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COMPUTATIONAL STUDY OF A DYNAMIC CONTACT
PROBLEM

JIGARKUMAR PATEL, JANOS TURI

Abstract. In this article, we describe a computational framework to study
the influence of a normal crack on the dynamics of a cantilever beam; i.e.,

changes in its natural frequency, amplitude and period of vibration, etc. Due to

the opening and closing of the crack during beam vibrations, unilateral contact
boundary conditions are assumed at the crack location. In the numerical

implementation the contact conditions lead to the consideration of a linear

complementarity problem. An effective solution strategy for this problem using
a modification of the simplex method is presented. Numerical experiments are

included.

1. Introduction

It is a standard assumption that new structures are ideal, in other words they do
not contain any defects. As per their usage over time, imperfections tend to develop
at various locations. Cracks represent a severe form of defects in elastic structures
and their effects on system behaviour has aroused considerable interest in the last
few decades. As a particular example, the dynamic response of a beam with a
normal surface crack has been studied by many researchers (e.g. see [6, 12, 14, 15]).
In reality, the most likely regions of structures that contain cracks are joints and
corners, but the above papers did not address this situation.

In this article, we use a variational framework (see also [9]) to consider the dy-
namics of a two dimensional elastic cantilever beam with a normal surface crack
located at the supporting wall (see also [4]). The wall is considered to be a rigid
object and non penetration unilateral contact conditions (e.g. see [1, 3, 8, 11])
are assumed at the crack location during beam vibrations. Using classical varia-
tional analysis the problem can be reduced to an associated hyperbolic two point
boundary-value problem with contact boundary conditions.

For numerical simulations, we discretize the variational inequality and the uni-
lateral contact conditions and obtain an associated linear complementarity problem
[2]. Our primary goal is to introduce an effective method for finding the unique opti-
mum (minimum) solution of this problem. Numerical results comparing vibrations
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of a cracked beam and an ideal beam indicate changes in frequency, amplitude and
modes of vibration (i.e. Natural frequency and modes of vibration are considerably
effected by the presence of a normal crack.)

The rest of the article is organized as follows: In Section 1 we formulate the prob-
lem and introduce space and time discretizations for it. Formulation of boundary
conditions and admissibility of the numerical solution of the variational inequality
satisfied by a cantilever beam is defined in Section 2. In Section 3 we describe an
effective way to solve the linear complementarity problem. Some numerical results
comparing the frequency of an ideal beam vibrations and a cracked beam vibrations
are discussed in Section 4 prior to the concluding comments in Section 5.

1.1. Problem formulation. Consider a two dimensional cantilever beam with a
normal surface crack at the supporting wall (see Figure 1.) We assume that only
normal stresses are supported at the crack location in case of contact.

Figure 1. Two dimensional cantilever beam with crack at the
supporting wall

Let x = (x1, x2) be a two dimensional space variable. The quantities l and
θ represent length and thickness of the beam. The functions u(t, x), ε(t, x), and
σ(t, x) denote the displacement, linearized strain, and linearized stress, respectively
at time t of the space element with Lagrangian coordinates x. Also Ω = [0, l]× [0, h]
is the domain occupied by a cantilever beam in reference configuration. Let Γ be the
boundary of a cantilever beam. Γc denotes the boundary of the normal crack. The
elasticity modulus of the beam, g(x) is a fourth order tensor which is symmetric
and positive definite. All physical parameters are assumed to be independent of
time and continuously differentiable with respect to x.

Given some body force f(x) the resulting deformation field u(x) minimizes the
potential energy in the static problem. In this case the potential energy of the
system is given by

Epot =
1
2

∫
Ω

∂ui
∂xj

(x)gijkl(x)
∂uk
∂xl

(x)dx−
∫

Ω

fi(x)ui(x)dx. (1.1)

Here, W 1,2(Ω, R2) is the natural state space for the deformation field. The dis-
placement, u, is restricted to the closed convex set (see also [5]) J̃ by Dirichlet type
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boundary conditions. J̃ is called admissibility set and it is given by

J̃ =
{
u ∈W 1,2(Ω, R2) : u(x, y) = 0, for x = 0 and y ∈ [0, d]

u(x, y) ≥ 0 for (x, y) ∈ Ω\{x = 0, y ∈ [0, d]}
} (1.2)

The set J̃ contains the elements which are connected to or are in contact with
the wall. The phase of the beam to the right of a crack cannot penetrate the rigid
wall during vibration.

Using Hamilton’s principle of least action, the displacement field u of the can-
tilever beam must satisfy the minimization problem:

Find u ∈ J̃ such that Epot(u) ≤ Epot(v), ∀v ∈ J̃ (1.3)

or equivalently satisfy the variational inequality

1
2

∫
Ω

∂ui
∂xj

(x)gijkl(x)
( ∂v
∂xl

(x)− ∂uk
∂xl

(x)
)
dx−

∫
Ω

fi(x)(vi(x)− ui(x))dx ≥ 0. (1.4)

In the set up for the dynamic problem the displacement, u depends also on time t.
In this case the static body force f is replaced by the inertial forces.

f(t, x) = −ρ∂
2u

∂t2
(t, x) (1.5)

Find u(t, .) ∈ J̃ for all t ≥ 0 and all v ∈ J̃ satisfying the following variational
inequality. ∫

Ω

∂ui
∂xj

(t, x)gijkl(x)
(∂vk
∂l

(x)− ∂uk
∂xl

(t, x)
)
dx

+
∫

Ω

∂2u

∂t2
(t, x)ρ(x)(vi(x)− ui(t, x))dx ≥ 0.

(1.6)

satisfying the initial and boundary conditions

ui(0, x) = u0i(x),
∂ui
∂t

(0, x) = u1i(x) on Γ, (1.7)

Here u0i ∈ J̃ and ∂ui

∂t ∈ L
2(Ω, R2) for all i. Note that throughout this section we

use the word admissible to represent elements in the set J̃ . Discretization of the
space variables x1 and x2 convert the displacement field into the form

u(t, x1, x2) =
N∑
n=1

wn(t, x1)ϕn(x2) (1.8)

Here ϕ1,ϕ2,. . . ,ϕN are linearly independent shape functions and w : [0,∞)×[0, l]→
RN is n× 1 vector valued function.

We want to find an admissible function w : [0,∞) × [0, l] → RN which satisfies
the initial and boundary conditions and such that for all t ≥ 0 and for all admissible
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v the following variational inequality holds∫ h

0

∫ l

0

∂

∂xj

( N∑
m=1

wm(t, x1)ϕmi (x2)
)
gijkl(x1, x2)

× ∂

∂xk

( N∑
n=1

(vn(x1)− wn(t, x1))ϕnk (x2)
)
dx2dx1

+
∫ h

0

∫ l

0

( N∑
m=1

∂2u

∂t2
(t, x1)ϕmi (x2)

)
ρ(x1, x2)

×
( N∑
n=1

(vn(x1)− wn(t, x1))ϕni (x2)
)
dx2dx1 ≥ 0

(1.9)

Straightforward but tedious calculations convert the above integral inequality into
the form∫ h

0

[∂wT
∂x1

(t, x1)R(x1)
( ∂v
∂x1

(x1)− ∂w

∂x1
(t, x1)

)
+ wT (t, x1)PT (x1)

( ∂v
∂x1

(x1)− ∂w

∂x1
(t, x1)

)
+
∂wT

∂x1
(t, x1)P (x1)(v(x1)− w(t, x1)) + wT (t, x1)Q(x1)(v(x1)− w(t, x1))

+
∂2wT

∂t2
(t, x1)M(x1)(v(x1)− w(t, x1))

]
dx1 ≥ 0,

(1.10)

where R, P , Q and M are N × N matrices given as follows. Note that R and M
are positive definite and P and Q are positive semi definite matrices, respectively.

M(x1) = (mmn(x1)) =
∫ l

0

( N∑
m,n=1

ϕmi (x2)ρ(x1, x2)ϕni (x2)
)
dx2,

R(x1) = (rmn(x1)) =
∫ l

0

( N∑
m,n=1

ϕmi (x2)gi1k1(x1, x2)ϕnk (x2)
)
dx2,

P (x1) = (pmn(x1)) =
∫ l

0

( N∑
m,n=1

ϕmi (x2)gi1kβ(x1, x2)
∂ϕnk
∂β

(x2)
)
dx2,

Q(x1) = (qmn(x1)) =
∫ l

0

( N∑
m,n=1

∂ϕmi
∂α

(x2)giαkβ(x1, x2)
∂ϕnk
∂β

(x2)
)
dx2.

(1.11)

To convert (1.10) into a partial differential equation, let z ∈ D([0, l], Rn) be a
test function and let z = v(x1)− w(t, x1). Integration by parts with respect to x1

yields∫ h

0

[∂wT
∂x1

R(t, x1)(x1) + wT (t, x1)PT (x1)

+
∂wT

∂x1
(t, x1)P (x1) + wT (t, x1)Q(x1) +

∂2wT

∂t2
(t, x1)M(x1)]z

]
dx1 ≥ 0

(1.12)



EJDE-2013/CONF/20/ COMPUTATIONAL STUDY 137

Since the above equality holds for any test function so it holds for −z also. We
obtain it in the sense of distributions

M(x1)
∂2wT

∂t2
(t, x1) =

∂

∂x1
(R(x1)

∂wT

∂x1
+P (x1)w)−PT (x1)

∂w

∂x1
(t, x1)−Q(x1)w(t, x1)

(1.13)
Now for an arbitrary v ∈ J̃ integrate again by parts, we have only boundary terms,( ∂w

∂x1
(t, x1)R(x1) + wT (t, x1)PT (x1)

)
(v(x)− w(x1)) |h0≥ 0 (1.14)

At the free end v(l)− w(l) can take any value in RN .( ∂w
∂x1

(l)R(l) + w(l)PT (l)
)

= 0. (1.15)

At contact, v(0) can take any value in J̃ .
Problem: Find admissible function w : [0,∞) × [0, l] → RN for all t ≥ 0 and for
all admissible v such that

M(x1)
∂2wT

∂t2
(t, x1) =

∂

∂x1
(R(x1)

∂wT

∂x1
+ P (x1)w)− PT (x1)

∂w

∂x1
(t, x1)

−Q(x1)w(t, x1)

wi(0, x) = w0i(x),
∂wi
∂t

(0, x) = w1i(x) on Γ

v(l)− w(l) is free

v(0) ∈ J̃

(1.16)

The first line in (1.16) is the partial differential equation satisfied by cantilever beam
while rest of the lines specify the initial and boundary conditions for cantilever beam
with a crack at the supporting wall. Note that the partial differential equation in
(1.16) can be written in the equivalent form.

M
∂2w

∂t2
(t, x1) = R

∂2w

∂x2
1

+ [
∂R

∂x1
]
∂w

∂x1
− [

∂P

∂x1
−Q]w (1.17)

1.2. Time discretization. In this section, we discretize the variational inequality
with respect to the time variable. Replacing ∂2w

∂t2 using second order symmetric
finite differences in (1.17)

∂2w

∂t2
=
w(t+ k)− 2w(t) + w(t− k)

k2
(1.18)

leads to the equation

M
(
w(t+k, x1)

)
= k2R

∂2w

∂x2
1

+k2[
∂R

∂x1
]
∂w

∂x1
+[k2 ∂P

∂x1
−k2Q+2M ]w+Mw(t−k, x1).

(1.19)
Here w(t − k, x1) represent the previous location of each particle of the beam.
Similarly,w = w(t, x1) and w(t + k, x1) represent current and future locations of
each particle, respectively. Using the initial and boundary conditions, the location
of each particle can be calculated using (1.19). Since expression on the right side
in (1.19) can be calculated easily, we use following notation for further discussion.

− b = k2R
∂2w

∂x2
1

+ k2[
∂R

∂x1
]
∂w

∂x1
+ [k2 ∂P

∂x1
− k2Q+ 2M ]w +Rw(t− k, x1) (1.20)
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Equation (1.19) takes the form

M
(
w(t+ k, x1)

)
+ b = 0 (1.21)

2. Numerical implementation

In this section we model the contact boundary condition for the cantilever beam
with normal crack located right at the supporting wall. Body forces influence the
dynamics of the beam which can be explained by studying the effect of the point
load at the free end of the beam.

2.1. Modeling the boundary conditions. In this section, we model the bound-
ary conditions for two dimensional discretized ideal and cracked beams (e.g. see [7]
and [10]). For an ideal beam, we simply solve linear system represented in (1.21)
and obtain the displacement field at a particular time step. Since M is positive
definite matrix this system admits a unique solution. In fact, the solution of system
represented by (1.21) for ideal beam is given by,

w(t+ k, x1) = M−1(−b) (2.1)

Hence finding the displacement field for the dynamic problem corresponding to
an ideal beam is rather straightforward. On the other hand, dynamic problem
corresponding to a beam with crack at the supporting wall is challenging because
of an additional boundary condition that is satisfied at the crack location during
vibrations.

Figure 2. (a) Discretized ideal beam. (b) Discretized cracked beam

To model the boundary condition at the crack location consider Figure 2(a). In
the reference figure, heights of the beams are discretized into Nt vertical nodes and
the lengths of beams are discretized into Nl horizontal nodes. The discretized ideal
beam can be viewed in terms of two disjoint node sets J1 and J2 as shown in the
reference Figure 2.

We discuss now the modeling of the contact boundary conditions for two di-
mensional beams with a normal crack located right at the supporting wall. The
most convenient way to apply contact boundary conditions is to divide the whole
discretized beam into several point sets according to the crack location. Figure 2(b)
represents different point sets J1, J2 and J3 of the two dimensional beam when the
normal crack is located right at the wall. In reference Figure 2(b) the length of the
crack is Nf .

J1 = {(i, j)/i = 0, j ≤ Nt},
J2 = {(i, j)/i > 0, j > 0},

(2.2)
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Admissibility condition for the deformation field for an ideal beam is presented in
form of the following definition.

Definition 2.1. w(i, j) is admissible if

w(i, j) =

{
0 for (i, j) ∈ J1

free for (i, j) ∈ J2.

Here w(i, j) is free means that the displacement of the (i, j)th node can take any
value corresponding to the applied body force. In our case, force is provided in
such a way that we get observable vibration.

To define a similar type of admissibility condition for the deformation field of
a beam with a crack at the supporting wall, we divide the beam region into three
disjoint node sets as shown in the reference Figure 2(b).

J1 = {(i, j)/i = 0, j ≤ Nx},
J2 = {(i, j)/i = 0, j > Nx},
J3 = {(i, j)/(i, j) /∈ ∪2

i=1Ji}
(2.3)

Set J1 includes all those nodes which are connected to the wall and set J2 includes all
those nodes which are in contact with the wall. Set J3 contains all other nodes of a
beam in the reference configuration. Definition of admissibility for the deformation
field of a discretized beam in case of a normal crack located at the supporting wall
can be modeled as follows.

Definition 2.2. w(i, j) is admissible if

w(i, j) =


0 for (i, j) ∈ J1

≥ 0 for (i, j) ∈ J2

free for (i, j) ∈ J3.

According to the above definition every node of J1 should have displacement zero
at any time step. Because of the non penetration condition, the phase of the beam
cannot penetrate the wall. In other words, the displacement field for every node
of J2 is either positive or zero at any time step. If every node in J2 has positive
displacement at a particular time step then it means that at that time step the
crack is completely open. If some nodes of J2 have zero displacement and others
have positive displacements, then the crack is partially open in the respective time
step. If all nodes of J2 have zero displacement at a particular time step, then at
that time step the crack is completely closed. Nodes in J3 will have displacement
fields according to the applied force as well as the boundary conditions which lead
to crack openings and closings.

2.1.1. Contact boundary conditions at the crack. Our problem is to find the dis-
placement field, w, of a beam with a crack located at the supporting wall. The
displacement field in this case depends not only on the applied force but on the
boundary condition as well. Thus we would like to find w such that

[Mw + b] =


0 for (i, j) ∈ J1

≥ 0 for (i, j) ∈ J2

free for (i, j) ∈ J3.

(2.4)
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Table 1. Table representing Equations (2.4)

J2 (w ≥ 0) J3 (w is free vector) −p vector −b = vector

»
J2

J3

–
M =

266666666664

m11 m12 . . . m1n

m21 m22 . . . m2n

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .
mn1 mn2 . . . mnn

377777777775

266666666664

−1
.
.
−1
0
.
.
0

377777777775

266666666664

−b1

−b2

.

.

.

.

.
−bn

377777777775

is satisfied.
The displacement field of the entire beam with crack can be understood by

studying the displacement of the crack. At the crack location unilateral contact
conditions are satisfied whose discretization give rise to a linear complementarity
problem. Let p ≥ 0 be positive vector such that,

[Mw + b] = p ≥ 0 (2.5)

Then the system represented by (2.4) can be viewed in terms of matrices and
vectors as shown in Table (1). Here p = [1, 1, . . . , 1, 0, . . . .0]T ≥ 0 means that the
initial condition is chosen in such a way that the crack is open.

The displacement field for the system given in Table (1) can be obtained by
solving the given linear system. Being a positive definite matrix, M is invertible
and then there exists a displacement field w for each time step.

Table 2. Displacement of every node for the static problem

J2 J3 −p −b

»
J2

J3

–
I

266666666664

m11 . . . m1n

m21 . . . m2n

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .
mn1 . . . mnn

377777777775

−1 266666666664

−1
.
.
−1
0
.
.
0

377777777775

266666666664

m11 . . . m1n

m21 . . . m2n

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .
mn1 . . . mnn

377777777775

−1 266666666664

−b1

−b2

.

.

.

.

.
−bn

377777777775

So the static problem related to this issue is easy to solve since it only involves
the solution of a system of linear equations. Finding the displacement field for a
dynamic problem requires a little more effort due to the fact that during vibrations
the crack opens and closes. In such a case to get the displacement field for the
beam one has to solve a related linear complementarity problem satisfied at the
crack location.

To find the deformation field of the dynamic problem, orthogonality should be
assumed naturally to get an optimum solution. Also the natural state space for
the deformation field is the Sobolev space W 1,2(Ω, R2). Consequently, at the crack



EJDE-2013/CONF/20/ COMPUTATIONAL STUDY 141

location, the deformation field should satisfy
b+Mw = p

w ≥ 0, p ≥ 0
w ⊥ p.

(2.6)

This equation is called linear complementarity problem.

3. A method for solving the linear complementarity problem

In this section, we introduce a very effective method to find the unique minimum
solution of the associated linear complementarity problem (see [2, 13]). We want
to find w and p such that (2.6) is satisfied.

b+Mw = p

w ≥ 0, p ≥ 0
w ⊥ p.

(3.1)

The symmetry of M allows us to convert it into the matrix where all diagonal
entries are 1 using the following similarity transformation: M̃ = G−1MG such that
m̃ii = 1 for i = 1, 2, . . . , N , where

G =


1√
m11

0 . . . 0
0 1√

m22
. . . 0

. . . . . .

. . . . . .
0 0 . . . 1√

mNN

 (3.2)

Note that G is invertible, symmetric and positive definite.

M̃ = G−1MG⇐⇒M = GM̃G−1 (3.3)

Using (3.3)in(2.6) we obtain

b+GM̃G−1w = p

w ≥ 0, p ≥ 0
w ⊥ p.

(3.4)

Multiplying (3.4) by G−1 converts the problem into the following form

G−1b+G−1GMG−1w = G−1p

G−1w ≥ 0, G−1p ≥ 0

G−1w ⊥ G−1p.

(3.5)

We adopt following notation, w̃ = G−1w, b̃ = G−1b and p̃ = G−1p and then (3.5)
takes the form

M̃w̃ + b̃ = p̃

w̃ ≥ 0, p̃ ≥ 0
w̃ ⊥ p̃.

(3.6)

We use the simplex method to solve the associated linear complementarity prob-
lem. If p̃ = (p̃1, p̃2, . . . , p̃n)T has all elements strictly positive during every time step
during the vibration of the beam, then due to the orthogonality condition every
element of the displacement vector w must be zero during each time step of the
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vibration. In such a case, we conclude that the beam is ideal. This observation
may be used as an identification technique of possible cracks in the structure. If ev-
ery element of w is strictly positive during every time step during beam vibrations
then due to the orthogonality condition every element of the vector p must be zero
during every time step of the vibration. This indicates that the crack stays open all
the time during the vibration, which is not a realistic case. Hence some elements in
both vector should be non negative and zero. Existence of a crack guarantees that
there exist some elements w̃i of w̃ and p̃i of p̃ which are strictly positive depending
on if the crack is open, closed or partially open. The components, b̃i, of the vector
b̃ depend on the derivatives of the displacement and on the history of the previ-
ous location according to (1.20). These components could be positive or negative.
Again existence of the crack guarantees some negative components of the vector b̃.
We replace those negative elements b̃i by −b̃i = j̃i for i = 1, 2, . . . , n. Thus j̃ is an
n × 1 vector whose components are all positive and greater than or equal to the
corresponding component of b̃. Now our problem is to find w̃ and p̃ satisfying

M̃w̃ − p̃ ≤ j̃
w̃ ≥ 0, p̃ ≥ 0

w̃ ⊥ p̃.
(3.7)

Introducing a slack variable to the above linear inequality we obtain

M̃w̃ − p̃+ k̃ = j̃

w̃ ≥ 0, p̃ ≥ 0
w̃ ⊥ p̃.

(3.8)

Here k̃ is an n × 1 vector and its ith entry is non zero if b̃i ≤ 0. In order to
formulate a linear programming problem, we need an objective function. The coef-
ficient vector in the objective function is an n×1 vector, say l̃ whose ith component
is 1 if the corresponding ith slack variable is non zero. If ith slack variable is zero
then the corresponding component of l̃i is 0. Using this information, coefficients
of the objective row can be generated in terms of the vector given by ÕR = −l̃M̃ .
Using the simplex method, we find the solution of the linear programming prob-
lem which minimizes the objective function. Moreover the solution of the linear
complementarity problem satisfies the non negativity and orthogonality conditions.
Problem:

Minimize z = ÕRx where x = [x1 x2 . . . xn]T

subject to constraints: M̃w̃ − p̃+ k̃ = j̃

w̃ ≥ 0, p̃ ≥ 0, w̃ ⊥ p̃.
(3.9)

During each pivoting step, we have to keep track of basic and non basic artifi-
cial variables. Due to this reason, we define the column and row indices CI =
[−1,−2, . . . ,−n] and RI = [1, 2, . . . , n], respectively.

To apply a pivoting step, we arrange all vectors and matrices in the table T as
follows

T =


0 CI 0

(RI)T M̃ j̃

0 ÕR 0
0 l̃ 0

 (3.10)
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We find the pivot column by finding min
(
l̃i/õi

)
for i = 1, 2, . . . , n. Similarly,

we find the pivot row by finding min
(
j̃i/aik

)
where the aik’s are elements of kth

pivot column. The common element of the pivot column and pivot row is called
the pivot element. Using the row reduction operation, we make the pivot element 1
and the rest of the entries in the pivot column equal to 0. To keep track of the basic
artificial variables, we interchange respective row and column indices. Repeat the
pivot step until all artificial variables becomes non-basic. After all pivoting steps
are completed T takes the form

T =

0BBBBBBBBBBBBBBB@

0 (−1) or 1 (−2) or 2 (−3) or 3 (−4) or 4 . . . (−n) or n 0
1 or (−1) . . . . . . . . j̃c1
2 or (−2) . . . . . . . . j̃c2
3 or (−3) . . . . . . . . j̃c3
4 or (−4) . . . . . . . . j̃c4

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
n or (−n) 0 0 0 0 . . . . j̃cn

0 . . . . . . . 0 0
0 0 0 0 0 . . . 0 0

1CCCCCCCCCCCCCCCA
Here [j̃ci] for i = 1, 2, . . . , n are the new elements obtained from the [j̃i]s after

all pivoting steps are completed. From the values of [j̃ci], we generate w̃ and p̃.

w̃i =

{
j̃ci for RI < 0
0 for RI > 0.

(3.11)

Elements of the vector p̃ are equal to p̃i = j̃ci−w̃i. This is a clever way of preserving
orthogonality and non negativity of the solution of the linear complementarity
problem. Using the simplex method we obtained vectors w̃ and p̃ satisfying the
linear programming problem given by (3.5). The vectors w, b and p can be retrieved
from w̃, b̃ and p̃ using the matrix G as follows.

w = Gw̃

b = Gb̃

p = Gp̃.

(3.12)

The simplex method is used effectively to solve the linear complementarity problem
satisfied at the crack location. We state the following uniqueness theorem about
the solutions of the linear complementarity problem.

Theorem 3.1 (Uniqueness Theorem). Using the simplex method, the problem

Mn×nwn×1 + bn×1 = pn×1

wn×1 ≥ 0, pn×1 ≥ 0
w ⊥ p.

has a unique optimum (minimum) solution wn×1 and pn×1 where Mn×n is a sym-
metric positive definite matrix.

The proof of the this theorem follows immediately due to positive definiteness
of matrix M , and the positivity and orthogonality of the solution.

4. Results

Using the finite element discretization, we compare the vibrations of a cantilever
beam having the normal surface crack at the supporting wall with vibrations of an
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ideal beam. Timestep vs amplitude plots are presented for an ideal beam and for
a cantilever beam with a normal crack located right at the supporting wall. The
following parameters are used in the finite element discretization.

• Length of the beam l = 12 cm.
• Thickness of the beam θ = 2.2 cm.
• Lame parameters λ = 1 and µ = 1
• Density ρ = 0.1
• Damping factor d = 0.002.
• Initial force 1000 unit
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Figure 3. (a) Ideal beam vibration. (b) Beam vibration with
crack length 4. (c) Beam vibration with crack length 6

Figure 3 (a), (b) and (c) represent positions of an ideal beam and cracked beam
with 8 vertical and 5 horizontal nodes in finite element discretization. These results
are taken by freezing each of these beams at various time steps. Length of the crack
in Figure 3(b) is kept 4 while the crack length on Figure 3(c) is kept 6. The crack
is completely open in Figure 3(b) and (c). The force applied in all of these cases is
the same.

Figure 4 represent the amplitudes of vibrations of an ideal and a cracked beam
with 8 vertical and 5 horizontal nodes in finite element discretization. The amount
of point load or force applied on the free end of the beam in both cases is the same.
We run the simulation for 2000 time steps for both cases. Length of the crack in
Figure 4 is 4. In other words, four consecutive nodes on the supporting (fixed) end
are kept loose. Dotted curve represents the vibration of a beam with crack size
4 and solid curve represents vibration of an ideal beam. Comparing both curves
in Figure 4, we notice that the amplitude in the negative direction increases and
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Figure 4. Ideal beam vibration and cracked beam vibration.

positive direction is decreasing due to presence of a crack at the supporting wall.
Noticeable change in the period and amplitude can be observed in the reference
Figure 4.

1st mode in Y− 2nd mode in Y− 1st mode in Y+ 2nd mode in Y+ Period

0.0953 0.0789 0.0849 0.0744 1.85

Table 3. Amplitude in modes and Period for an ideal beam

Crack size 1st mode in Y− 2nd mode in Y− 1st mode in Y+ 2nd mode in Y+ Period
1 0.0979 0.0795 0.0848 0.0749 1.88
2 0.1012 0.0833 0.0844 0.0752 1.93
3 0.1049 0.0863 0.0828 0.0751 2
4 0.11 0.0935 0.0819 0.0748 2.1
5 0.116 0.1023 0.0813 0.0741 2.23
6 0.1221 0.1157 0.0804 0.0734 2.4
7 0.1544 0.1361 0.0797 0.0722 2.74
8 0.209 0.1844 0.0791 0.071 3.43

Table 4. Amplitude in modes and Periods for a beam with crack
at the supporting wall

The direction of the applied force is considered as a positive direction. The
direction opposite to the applied force direction is considered as a negative direction.
In reference Tables 3 to 6, trough represents the amplitude in the negative direction
while peak represents the amplitude in the positive direction.

Results of Tables 3 and 4 are obtained by taking 10 vertical and 5 horizontal
nodes in the finite element discretization of beams without and with a crack. Table
3 represents amplitudes of an ideal beam vibrations for first two cycles, period and
natural frequency for the ideal beam. Considerable change in frequency, amplitude
and period can be observed with increasing crack size.

Succeeding Figure 5 represents amplitude versus crack size graph which indicates
change in the amplitude in positive and negative direction. As crack size decreases
from 8 to 0, amplitude in both modes in each direction converges to the amplitude
of an ideal beam. Note that crack size 0 refers to am amplitude of ideal beam
vibration in respective mode. Solid curves in both sub figures represent amplitude
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Figure 5. Change in amplitude in first two modes in Y− and Y+.

in 1st mode in each direction while dotted curves in both sub figures represent
amplitude in 2nd mode in each direction.

Table 4 represents amplitudes of cracked beam vibrations for the first two cycle,
periods and natural frequencies for different crack lengths. Notice that trough
values in the first and second cycles are directly proportional to the crack size. In
other words, increasing crack size lead to increase in trough values in respective
cycles. Comparing first and second trough values of an ideal beam with a cracked
beam, we notice an increment in respective values. This indicates, that the ideal
beam constitutes least trough values in the first and second cycles compare to the
cracked beam. One can consider other cycles as well. We do not include them since
observable changes occur in the first two cycles for reasonably small but noticeable
deflections. Comparing the first and second peak values of an ideal beam with a
cracked beam, we notice a decrement in respective peak values. That indicates,
that the ideal beam has higher peak values in respective cycles compared to the
cracked beam. Change in the period and amplitude of the vibration are directly
proportional to the crack size.

All properties mentioned above hold true in case of finer finite element discretiza-
tions. To make a more concrete conclusion, we ran simulations for 20 vertical and
10 horizontal nodes for 5000 time-steps and displayed the results for the ideal beam
and the cracked beam with the crack located at the supporting wall. All parameter
values are kept the same for simplicity. Tables 5 and 6 describe the amplitudes
of beam vibrations for the first two cycles, period, natural frequency for the ideal
beam, and the beam with crack located at the supporting wall respectively for more
nodes.

1st mode in Y− 2nd mode in Y− 1st mode in Y+ 2nd mode in Y+ Period

0.598 0.4589 0.5269 0.4552 5.49

Table 5. Amplitude in modes and Period for an ideal beam

Succeeding Figure 6 represents amplitude versus crack size graph for finer finite
element discretization which also indicates change in the amplitude in positive
and negative direction. Numerical convergence in amplitude of vibrations can be
observed as crack size decreases from 18 to 0. Solid curves in both sub figures
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Crack size 1st mode in Y− 2nd mode in Y− 1st mode in Y+ 2nd mode in Y+ Period
1 0.6126 0.4588 0.5272 0.4557 5.51
2 0.6144 0.4618 0.5261 0.4551 5.55
3 0.62 0.4708 0.5252 0.4527 5.61
4 0.6332 0.4785 0.5209 0.4509 5.68
5 0.6385 0.4971 0.5149 0.4497 5.78
6 0.6592 0.5093 0.5066 0.4451 5.89
7 0.6673 0.5303 0.4924 0.4324 6.02
8 0.6888 0.5564 0.486 0.4272 6.18
9 0.7042 0.5734 0.4784 0.4257 6.36
10 0.7245 0.5894 0.4676 0.4236 6.55
11 0.7516 0.6071 0.4657 0.422 6.73
12 0.772 0.6501 0.4575 0.4145 6.97
13 0.8497 0.7284 0.4504 0.4106 7.29
14 0.9513 0.741 0.4468 0.4073 7.9
15 1.063 0.814 0.4460 0.3886 8.52
16 1.196 0.9208 0.4419 0.3847 9.44
17 1.392 1.068 0.4397 0.3785 10.89
18 1.853 1.392 0.433 0.3545 14.23

Table 6. Amplitude in modes and Periods for a beam with crack
at the supporting wall

represent amplitude in 1st mode in each direction while dotted curves in both sub
figures represent amplitude in 2nd mode in each direction.

Figure 6. Change in amplitude in first two modes in Y− and Y+.

Results in Figure 7 are obtained by dividing the beam into 5 horizontal nodes
and 8 vertical nodes. Length of the crack is 6. Figure 7 represents movement
of nodes living on the crack where unilateral contact conditions are satisfied. In
all sub-figures, the blue curve denotes variation in the y coordinate and the red
curve denotes variation in the x coordinate of the top node of the crack. First
sub-figure on the upper left corner refers to the movement of the top node of the
crack. Similarly, the first figure in the upper right corner is the second node on the
crack from the top. The next four sub-figures refer to displacements of the next four
consecutive nodes. Since the crack length is 6, there are six nodes which are not
connected to the supporting wall. Opening and closing of the crack is assumed in
such a way that the first node closest to the crack tip comes in contact with the wall
and then second node closest to the crack should come in contact, . . . etc. The top
node of the crack comes in contact with the supporting wall at last. In other words,
the crack is closed when the last node comes in contact with the supporting wall.
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Figure 7. Movement of nodes on the crack during vibrations.

First six sub-figures are due to the solution of the linear complementarity problem
at the crack location. From all these sub-figures, it is clear that the non-penetration
and unilateral conditions are satisfied at all crack nodes. The last sub-figure refers
to the crack tip which is connected with the supporting wall. It does not move
under the applied force so both the blue and red curves take the value zero for each
time step.

Conclusions. We discretize a standard two dimensional cantilever beam using fi-
nite element method. We model contact boundary conditions for a cantilever beam
with normal crack located at the supporting wall. Discretization of the unilateral
contact type boundary conditions satisfied at the normal crack location lead us to a
linear complementarity problem satisfied at the crack location. We have developed
an effective method to find the solution of the linear complementary problem. Us-
ing numerical results, we compared vibrations of a beam containing a normal crack
at the supporting wall with an ideal beam, and noticed change in the amplitude,
frequency and period of vibrations. Size of a crack is a major factor which play cru-
cial role in change of amplitude, period and frequency during vibration of a cracked
beam. Amplitude, frequency and period of the beam vibration are influenced due
to the presence of crack. Convergence of this model with actual 3 dimensional beam
model will be addressed in our future paper.
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