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REAL ANALYTIC SOLUTIONS FOR THE WILLMORE FLOW

YUANZHEN SHAO

Abstract. In this article, we present a regularity result for the Willmore flow.

This is obtained by using a truncated translation technique in conjunction with
the implicit function theorem.

1. Introduction

The Willmore flow consists in looking for an oriented, closed, compact moving
hypersurface Γ(t) immersed in R3 evolving subject to the law{

V (t) = −∆Γ(t)HΓ(t) − 2HΓ(t)(H2
Γ(t) −KΓ(t)),

Γ(0) = Γ0.
(1.1)

Here V (t) denotes the velocity in the normal direction of Γ(t) at time t. ∆Γ(t) and
HΓ(t) stand for the Laplace-Beltrami operator and the normalized mean curvature
of Γ(t), respectively. Finally, KΓ(t) denotes the Gaussian curvature.

The equilibria of (1.1) appear as the critical points of the Willmore functional,
or sometimes called the Willmore energy. For a smooth immersion f : Γ→ R3 of a
closed oriented two-dimensional manifold Γ, the Willmore functional is defined as

W (f) =
∫
f(Γ)

H2
f(Γ) dσ, (1.2)

where dσ is the area element on f(Γ) with respect to the Euclidean metric in R3.
The critical surfaces of this functional, called the Willmore surfaces, satisfy the
equation

∆f(Γ)Hf(Γ) + 2H3
f(Γ) − 2Hf(Γ)Kf(Γ) = 0. (1.3)

The reader may consult [30, Section 7.4] for a brief historical account and a proof
of this variational formula. The proof therein is derived by computing the critical
points of all normal variations of the hypersurface f(Γ).
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A generalization of the Willmore functional (1.2) in higher dimensions is studied
by Chen [5]. He extends (1.2) for smooth immersions f : Γ → Rm+1 of the m-
dimensional closed oriented manifold Γ into Rm+1:

W (f) =
∫
f(Γ)

Hm
f(Γ) dσ

with dσ standing for the volume element with respect to the Euclidean metric in
Rm+1. The critical points of this functional are now of the form

∆f(Γ)H
m−1
f(Γ) +m(m− 1)Hm+1

f(Γ) −H
m−1
f(Γ) Rf(Γ) = 0 .

Here Rf(Γ) denotes the scalar curvature. We may observe that Rf(Γ) = 2Kf(Γ) when
m = 2, so this Euler-Lagrange equation agrees with (1.3) in the two-dimensional
case. However, this generalization has the drawback that the corresponding Will-
more functional is no longer conformally invariant except when m = 2.

The Willmore problem has been studied by many authors, among them Thom-
sen, Blaschke, Willmore, Chen, Weiner, Li, Yau, Bryant, Kusner, Simon, Mayer,
Simonett, Bauer, Kuwert, Schätzle, Pinkall, Sterling, Schmidt, Marques, and Neves;
see [2, 3, 4, 5, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 26, 27, 28, 29, 30]. It is
well-known that the Willmore functional is bounded below by 4π with equality
only for the round sphere. Then the famous Willmore conjecture due to Willmore
asserts that for any immersed 2-dimensional torus into R3 we have W (f) ≥ 2π2,
and it suggests that the 2-dimensional Clifford torus achieves the minimum of the
Willmore functional amongst all immersed tori in R3. In 1982, Li and Yau [16]
showed that any immersion with W (f) < 8π must in fact be an embedding. In
other words, it will suffice to estimate W (f) for embeddings. A classification of all
Willmore immersions f : S2 → R3 is obtained by Bryant [4]. The possible values of

W (f) =
∫
f(S2)

H2
f(S2) dσ

are 4nπ with n = 1, or n ≥ 4 and n even, or n ≥ 9 and n odd. Existence and
regularity for embedded tori in the Willmore conjecture has been proven by Simon
[26], and later this result is generalized by Bauer, Kuwert [2] for an extension of
the conjecture by Kusner [12] to higher genus cases. An existence, uniqueness and
regularity result on the Willmore flow is presented by Simonett [27]. It is proven
therein that the Willmore flow admits a unique smooth solution. Moreover, this
solution exists globally when it is initially close enough to spheres in the C2+α-
topology and is exponentially attracted by spheres. In [18], Mayer and Simonett
proved that the Willmore flow can drive embedded surfaces to a self-intersection
in a finite time interval. Moreover, numerical simulations in [19] indicate that the
Willmore flow can develop true singularities (topological changes) in finite time.
Kuwert and Schätzle [13] show that the smooth solutions are global as long as the
initial Willmore energy is sufficiently small. Later, the same authors improve this
result in [15] by finding an explicit optimal bound for the restriction on the initial
energy; that is, if the smooth immersion f0 : Γ → R3 satisfies W (f0) ≤ 8π, then
the solution with initial data f0 exists smoothly for all time and converges to a
round sphere. Recently, in a breakthrough paper, Marques and Neves [10] prove
the Willmore conjecture for surfaces of arbitrary genus g ≥ 1; i.e., W (f) ≥ 2π2

for all embedded Γ with genus g ≥ 1, and the equality holds if and only if Γ is
conformal to the Clifford torus.
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Assumptions. Throughout this paper, we assume that (M, g) is a compact, closed,
embedded, oriented, real analytic hypersurface in R3 endowed with the Euclidean
metric g with the exception of Section 3, wherein we remove the restriction on the
dimension of M. The notation (·|·) always stands for the standard inner product in
R3. We may find for M a normalized atlas K := (Oκ, ϕκ)κ∈K. An atlas K is called
normalized if ϕκ(Oκ) = B2 for all κ ∈ K. Here B2 is the open unit ball centered at
the origin in R2. Put ψκ = ϕ−1

κ .
A family (πκ)κ∈K is called a localization system subordinate to K if:
(L1) πκ ∈ D(Oκ, [0, 1]) and (π2

κ)κ∈K is a partition of unity subordinate to K.
(L2) Any πκ and πη satisfying supp(πκ) ∩ supp(πη) 6= ∅ have their supports

located within the same local chart.
For any manifold satisfying the above assumptions, there exists a localization sys-
tem. See [1, Lemma 3.2] for a proof. Condition (L2) is not an additional assump-
tion, because of the compactness of M.

Notation. Throughout this paper, N0 stands for the set of natural numbers in-
cluding 0. For any interval I, I̊ denotes the interior of I, and İ := I \ {0}.

For a fix 0 < α < 1. Put E0 := hα(M), E1 := h4+α(M). Please refer to
the remark below Theorem 1.1 for the precise definition of the spaces hs(M). For
notational brevity, we simply write F(O,R) and F(M,R) as F(O) and F(M), where
O is any open subset of R2 and F stands for any of the function spaces in this
paper.

Let γ ∈ (0, 1]. In the sequel, we denote (E0, E1)γ by Eγ , where (·, ·)γ is the
continuous interpolation method. See [17, Definition 1.2.2] for a definition. In
particular, we set (E0, E1)1 := E1.

For some fixed interval I = [0, T ] and some Banach space E, we define

BUC1−γ(I, E) := {u ∈ C(İ , E); [t 7→ t1−γu] ∈ BUC(İ , E), lim
t→0+

t1−γ‖u‖ = 0},

‖u‖C1−γ := sup
t∈İ

t1−γ‖u(t)‖E ,

BUC1
1−γ(I, E) := {u ∈ C1(İ , E) : u, u̇ ∈ BUC1−γ(I, E)}.

In particular, we put

BUC0(I, E) := BUC(I, E), BUC1
0 (I, E) := BUC1(I, E).

In addition, if I = [0, T ) is a half open interval, then

C1−γ(I, E) := {v ∈ C(İ , E) : v ∈ BUC1−γ([0, t], E), t < T},

C1
1−γ(I, E) := {v ∈ C1(İ , E) : v, v̇ ∈ C1−γ(I, E)}.

We equip these two spaces with the natural Fréchet topology induced by the topol-
ogy of BUC1−γ([0, t], E) and BUC1

1−γ([0, t], E), respectively.
Also we set

E0(I) := C(I, E0), E1(I) := C(I, E1) ∩ C1(I, E0).

In this article, we will show that the Willmore flow (1.1) admits a real analytic
solution jointly in time and space. Our motivation for a real analytic solution is
mainly stimulated by the following facts: a compact closed real analytic manifold
cannot have a “flat part”, and real analyticity in time implies that the hypersurface
should move permanently in the interval of existence.
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Theorem 1.1. Let 0 < α < 1. Suppose that Γ0 is a compact closed embedded
oriented hypersurface in R3 belonging to the class h2+α. Then the Willmore flow
(1.1) has a unique local solution Γ = {Γ(t) : t ∈ [0, T )} for some T > 0. Moreover,

M := ∪t∈(0,T )({t} × Γ(t))

is a real analytic submanifold in R4. In particular, each manifold Γ(t) is real
analytic for t ∈ (0, T ).

For any open subset O ⊂ R2, the little Hölder space hs(O) of order s > 0 with
s /∈ N is the closure of BUC∞(O) in BUCs(O). Here BUCs(O) is the Banach space
of all bounded and uniformly Hölder continuous functions. The little Hölder space
hs(M) on M is defined in terms of the atlas K; that is, a function u belongs to hs(M)
if and only if ψ∗κπκu ∈ hs(R2), for each κ ∈ K.

2. Parameterization over a reference manifold

In equation (1.1), if we fix an embedded initial hypersurface Γ0 belonging to the
class h2+α, then by the discussion in [22, Section 4] we can find a real analytic
compact closed embedded oriented hypersurface M, a function ρ0 ∈ h2+α(M) and
a parameterization

Ψρ0 : M→ R3, Ψρ0(p) := p+ ρ0(p)νM(p)

such that Γ0 = im(Ψρ0). Here νM(p) denotes the unit normal with respect to a
chosen orientation of M at p, and ρ0 : M→ (−a, a) is a real-valued function on M,
where a is a sufficiently small positive number depending on the inner and outer
ball condition of M. The reader may consult [22, Section 4.1] for the precise bound
of a. Thus Γ0 lies in the a-tubular neighborhood of M. In fact, it will suffice to
assume Γ0 to be a C2-manifold for the existence of such a parameterization and a
real analytic reference manifold. See [22, Section 4] for a detailed proof.

Analogously, if Γ(t) is C1-close enough to M, then we can find a function ρ :
[0, T )×M→ (−a, a) for some T > 0 and a parameterization

Ψρ : [0, T )×M→ R3, Ψρ(t, p) := p+ ρ(t, p)νM(p)

such that Γ(t) = im(Ψρ(t, ·)) for every t ∈ [0, T ). It is worthwhile to mention that
Ψρ admits an extension on R3, called Hanzawa transform, which is first introduced
by Hanzawa in [11].

For any fixed t, I do not distinguish between ρ(t, ·) and ρ(t, ψκ(·)) in each local
coordinate (Oκ, ϕκ) and abbreviate Ψρ(t, ·) to be Ψρ := Ψρ(t, ·). In addition, the
hypersurface Γ(t) will be simply written as Γρ as long as the choice of t is of no
importance in the context, or ρ is independent of t.

We put
f := {ρ ∈ h2+α(M) : ‖ρ‖M∞ < a}.

Here ‖ρ‖M∞ := supp∈M |ρ(p)|. For any ρ ∈ f, im(Ψρ) constitutes a h2+α-hypersurface
Γρ. In this case, Ψρ defines a h2+α-diffeomorphism from M onto Γρ.

Here and in the following, it is understood that the Einstein summation conven-
tion is employed and all the summations run from 1 to 2 for all repeated indices.

In [22], J. Prüss and G. Simonett derive global expressions for many geometric
objects of Γρ in terms of the function ρ. I will use some results therein to translate
equation (1.1) into a differential equation in ρ. By [22, formula (23), (28)], we have
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the following explicit expressions for the components of the first fundamental form
and the normal vector of Γρ:

gΓ
ij = gij − 2ρlij + ρ2lri ljr + ∂iρ∂jρ, (2.1)

νΓ = β(ρ)(νM − a(ρ)). (2.2)

In (2.1), the lij ’s are the components of the Weingarten tensor LM of M with respect
to g; i.e., LM = lji τ

i ⊗ τj , where {τi = ∂i} forms a basis of TpM at p ∈ M and
{τ i} is the dual basis to {τi}; i.e., (τ i|τj) = δij . The extension of LM into R3,
by identifying it to be zero in the normal direction, is denoted by LEM, namely,
LEM = lji τ

i ⊗ τj + 0 · νM ⊗ νM. It is a simple matter to check that

τΓ
i = (I − ρLEM)τi + νM∂iρ (2.3)

forms the standard basis of TΨρ(p)Γρ. In addition, the lij ’s are the components of
the second fundamental form LM of the metric g. Finally, gΓ

ij = (τΓ
i |τΓ

j ) are the
components of the first fundamental form of the Euclidean metric gΓ on Γρ. We
set GΓ(ρ) = (gΓ

ij)ij and G−1
Γ (ρ) for its inverse.

In (2.2), the terms a(ρ) and β(ρ) read

a(ρ) = (I − ρLEM)−1∇Mρ, β(ρ) = [1 + |a(ρ)|2]−1/2.

Here ∇M is the surface gradient on M.
For sufficiently small a > 0, the operator (I − ρLEM) is invertible. One can check

that
I − ρLEM = (δji − ρl

j
i )τ

i ⊗ τj + νM ⊗ νM.

Thus
(I − ρLEM)−1 = rji (ρ)τ i ⊗ τj + νM ⊗ νM, (2.4)

where Rρ = (rji (ρ))ij = [(δji − ρl
j
i )ij ]

−1. By Cramer’s rule, all the entries of Rρ
possess the expression

rji (ρ) =
P ji (ρ)
Qji (ρ)

in every local chart, where P ji and Qji are polynomials in ρ with real analytic
coefficients and Qji 6= 0.

Substituting (I − ρLEM)−1 by (2.4), we obtain

|a(ρ)|2 = (rji (ρ)∂jρτ i|rlk(ρ)∂lρτk) = gikrji (ρ)rlk(ρ)∂jρ∂lρ.

Then
β(ρ) = [1 + |a(ρ)|2]−1/2 = [1 + gikrji (ρ)rlk(ρ)∂jρ∂lρ]−1/2.

Note that in every local chart

β2(ρ) =
P β(ρ)

Qβ(ρ, ∂jρ)
,

where P β(ρ) is a polynomial in ρ with real analytic coefficients and Qβ(ρ, ∂jρ) 6= 0
is a polynomial in ρ and its first order derivatives with real analytic coefficients.

The normal velocity can be expressed as

V (t) = (∂tΨρ|νΓ) = (ρtνM|νΓ) = β(ρ)ρt.
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Therefore, the first line of (1.1) is equivalent to

ρt = − 1
β(ρ)

[Ψ∗ρ∆ΓρHΓρ + 2Ψ∗ρHΓρ(H
2
Γρ −KΓρ)].

Next we shall calculate the Gaussian curvature KΓρ in terms of ρ. For simplicity,
we write Kρ instead of Ψ∗ρKΓρ . Using that

∂jτi = Γkijτk + lijνM, ∂jτ
i = −Γijkτ

k + lijνM,

one may readily obtain

∂jL
E
M = ∂j l

k
i τ

i⊗ τk−Γijll
k
i τ

l⊗ τk + Γljkl
k
i τ

i⊗ τl + lij l
k
i νM⊗ τk + ljkl

k
i τ

i⊗ νM. (2.5)

Denote by LΓ = (lΓij)ij the second fundamental form of Γρ with respect to gΓ.
Then by (2.2) and (2.3), we can compute its components lΓij as follows:

lΓij = −(τΓ
i |∂jνΓ)

= −((I − ρLEM)τi + νM∂iρ|β(∂jνM − ∂ja(ρ)))− (τΓ
i |
∂jβ

β
νΓ)

= β{lij + ρ(LEMτi|∂jνM) + (τi|∂j(∇Mρ)) + ((I − ρLEM)τi|∂j [(I − ρLEM)−1]∇Mρ)

+ ∂iρ(νM|∂j [(I − ρLEM)−1]∇Mρ) + ∂iρ(νM|(I − ρLEM)−1[∂j(∇Mρ)])}

= β{lij + ρlik(τk|∂jνM) + (τi|∂j(∇Mρ)) + (τi|∂j(ρLEM)(I − ρLEM)−1∇Mρ)

+ ∂iρ(νM|∂j(ρLEM)(I − ρLEM)−1∇Mρ) + ∂iρ(νM|∂j(∇Mρ))}

= β[lij − liklkj ρ+ ∂ijρ− Γkij∂kρ+ rlk(ρ)(∂j lki + Γkjhl
h
i − Γhij l

k
h)ρ∂lρ

+ rlk(ρ)lki ∂jρ∂lρ+ rlk(ρ)lhj l
k
hρ∂iρ∂lρ+ lkj ∂iρ∂kρ].

Here we have used (2.5) and the following facts:

• (νM|∂jνM) = 0.
• (τΓ

i |νΓ) = 0.
• ∂jνM = −lijτ i.
• (I − ρLEM)−1νM = νM.
• ∂ja(ρ) = (I − ρLEM)−1∂j(∇Mρ) + ∂j [(I − ρLEM)−1]∇Mρ.
• ∂j [(I − ρLEM)−1] = (I − ρLEM)−1∂j(ρLEM)(I − ρLEM)−1.

Therefore, det(LΓ) can be expressed in every local chart as

det(LΓ) = β2(ρ)
PΓ(ρ, ∂jρ, ∂ijρ)

QΓ(ρ)
.

Here PΓ(ρ, ∂jρ, ∂ijρ) is a polynomial in ρ and its derivatives up to second order with
real analytic coefficients. Moreover, QΓ(ρ) is a polynomial in ρ with real analytic
coefficients. In particular, we have QΓ 6= 0.

In view of the above computations, within every local chart Kρ = det[G−1
Γ (ρ)LΓ]

can be expressed locally as

Kρ = β2(ρ)
PΓ(ρ, ∂jρ, ∂ijρ)

det(GΓ(ρ))QΓ(ρ)
. (2.6)



EJDE-2013/CONF/20/ REAL ANALYTIC SOLUTIONS 157

As a straightforward conclusion of the above computation, we obtain an explicit
expression for Hρ := Ψ∗ρHΓρ :

2Hρ = gijΓ l
Γ
ij

= β(ρ)gijΓ [lij − liklkj ρ+ ∂ijρ− Γkij∂kρ+ rlk(ρ)lki ∂jρ∂lρ

+ rlk(ρ)(∂j lki + Γkjhl
h
i − Γhij l

k
h)ρ∂lρ+ rlk(ρ)lhj l

k
hρ∂iρ∂lρ+ lkj ∂iρ∂kρ].

(2.7)

The reader may also find a different global expression for Hρ in [22, formula (32)].
We can decompose Hρ into Hρ = P1(ρ)ρ+ F1(ρ):

F1(ρ) =
β(ρ)

2
gijΓ (lij − liklkj ρ) =

β(ρ)
2

Tr[G−1
Γ (ρ)(LM − ρLMLM)],

where Tr(·) denotes the trace operator, and

P1(ρ) =
β(ρ)

2

{
gijΓ ∂ij + gijΓ (lkj ∂iρ− Γkij)∂k

+ gijΓ [rlk(ρ)lki ∂jρ+ rlk(ρ)(∂j lki + Γkjhl
h
i − Γhij l

k
h)ρ+ rlk(ρ)lhj l

k
hρ∂iρ]∂l

}
in every local chart. Note that Tr[G−1

Γ (ρ)LM] changes like HM under transition
maps and thus is invariant. Analogously, we can check that F1 is a well-defined
global operator. Hence so is P1(ρ).

In addition, it is a well-known fact that Ψ∗ρ∆Γρ = ∆ρΨ∗ρ, where ∆Γρ and ∆ρ

are the Laplace-Beltrami operators on (Γρ, gΓ) and (M, σ(ρ)), respectively. Here
σ(ρ) := Ψ∗ρgΓ stands for the pull-back metric of gΓ on M by Ψρ. Then in every
local chart, the Laplace-Beltrami operator ∆ρ can be expressed as

∆ρ = σjk(ρ)(∂j∂k − γijk(ρ)∂i). (2.8)

Here σjk(ρ) are the components of the induced metric σ∗(ρ) of σ(ρ) on the cotangent
bundle. Note that σjk(ρ) involves the derivatives of ρ merely up to order one. γijk(ρ)
are the corresponding Christoffel symbols of σ(ρ), which contain the derivatives of
ρ up to second order.

There exists a global operator R(ρ) ∈ L(h3+α(M), E0) such that R(·) is well
defined on f and

R(ρ)ρ =
1

2β(ρ)
∆ρ[β(ρ) Tr(G−1

Γ (ρ)LM)]− ρ

2β(ρ)
∆ρ[β(ρ) Tr(G−1

Γ (ρ)LMLM)].

We set

P (ρ) :=
1

β(ρ)
∆ρP1(ρ) +R(ρ), ρ ∈ f,

F (ρ) := − 1
β(ρ)

∆ρF1(ρ) +R(ρ)ρ− 2
β(ρ)

Hρ(H2
ρ −Kρ), ρ ∈ f ∩ h3+α(M).

Note that third order derivatives of ρ do not appear in F (ρ). Hence it is actu-
ally well-defined on f. Based on the above discussion, these two maps enjoy the
following smoothness properties:

P ∈ Cω(f,L(E1, E0)), F ∈ Cω(f, E0).

Here ω is the symbol for real analyticity. Please refer to [24, Appendix] for a proof.
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Definition 2.1. Let l ∈ N0. A linear operator A : D(M)→ R(M) is called a linear
differential operator of order l on M if in every local chart (Oκ, ϕκ), there exists
some linear differential operator

Aκ =
∑
|α|≤l

aκα∂
α

with aκα ∈ RB2
defined on B2 such that for any u ∈ D(M) it holds

ψ∗κ(Au) = Aκ(ψ∗κu)

Moreover, at least one of the Aκ’s is of order l. In particular, when l = 0, Au = au
for some a ∈ RM.

By the above definition, P (ρ) is a fourth order linear differential operator on
M for each ρ ∈ f. In every local chart (Oκ, ϕκ), the principal part of the local
expression of P (ρ) can be written as

Pπκ (ρ) :=
1
2
σkl(ρ)gijΓ ∂ijkl.

Given ξ ∈ T ∗M, we estimate the symbol of Pπκ (ρ) as follows.

Pπκ (ρ)(ξ) =
1
2
σ∗(ρ)(ξ, ξ)g∗Γ(ξ, ξ) ≥ c|ξ|4

for some c > 0, and g∗Γ denotes the induced metric of gΓ on the cotangent bundle
of M. Hence, P (ρ) is a normally elliptic fourth order operator acting on functions
over M for each ρ ∈ f. By [24, Theorem 3.4], P (ρ) ∈ H(E1, E0), namely, −P (ρ)
generates an analytic semigroup on E0 with D(−P (ρ)) = E1, ρ ∈ f.

Now the Willmore flow (1.1) can be rewritten as

ρt + P (ρ)ρ = F (ρ),

ρ(0) = ρ0,
(2.9)

where ρ0 ∈ f. See [7, 8, 27] for related work.
Applying [6, Theorem 4.1], the existence and regularity result in [27] can be

restated as follows.

Theorem 2.2 ([27, Theorem 1.1]). Suppose that ρ0 ∈ f. Then equation (2.9)
has a unique solution ρ in the interval of maximal existence J(ρ0) := [0, T (ρ0)) for
some T (ρ0) > 0 such that

ρ ∈ C1
1
2
(J(ρ0), E0) ∩ C 1

2
(J(ρ0), E1) ∩ C(J(ρ0),f) ∩ C 1

2−β0(J(ρ0), Eβ0)

for any β0 ∈ [0, 1
2 ]. Moreover, each hypersurface Γ(t) is of class C∞ for t ∈ J̇(ρ0).

3. Parameter-dependent diffeomorphisms

The main purpose of the last two sections is to show that the classical solution
obtained in Theorem 2.2 is in fact real analytic jointly in time and space. To
this end, I will construct a family of parameter-dependent diffeomorphisms acting
on functions over M. Because the construction applies to manifolds of arbitrary
dimensions, in this section we assume that M is a m-dimensional manifold with the
properties imposed in Section 1.

For a given point p ∈ M, we choose a normalized atlas K for M such that
ϕ1(p) = 0 ∈ Rm. Choose several open subsets Bi in Bm, the open unit ball
centered at the origin in Rm, in such a manner that
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• Bi := Bm(0, iε0), for i = 1, 2, 3 and some ε0 > 0.
• B3 ⊂⊂ B4 ⊂⊂ Bm.

Next, We further select two cut-off functions on Bm:
• χ ∈ D(B2, [0, 1]) such that χ|B1

≡ 1. We write χκ = ϕ∗κχ.
• ζ ∈ D(B4, [0, 1]) such that ζ|B3

≡ 1. We write ζκ = ϕ∗κζ.
We define a re-scaled translation on Bm for any µ ∈ B(0, r) ⊂ Rm with r suffi-

ciently small:
θµ(x) := x+ χ(x)µ, x ∈ Bm.

This localization technique in Euclidean spaces is first introduced in [9] by Escher,
Prüss and Simonett to establish regularity for solutions to parabolic and elliptic
equations.

Given a function v ∈ L1,loc(Bm), its pull-back and push-forward induced by θµ
are defined as

θ∗µv := v ◦ θµ, θµ∗ v := v ◦ θ−1
µ .

The diffeomorphism θµ induces a transformation Θµ on M by

Θµ(q) =

{
ψ1(θµ(ϕ1(q))) q ∈ O1,

q q /∈ O1.

It can be shown that Θµ ∈ Diff∞(M) for µ ∈ B(0, r) with sufficiently small r > 0.
See [25] for details. For any u ∈ L1,loc(M), we can define its pull-back and push-
forward induced by Θµ analogously as

Θ∗µu := u ◦Θµ, Θµ
∗u := u ◦Θ−1

µ .

We may find an explicit global expression for the transformation Θ∗µ on M,

Θ∗µu = ϕ∗1θ
∗
µψ
∗
1(ζ1u) + (1− ζ1)u.

Here and in the following it is understood that a partially defined and compactly
supported function is automatically extended over the whole base manifold by iden-
tifying it to be zero outside its original domain. Likewise, we can express Θµ

∗ as

Θµ
∗ = ϕ∗1θ

µ
∗ψ
∗
1(ζ1u) + (1− ζ1)u.

Let I = [0, T ], T > 0. Assuming that J ⊂ I̊ is an open interval and t0 ∈ J
is a fixed point, we choose ε0 so small that B(t0, 3ε0) ⊂ J . Next we pick another
auxiliary function

ξ ∈ D(B(t0, 2ε0), [0, 1]) with ξ|B(t0,ε0) ≡ 1.

The above construction now engenders a parameter-dependent transformation in
terms of the time variable:

%λ(t) := t+ ξ(t)λ, for any t ∈ I and λ ∈ R.
Now we define a family of parameter-dependent transformations on I×M. Given

a function u : I ×M→ R, we set

uλ,µ(t, ·) := Θ∗λ,µu(t, ·) := Tµ(t)%∗λu(t, ·),
where Tµ(t) = Θ∗ξ(t)µ and (λ, µ) ∈ B(0, r). It is important to note that uλ,µ(0, ·) =
u(0, ·) for any (λ, µ) ∈ B(0, r) and any function u.

The importance of this family of parameter-dependent diffeomorphisms lies in
the following theorems. Their proofs as well as additional properties of this tech-
nique can be found in [25].
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Theorem 3.1. Let k ∈ N0 ∪ {∞, ω}. Suppose that u ∈ C(I ×M). Then we
have that u ∈ Ck(I̊ ×M) if and only if for any (t0, p) ∈ I̊ × M, there exists r =
r(t0, p) > 0 and a corresponding family of parameter-dependent diffeomorphisms
{Θ∗λ,µ : (λ, µ) ∈ B(0, r)} such that

[(λ, µ) 7→ Θ∗λ,µu] ∈ Ck(B(0, r), C(I ×M)).

Proposition 3.2. Suppose that u ∈ E1(I). Then uλ,µ ∈ E1(I), and

∂t[uλ,µ] = (1 + ξ′λ)Θ∗λ,µut +Bλ,µ(uλ,µ),

where
[(λ, µ) 7→ Bλ,µ] ∈ Cω(B(0, r), C(I,L(E1, E0))).

Furthermore, Bλ,0 = 0.

Proposition 3.3. Let s ∈ (0, t) and l ∈ N0. Suppose that A is a linear differential
operator of order l on M satisfying aκα ∈ BCt(Bm) and a1

α ∈ BCt(Bm)∩Cω(O) for
some open subset O such that B3 ⊂⊂ O ⊂⊂ Bm. Then

[µ 7→ TµAT−1
µ ] ∈ Cω(B(0, r), C(I,L(hs+l(M), hs(M)))).

Proposition 3.4. Let s > 0. Suppose that u ∈ Cω(ψ1(O)) ∩ hs(M), where O is
defined in Proposition 3.3. Then

[µ 7→ Tµu] ∈ Cω(B(0, r), C(I, hs(M))).

4. Real analyticity

By setting G(ρ) := P (ρ)ρ− F (ρ), we may rewrite (2.9) as

ρt +G(ρ) = 0,

ρ(0) = ρ0.
(4.1)

Theorem 4.1. Let 0 < α < 1. Suppose that ρ0 ∈ f. Then (4.1) has a unique local
solution ρ in the interval of maximal existence J(ρ0) such that

ρ ∈ Cω(J̇(ρ0)×M).

Proof. The key steps of the proof are indicated here, while the details can be found
in [25].

For any (t0, p) ∈ J̇(ρ0)×M and sufficiently small r > 0, a family of parameter-
dependent diffeomorphisms Θ∗λ,µ can be defined for (λ, µ) ∈ B(0, r). Henceforth,
we always use the notation ρ exclusively for the solution to (2.9) and hence to (4.1).
Set u := ρλ,µ. Then as a consequence of Proposition 3.2, u satisfies the equation

ut = ∂t[ρλ,µ] = (1 + ξ′λ)Θ∗λ,µρt +Bλ,µ(u)

= −(1 + ξ′λ)Θ∗λ,µG(ρ) +Bλ,µ(u)

= −(1 + ξ′λ)TµG(%∗λρ) +Bλ,µ(u)

= −(1 + ξ′λ)TµG(T−1
µ u) +Bλ,µ(u) := −Hλ,µ(u).

Select I : [ε, T ] ⊂⊂ J̇(ρ0) such that t0 ∈ I̊ and B(t0, 3ε0) ⊂⊂ I̊. Then we define
E0(I) and E1(I) as in Section 1 by moving the initial point from 0 to ε. Set

Ea1(I) := {v ∈ E1(I) : ‖v‖∞ < a},
where ‖v‖∞ := sup(t,q)∈I×M |v(t, q)|.
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For A ∈ H(E1, E0), we say that (E0(I),E1(I)) is a pair of maximal regularity of
A, if

(
d

dt
+A, γε) ∈ Isom(E1(I),E0(I)× E1),

where γε is the evaluation map at ε; i.e., γε(u) = u(ε). Next we define

Φ : Ea1(I)× B(0, r)→ E0(I)× E1 as Φ(v, (λ, µ)) 7→
(
vt +Hλ,µ(v)
γε(v)− ρ(ε)

)
.

Note that Φ(ρλ,µ, (λ, µ)) =
(

0
0

)
for any (λ, µ) ∈ B(0, r).

(i) Our first goal is to prove that Φ ∈ Cω(Ea1(I)× B(0, r),E0(I)× E1). By
Proposition 3.2, Bλ,µ ∈ Cω(B(0, r), C(I,L(E1, E0))). We define a bilinear and
continuous map

f : C(I,L(E1, E0))× E1(I)→ E0(I), (T (t), u(t)) 7→ T (t)(u(t)).

Hence [(v, (λ, µ)) 7→ f(Bλ,µ, v) = Bλ,µ(v)] ∈ Cω(Ea1(I)× B(0, r),E0(I)).
On the other hand, let π =

∑
η∈C(1) π

2
η, where

C(1) := {η ∈ K : supp(πη) ∩ supp(π1) 6= ∅}.

We decompose G into
G = πG+

∑
η/∈C(1)

π2
ηG.

According to our construction of Θ∗µ and of the localization system, we may assume
that π|O ≡ 1, where O is defined in Proposition 3.3 with m = 2. See [1, Lemma 3.2]
for details.

Taking into account (2.6), (2.7) and (2.8), in every local chart (Oκ, ϕκ) and for
any v ∈ Ea1(I), G(v) can be expressed as

β2n(v)PG(v, . . . , ∂ijklv)
det(GΓ(v))s1det([σ(v)])s2QG(v)

,

where n, s1, s2 ∈ N. [σ(v)] is the matrix representation of the metric σ(v). Here
σ(v) is defined in a similar manner to σ(ρ) with ρ replaced by v. Analogously,
GΓ(v) is defined in a similar way to GΓ(ρ). Meanwhile, PG is a polynomial in
v and its derivatives up to fourth order with real analytic coefficients, and QG is
a polynomial in v with real analytic coefficients. In particular, det([σ(v)]) only
involves first order derivatives of v.

Therefore, πG(v) can be decomposed globally into

P0 + P1
1v . . .P1

k1
v + · · ·+ Pr1v . . .Prkrv

Q0 +Q1
1v . . .Q1

l1
v + · · ·+Qs1v . . .Qslsv

,

where P0, Q0 ∈ C∞(M) ∩Cω(ψ1(O)). The Pij ’s are linear differential operators on
M up to fourth order, and the Qij ’s are linear differential operators of order at most
one on M. Their coefficients in every local chart satisfy that aκα ∈ BC∞(B2) and
a1
α ∈ BC∞(B2) ∩ Cω(O). By Proposition 3.4, we deduce that

[µ 7→ (TµP0, TµQ0)] ∈ Cω(B(0, r), C(I, E1)× C(I, E1)).

Analogously, it follows from Proposition 3.3 that

[µ 7→ TµPijT−1
µ ] ∈ Cω(B(0, r), C(I,L(E1, E0)))
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and

[µ 7→ TµQijT−1
µ ] ∈ Cω(B(0, r), C(I,L(E1, h

3+α(M)))).

Combining the above discussion with point-wise multiplication theorems on Rie-
mannian manifolds, we infer that

[(v, µ) 7→ Tµ(πG)T−1
µ v] ∈ Cω(Ea1(I)× B(0, r),E0(I)).

Applying these arguments repeatedly to the other terms π2
ηG, we conclude that

Φ ∈ Cω(Ea1(I)× B(0, r),E0(I)× E1).

(ii) Next we look at the Fréchet derivative of Φ in the first component:

D1Φ(v, (λ, µ))w =
(
wt + (1 + ξ′λ)TµDG(T−1

µ v)T−1
µ w −Bλ,µ(w)

γεw

)
.

Thus

D1Φ(ρ, (0, 0))w =
(
wt +DG(ρ)w

γεw

)
.

Observe that DG(ρ) is a fourth order linear differential operator whose coefficients
satisfy aκα ∈ E0. The principal part of DG(ρ) in every local chart coincides with that
of P (ρ); that is, Pπκ (ρ). By the discussion in Section 2, we know that DG(ρ(t, ·))
is a normally elliptic operator for every fixed t ≥ 0. As a consequence of [24,
Theorem 3.6], it follows that (E0(I),E1(I)) is a pair of maximal regularity for
DG(ρ(t, ·)).

We set A(t) = DG(ρ(t, ·)). It follows that

(
d

dt
+A(s), γε) ∈ Isom(E1(I),E0(I)× E1), for every s ∈ I.

By [6, Lemma 2.8(a)], we have

(
d

dt
+A(·), γε) ∈ Isom(E1(I ),E0(I )× E1).

Now we apply the implicit function theorem. It follows right away that there
exists an open neighborhood, say B(0, r0) ⊂ B(0, r), such that

[(λ, µ) 7→ ρλ,µ] ∈ Cω(B(0, r0),E1(I)).

As a consequence of Theorem 3.1, we deduce that ρ ∈ Cω(J̇(ρ0)×M). This com-
pletes the proof. �

Proof of Theorem 1.1. For each (t0, q) ∈ M = ∪t∈J̇(ρ0)({t} × Γ(t)), there exists a
p ∈ M such that Ψρ(t0, p) = q. Here Γ(t) = im(Ψρ(t, ·)). Theorem 4.1 states that
there exists a local patch (Oκ, ϕκ) such that p ∈ Oκ and ρ ◦ ψκ is real analytic in
J̇(ρ0)× B2. Therefore, we conclude that

[(t, x) 7→ (t, ψκ(x) + ρ(t, ψκ(x))νM(ψκ(x))] ∈ Cω(J̇(ρ0)× B2,M).

This proves the assertion of Theorem 1.1. �
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