
with two ‘off-step’ points is developed and used to produce three discrete hy-

brid methods which are simultaneously applied as numerical integrators by as-

sembling them into a block hybrid trigonometrically fitted method (BHTFM)
for solving oscillatory initial value problems (IVPs). The stability property of

the BHTFM is discussed and the performance of the method is demonstrated
on some numerical examples to show accuracy and efficiency advantages.

1. Introduction

In this article, we consider the first-order differential equation

y′ = f(x, y), y(a) = y0, x ∈ [a, b], (1.1)

with oscillating solutions where f : R × Rm → Rm, y, y0 ∈ Rm. Oscillatory IVPs
frequently arise in areas such as classical mechanics, celestial mechanics, quantum
mechanics, and biological sciences. Several numerical methods based on the use of
polynomial basis functions have been developed for solving this class of important
problems (see Lambert [14, 15], Hairer et al in [9], Hairer [10], and Sommeijer [19]).
Other methods based on exponential fitting techniques which take advantage of the
special properties of the solution that may be known in advance have been proposed
(see Simos [18], Vanden et al [20], Vigo-Aguiar et al [21], Franco [5], Fang et al [3],
Nguyen et al [16], and Jator et al [12]). The motivation governing the exponentially-
fitted methods is inherent in the fact that if the frequency or a reasonable estimate
of it is known in advance, these methods will be more advantageous than the
polynomial based methods.

The goal of this article is to construct a CHMTB which provides three discrete
methods that are combined and applied as a BHTFM which takes the frequency of
the solution as a priori knowledge. The coefficients of the BHTFM are functions
of the frequency and the stepsize, hence the solutions provided by the proposed
method are exact if (1.1) has periodic solutions with known frequencies. We are
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motivated to use the hybrid method in order to increase the order of the method,
while preserving good stability properties. Hybrid methods were first proposed
to overcome the Dahlquist [2] barrier theorem whereby the conventional linear
multistep method was modified by incorporating off-step points in the derivation
process (see Gear [6], Gragg et al in [7], Butcher [1], Gupta [8], Lambert [15],
and Kohfeld et al in [13]). These methods were shown to enjoy both higher order
and good stability properties, but included additional off-grid functions. Gupta
[8] noted that the design of algorithms for hybrid methods is more tedious due to
the occurrence of off-step functions which increase the number of predictors needed
to implement the methods. In order to avoid this deficiency, we adopt a different
approach based on a block-by-block implementation instead of the traditional step-
by-step implementation, generally performed in a predictor-corrector mode.

Hence, we adopted the approach given in Jator et al in [12], where the CHMTB
is used to generate a main and two additional methods which are combined and
used as a BHTFM to simultaneously produce approximations

{yn+µ, yn+v, yn+1} at a block of points {xn+µ, xn+v, xn+1},

h = xn+1−xn, n = 0, . . . , N−1, on a partition [a, b], where µ, v ∈ (0, 1), a, b ∈ R, h
is the constant stepsize, n is a grid index and N > 0 is the number of steps. Block
methods have also been considered by Shampine and Watts [17]. We emphasize
that the BHTFM simultaneously generates approximations {yn+µ, yn+v, yn+1} to
the exact solutions {y(xn+µ), y(xn+v), y(xn+1)}.

To apply the block method at the next block to obtain yn+2, the only necessary
starting value is yn+1, and the loss of accuracy in yn+1 does not affect subsequent
points, thus the order of the algorithm is maintained. It is unnecessary to make a
function evaluation at the initial part of the new block. Thus, at all blocks except
the first, the first function evaluation is already available from the previous block.

The organization of this article is as follows. In Section 2, we obtain a trigonomet-
ric basis representation U(x) for the exact solution y(x) which is used to generate
two discrete methods which are combined into a BHTFM for solving (1.1). The
analysis and implementation of the BHTFM are discussed in Section 3. Numerical
examples are given in Section 4 to show the accuracy and efficiency of the BHTFM.
Finally, we give some concluding remarks in Section 5.

2. Development of method

In this section, our objective is to construct a CHMTB which produces three
discrete methods as by-products. The main method has the form

yn+1 = yn + h(β0(u)fn + β1(u)fn+1 + βv(u)fn+v + βµ(u)fn+µ), (2.1)

and the additional methods are given by

yn+v = yn + h(β̂0(u)fn + β̂1(u)fn+1 + β̂v(u)fn+v + β̂µ(u)fn+µ),

yn+µ = yn + h(β̌0(u)fn + β̌1(u)fn+1 + β̌v(u)fn+v + β̌µ(u)fn+µ),
(2.2)

where u = wh, βj(u), β̂j(u), β̌j(u), βv(u), β̂v(u), β̌v(u), βµ(u), β̂µ(u) and β̌µ(u),
j = 0, 1, are coefficients that depend on the stepsize and frequency. We note that
yn+v and yn+µ are the numerical approximation to the analytical solutions y(xn+v),
and y(xn+µ) respectively and fn+v = f(xn+v, yn+v), fn+µ = f(xn+µ, yn+µ), fn+j =
f(xn+j , yn+j) with j = 0, 1. To obtain equations (2.1) and (2.2), we proceed by
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seeking to approximate the exact solution y(x) on the interval [xn, xn + h] by the
interpolating function U(x) of the form

U(x) = a0 + a1x+ a2x
2 + a3 sin(wx) + a4 cos(wx), (2.3)

where a0, a1, a2, a3 and a4 are coefficients that must be uniquely determined. We
then impose that the interpolating function equation (2.3) coincides with the ana-
lytical solution at the end point xn to obtain the equation

U(xn) = yn. (2.4)

We also require that the function (2.3) satisfy the differential equation (1.1) at the
points xn+µ, xn+v, xn+j , j = 0, 1 to obtain the following set of three equations:

U ′(xn+µ) = fn+µ, U ′(xn+v) = fn+v, U ′(xn+j) = fn+j , j = 0, 1. (2.5)

Equations (2.4) and (2.5) lead to a system of five equations which is solved by
Cramer’s rule to obtain aj , j = 0, 1, 2, 3, 4. Our continuous CHMTB is constructed
by substituting the values of aj into equation (2.3). After some algebraic manipu-
lation, the CHMTB is expressed in the form

U(x) = yn + h(β0(w, x)fn + β1(w, x)fn+1 + βv(w, x)fn+v + βµ(w, x)fn+µ), (2.6)

where w is the frequency, β0(w, x), β1(w, x), βv(w, x), and βµ(w, x), are continuous
coefficients. The continuous method (2.6) is used to generate the main method of
the form (2.1) and two additional methods of the form (2.2) by choosing, v = 1

2

and µ = 1
4 . Thus, evaluating (2.6) at x = {xn+1, xn+ 1

2
, xn+ 1

4
} and letting u = wh,

we obtain the coefficients of (2.1) and (2.2) as follows:

β0 =
cos(u8 )(csc(u4 )3) sin(u8 )(u− 2 sin(u2 ))

2u

β1 = −(
cos(u8 ) csc(u4 )3 sin(u8 )(−u+ 2 sin(u2 ))

2u
)

βv = −(
cos(u8 ) csc(u4 )3 sin(u8 )(u cos(u2 )− 2 sin(u2 ))

u
),

(2.7)

and

β̂0 =
(csc(u8 )2)(u− 4 sin(u4 ))

8u

β̂v =
(csc(u8 )2)(u− 4 sin(u4 ))

8u

β̂µ = −(
(csc(u8 )2)(u cos(u4 )− 4 sin(u4 ))

4u
)

β̌0 =
(csc(u4 )3) sin(u8 )(8u cos(u8 ) + 3u cos( (3u)

8 )− 8(2 sin( (3u)
8 ) + sin( (5u)

8 )))
16u

β̌1 = −(
(csc(u4 )3)(u cos(u8 )− 8 sin(u8 )) sin(u8 )

16u
)

β̌v =
(3 + 3 cos(u4 ) + cos(u2 ))(csc(u4 )3)(u cos(u8 )− 8 sin(u8 )) sin(u8 )

8u

β̌µ = −(
(cos(u8 )2)(csc(u4 )3) sin(u8 )(3u cos(u8 ) + 3u cos( (3u)

8 )− 16 sin( (3u)
8 ))

4u
),

(2.8)

with β̂1 = 0 and βµ = 0.
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3. Error analysis and stability

3.1. Local truncation error. The Taylor series is used for small values of u (see
Simos [18]). Thus the coefficients in equation (2.7) can be expressed as

β0 =
1
6

+
u2

720
+

u4

80640
+

u6

9676800
+

u8

1226244096
+

691u10

111588212736000
+ . . .

β1 =
1
6

+
u2

720
+

u4

80640
+

u6

9676800
+

u8

1226244096
+

691u10

111588212736000
+ . . .

βv =
2
3
− u2

360
− u4

40320
− u6

4838400
− u8

613122048
− 691u10

55794106368000
+ . . .

and the coefficients in equation (2.8) can be expressed as

β̂0 =
1
12

+
u2

5760
+

u4

2580480
+

u6

1238630400
+

u8

627836977152

+
691u10

228532659683328000
+ . . .

β̂v =
1
12

+
u2

5760
+

u4

2580480
+

u6

1238630400
+

u8

627836977152

+
691u10

228532659683328000
+ . . .

β̂µ =
1
3
− u2

2880
− u4

1290240
− u6

619315200
− u8

313918488576

− 691u10

114266329841664000
+ . . .

β̌0 =
37
384

+
67u2

184320
+

401u4

165150720
+

1649u6

79272345600
+

1711u8

9132174213120

+
12094087u10

7313045109866496000
+ . . .

β̌1 =
1

384
+

13u2

184320
+

37u4

33030144
+

1091u6

79272345600
+

2087u8

14350559477760

+
10191073u10

7313045109866496000
+ . . .

β̌v = − 7
192

+
7u2

46080
− 11u4

11796480
− 29u6

1415577600
− 12503u8

50226958172160

− 659969u10

261180182495232000
+ . . .

β̌µ =
3
16
− 3u2

5120
− 3u4

1146880
− 31u6

2202009600
− 13u8

155021475840

− 11747u10

22571126882304000
+ . . . .
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Thus, the Local Truncation Errors (LTEs) for methods (2.1) and (2.2) are given
by

LTE(2.1) = − h5

2880
(w2y(3)(xn) + y(5)(xn)),

LTE(2.2) = − h5

92160
(w2y(3)(xn) + y(5)(xn)),

LTE(2.2) = − 53h5

1474560
(w2y(3)(xn) + y(5)(xn)).

(3.1)

Remark 3.1. We noticed that as u→ 0, the method (2) reduces to the fourth-order
method of Gragg and Stetter [7], which is based on polynomial basis functions.

3.2. Stability. The BHTFM is constructed by combining equations (2.1) and
(2.2), where the coefficients of the method are explicitly given by equations (2.7) and
(2.8). We then define the block-by-block method for computing vectors Y0, Y1, · · ·
in sequence (see [4]). Let the η−vector (η = 3 is the number of points within the
block) Yγ , Yγ−1, Fγ , Fγ−1 be given as

Yγ = (yn+ 1
4
, yn+ 1

2
, yn+1)T , Yγ−1 = (yn− 1

4
, yn− 1

2
, yn)T ,

Fγ = (fn+ 1
4
, fn+ 1

2
, fn+1)T , Fγ−1 = (fn− 1

4
, fn− 1

2
, fn)T ,

then the 1-block 3-point method for equation (1.1) is given by

Yγ =
1∑
i=1

A(i)Yγ−i +
1∑
i=0

B(i)Fγ−i, (3.2)

where A(i), B(i), i = 0, 1 are 3×3 matrices whose entries are given by the coefficients
of (2.1) and (2.2).

Zero-stability.

Definition 3.2. The block method (3.2) is zero stable provided the roots Rj ,
j = 1, 2, 3 of the first characteristic polynomial ρ(R) specified by

ρ(R) = det
[ 1∑
i=0

A(i)R1−i
]

= 0, A(0) = −I, (3.3)

satisfies |Rj | ≤ 1, j = 1, 2, 3 and for those roots with |Rj | = 1, the multiplicity does
not exceed 1 (see [4]).

Consistency of BHTFM. We note that the block method (3.2) is consistent
as it has order p > 1. We see from equation (3.3) and definition (3.2) that the
block method (3.2) is zero-stable since ρ(R) = R2(R − 1) = 0 satisfies |Rj | ≤ 1,
j = 1, 2, 3, and for those roots with |Rj | = 1, the multiplicity does not exceed 1.
The block method (3.2) is thus convergent, as zero-stability plus consistency equals
convergence.

Linear stability of the BHTFM. To analyze the linear stability of the BHTFM,
we apply the method to the test equation y′ = λy, where λ is expected to run
through the (negative) eigenvalues of the Jacobian matrix. Then an application of
(3.2) to the test equation yields

Yγ = M(q;u)Yγ−i, q = hλ, u = wh, (3.4)
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where
M(q;u) = (A(0) − qB(0))−1(A(1) + qB(1)),

where the matrix M(q;u) is the amplification matrix which determines the stability
of the method.

Definition 3.3. A region of stability is a region in the q − u plane, throughout
which |ρ(q;u)| ≤ 1, where ρ(q;u) is the spectral radius of M(q;u).

It is easily seen that the eigenvalues of M(q;u) are λ1 = 0, λ2 = 0, and

λ3 =
(
− 16(2 + q)(q2 + u2) cos(

u

8
) + (6q3 + 16u2 + 6qu2 + q2(16 + u2)) cos(

3u
8

)

+ 16q2 cos(
5u
8

) + 10q3 cos(
5u
8

) + 16u2 cos(
5u
8

) + 10qu2 cos(
5u
8

)

+ 3q2u2 cos(
5u
8

) + q3u sin(
3u
8

) + 3q3u sin(
5u
8

)
)

÷
(

16(−2 + q)(q2 + u2) cos(
u

8
) + (−10q3 + 16u2 − 10qu2

+ q2(16 + 3u2)) cos(
3u
8

) + 16q2 cos(
5u
8

)− 6q3 cos(
5u
8

) + 16u2 cos(
5u
8

)

− 6qu2 cos(
5u
8

) + q2u2 cos(
5u
8

)− 3q3u sin(
3u
8

)− q3u sin(
5u
8

)
)
.

-100 -50 0 50 100

-3

-2
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1

2

3
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u

Figure 1. The shaded region represents the truncated region of
absolute stability

We observed that in the q − u plane the BHTFM is stable for q ∈ [−100, 100],
and u ∈ [−π, π]. Figure 1 is a plot of the stability region. Figure 2 shows the zeros
and poles of λ3.

3.3. Implementation. We emphasize that methods (2.1) and (2.2) are combined
to form the block method (3.2), which is implemented to solve (1.1) without requir-
ing starting values and predictors. For instance, if we let n = 0 and γ = 1 in (3.2),
then (y 1

4
, y 1

2
, y1)T are simultaneously obtained over the sub-interval [x0, x1], as y0

is known from the IVP. Similarly, if n = 1 and γ = 2, then (y 5
4
, y 3

2
, y2)T are simul-

taneously obtained over the sub-interval [x1, x2], as y1 is known from the previous
block, and so on; until we reach the final sub-interval [xN−1, xN ]. We note that for
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Re

Im

Figure 2. λ3 has three zeros(�) and no poles(+) in C−, hence
the BHTFM is A0-stable.

linear problems, we solve (1.1) directly using the feature solve[ ] in Matlab, while
nonlinear problems were solved by implementing the Newton’s method in Matlab
enhanced by the feature fsolve[ ].

4. Numerical examples

In this section, we give numerical examples to illustrate the accuracy (small er-
rors) and efficiency (fewer number of function evaluations (FNCs)) of the BHTFM.
We find the approximate solution on the partition πN , where

πN : a = x0 < x1 < x2 < · · · < xn < xn+1 < · · · < xN = b, (4.1)

and we give the errors at the endpoints calculated as Error=yN − y(xN ). We note
that the method requires only three function evaluations per step and in general
requires (3N + 1) FNCs on the entire interval. All computations were carried out
using a written code in Matlab.

Example 4.1. We consider the following inhomogeneous IVP by Simos [18].

y′′ = −100y + 99 sin(x), y(0) = 1, y′(0) = 11, x ∈ [0, 1000]

where the analytical solution is given by

Exact: y(x) = cos(10x) + sin(10x) + sin(x).

The exponentially-fitted method in Simos [18] is fourth order and hence compa-
rable to our method, BHTFM. We see from Table (1) that BHTFM is more efficient
than the method in Simos [18]. We also compare the computational efficiency of the
two methods by considering the FNCs over N integration steps for each method.
Our method, BHTFM, requires only 3N + 1 function evaluations in N steps com-
pared to 4N function evaluations in N steps for the method in Simos [18]. Hence
for this example, BHTFM performs better.

Example 4.2. We consider the IVP (see Vigo-Aguiar et al [21])

y′′ +K2y = K2x, y(0) = 10−5, y′(0) = 1−K10−5 cot(K), x ∈ [0, 100]
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BHTFM Simos [18]
N —Error— FNCs —Error— FNCs

1000 1.2× 10−3 6002 1.4× 10−1 8000
2000 1.2× 10−3 12002 3.5× 10−2 16000
4000 1.4× 10−5 24002 1.1× 10−3 32000
8000 1.5× 10−7 48002 8.4× 10−5 64000
16000 8.7× 10−9 96002 5.5× 10−6 128000
32000 1.1× 10−9 192002 3.5× 10−7 256000

Table 1. Results, with ω = 10, for example (4.1)
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Figure 3. Efficiency curves for example (4.1)

where K = 314.16, and we choose ω = 314.16. The analytical solution is given by

Exact: y(x) = x+ 10−5(cos(Kx)− cot(K) sin(Kx)).

BHTFM CHEBY24
N —Error— FNCs N —Error— FNCs
9 5.07× 10−11 48 9 1.84× 10−11 450
20 9.17× 10−12 122
40 4× 10−15 242

Table 2. Results, with ω = 314.16, for example (4.2) on [0, 100].

BHTFM CHEBY1
N —Error— FNCs N —Error— FNCs
2 4.13× 10−17 14 1 1× 10−16 8

Table 3. Results, with ω = 314.16, for example (4.2) on [0, 1]

This problem demonstrates the performance of BHTFM on a well-known oscil-
latory problem. We compare the results from BHTFM with the Dissipative Cheby-
shev exponential-fitted methods, CHEBY24 and CHEBY1 used in Vigo-Aguiar et
al [21]. We see that BHTFM uses fewer number of function evaluations with better
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accuracy than CHEBY24 that is designed to use fewer number of steps. Integrating
in the interval [0, 1] with a stepsize equal to half the total length of the interval, we
obtain an error of order 10−17. Hence BHTFM is a more efficient integrator. We
note that compared with the methods CHEBY24 and CHEBY1 which use step-
sizes considerably larger than those used in multistep methods, BHTFM is very
competitive to CHEBY1 and superior to CHEBY24.

Example 4.3. We consider the nonlinear perturbed system on the range [0, 10],
with ε = 10−3 ( see Fang et al [3]).

y′′1 + 25y1 + ε(y2
1 + y2

2) = εφ1(x), y1(0) = 1, y′1(0) = 0,

y′′2 + 25y2 + ε(y2
1 + y2

2) = εφ2(x), y2(0) = ε, y′2(0) = 5,

where

φ1(x) = 1 + ε2 + 2ε sin(5x+ x2) + 2 cos(x2) + (25− 4x2) sin(x2),

φ2(x) = 1 + ε2 + 2ε sin(5x+ x2)− 2 sin(x2) + (25− 4x2) cos(x2),

and the exact solution is given by

Exact: y1(x) = cos(5x) + ε sin(x2), y2(x) = sin(5x) + ε cos(x2),

represents a periodic motion of constant frequency with small perturbation of vari-
able frequency.

BHTFM ARKN(5) TFARKN(5)
N − log10(Err) N(rejected) − log10(Err) N(rejected) − log10(Err)
50 4.04 42(15) 2.82 29(6) 2.78
90 5.04 86(7) 4.96 88(9) 5.33
170 6.07 260(5) 7.16 262(8) 7.85

Table 4. Results, with ω = 5, for example (4.3)

We use this problem to demonstrate the performance of the BHTDA on a non-
linear perturbed system. This problem was also solved by Fang et al [3] using a
variable stepsize fifth-order trigonometrically fitted Runge-Kutta-Nyström method
TFARKN5(3) and a fifth-order Runge-Kutta-Nyström method (ARKN5(3)) which
was constructed by Franco [5]. We compare the maximum global error (Err =
max |y(x) − y|) for the three methods in Table 4. We remark that TFARKN5(3)
and ARKN5(3) are expected to perform better because they are exact when the
solution involves a linear combination of trigonometric functions as well as imple-
mented as a variable-step method. However, BHTFM which is implemented using
a fixed step-size is highly competitive to them.

Example 4.4. We consider the nonlinear Duffing equation which was also solved
by Simos [18] and Ixaru et al [11]

y′′ + y + y3 = B cos(Ωx), y(0) = C0, y′(0) = 0.

The analytical solution is given by

Exact:y(x) = C1 cos(Ωx) + C2 cos(3Ωx) + C3 cos(5Ωx) + C4 cos(7Ωx),

where Ω = 1.01, B = 0.002, C0 = 0.200426728069, C1 = 0.200179477536, C2 =
0.246946143×10−3, C3 = 0.304016×10−6, C4 = 0.374×10−9. We choose ω = 1.01
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Figure 4. Efficiency curves for example (4.3)

BHTFM Simos Ixaru et al
N —Error— N —Error— N —Error—

150 1.3× 10−3 300 1.7× 10−3 300 1.1× 10−3

300 5.6× 10−5 600 1.9× 10−4 600 5.4× 10−5

600 3.2× 10−6 1200 1.4× 10−5 1200 1.9× 10−6

1200 1.7× 10−7 2400 8.7× 10−7 2400 6.2× 10−8

Table 5. Results, with ω = 1.01, for example (4.4)

We compare the end-point global errors for BHTFM with the fourth order meth-
ods in Simos [18] and Ixaru et al [11]. We see from Table 5 that the results produced
by BHTFM are better than those given Simos [18], as BHTFM produces better er-
ror magnitude while using only half the number of steps needed by Simos [18].
BHTFM is very competitive to the method used by Ixaru et al [11].
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Figure 5. Efficiency curves for example (4.4)



EJDE-2013/CONF/20/ SOLVING OSCILLATORY PROBLEMS 129

Example 4.5. A nearly sinusoidal problem. We consider the following IVP on the
range 0 ≤ t ≤ 10, (see Nguyen et al [16, p. 205])

y′1 = −2y1 + y2 + sin(t), y1(0) = 2,

y′2 = −(β + 2)y1 + (β + 1)y2 + sin(t)− cos(t), y2(0) = 3.

We choose β = −3 and β = −1000 to illustrate the phenomenon of stiffness. Given
the initial conditions y1(0) = 2 and y2(0) = 3, the exact solution is β-independent
and is given by

Exact: y1(t) = 2 exp(−t) + sin(t), y2(t) = 2 exp(−t) + cos(t).

BHTFM with (β = −3) Nguyen et al [16] with (β = −3)
N —Error— FNCs N —Error— FNCs
6 8.9× 10−6 38 10 5.4× 10−6 47
10 9.0× 10−7 62 19 8.3× 10−8 88
19 5.8× 10−8 116 23 4.5× 10−4 113

Table 6. Results, with ω = 1, for example (4.5) with β = −3.

BHTFM with (β = −1000) Nguyen et al [16] with (β = −1000)
N —Error— FNCs N —Error— FNCs
6 8.9× 10−6 38 13 1.0× 10−6 61
10 9× 10−7 62 16 1.6× 10−7 76
13 2.9× 10−7 80 21 7.0× 10−8 98
16 1.1× 10−7 99
21 3.8× 10−8 128
Table 7. Results, with ω = 1, for example (4.5) with β = −1000.

This example is chosen to demonstrate the performance of BHTFM on stiff
problems. We compute the solutions to Example (4.5) with β = −3,−1000. We
obtain comparable or better absolute errors than Nguyen et al ([16]). This efficiency
is achieved using fewer number of blocks and less function evaluations than Nguyen
et al ([16]). For example when β = −3, our method generates a solution with
error magnitude 10−6 involving just 6 blocks and 38 function evaluations, whereas
[16] attains the same error magnitude using 10 blocks and 47 function evaluations.
When β = −1000 and using 10 blocks, BHTFM generates a solution with error
magnitude 10−7 involving 62 function evaluations, whereas [16] attains an error
magnitude of 10−6 while using 13 blocks. We see that BHTFM performs better
using fewer blocks and is competitive to Nguyen et al ([16]) which is of order six
and is thus expected to do better.

Example 4.6. Linear Kramarz problem. We consider the following second-order
IVP, (see Nguyen et al [16, p. 204])

y′′(t) =
(

2498 4998
−2499 −4999

)
y(t), y(0) =

(
2
−1

)
, y′(0) =

(
0
0

)
, 0 ≤ t ≤ 100.

Exact: y(t) = (2 cos(t),− cos(t))T .
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Figure 6. Efficiency curves for example (4.5) with β = −3
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Figure 7. Efficiency curves for example (4.5) with β = −1000

We use this example to show the efficiency of BHTFM on linear systems. Nguyen
et al [16] used the ”trigonometric implicit Runke-Kutta”, TIRK3, method to solve
the above linear Kramarz problem. Clearly, BHTFM performs better as seen in
Table 8.

BHTFM Nguyen et al [16]
N —Error— FNCs N —Error— FNCs
10 8.3× 10−15 144 73 3.3× 10−12 327
30 5× 10−14 364 142 0.9× 10−11 707
40 7.2× 10−14 484 170 3.7× 10−12 811
43 9.5× 10−14 520 - - -

Table 8. Results, with ω = 1, for example (4.6)

4.1. Estimating the frequency. A preliminary testing indicates that a good
estimate of the frequency can be obtained by demanding that LTE(2)−LTE(3) =
0, and solving for the frequency quadratically. That is, solve for ω given that(

− h5

2880
(w2y(3)(xn) + y(5)(xn))

)
−
(
− h5

92160
(w2y(3)(xn) + y(5)(xn))

)
= 0,
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Figure 8. Efficiency curves for example (4.6)

where y(j), j = 2, . . . , 5 are derivatives that can be obtained analytically from the
given differential equation or could be calculated via the Taylor series expansion.
We used this procedure to calculate ω for the problem given in example (4.1) and
obtained

ω = ±
√

(9091/91) ≈ ±9.99505,

which approximately gives the known frequency ω = 10.0. Hence, this procedure
is interesting and will be seriously considered in our future research.

Conclusion. We have proposed a BHTFM for solving periodic IVPs. The BHTFM
is A0-stable and hence, an excellent candidate for solving stiff IVPs. This method
has only two ’off-step’ points and has the advantages of being self-starting, hav-
ing good accuracy with order 4, and requiring only three functions evaluation at
each integration step. We have presented representative numerical examples that
are linear, non-linear, stiff and highly oscillatory. These examples show that the
BHTFM is more accurate and efficient than those in Nguyen et al [16], Simos [18],
Vigo-Aguiar et al [21], and Fang [3]. Details of the numerical results are displayed
in Tables 1, 2, 3, 4, 5, 6, 7, 8 and the efficiency curves are presented in Figures
3, 4, 5, 6, 7, 8 . Our future research will incorporate a technique for accurately
estimating the frequency as suggested in subsection 4.1 as well as implementing the
method in a variable step mode.
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