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EXISTENCE OF POSITIVE SOLUTIONS FOR A SUPERLINEAR
ELLIPTIC SYSTEM WITH NEUMANN BOUNDARY

CONDITION

JUAN C. CARDEÑO, ALFONSO CASTRO

Abstract. We prove the existence of a positive solution for a class of nonlin-

ear elliptic systems with Neumann boundary conditions. The proof combines
extensive use of a priori estimates for elliptic problems with Neumann bound-

ary condition and Krasnoselskii’s compression-expansion theorem.

1. Introduction

The purpose of this paper is to prove that the system

−∆u+ αu = βv + f1(x, u, v) in Ω

−∆v + δv = γu+ f2(x, u, v) in Ω
∂u

∂n
=
∂v

∂n
= 0 in ∂Ω,

(1.1)

has a nontrivial positive solution. In (1.1) ∆ denotes the Laplacian operator,
Ω ⊂ RN is a smooth bounded domain, and α > 0, β > 0, γ > 0, δ > 0 are
real parameters. We also assume that f1(x, u, v), f2(x, u, v) are measurable in x,
differentiable in (u, v), and bounded on bounded sets. Our main result reads as
follows.

Theorem 1.1. If there exist b ∈ (1,min{2, (N + 1)/(N − 1)}), m > 0, and M > 0
such that

m(u+ v)b ≤ fi(x, u, v) ≤M(u+ v)b for i = 1, 2, u, v ≥ 0, (1.2)

and βγ < αδ, then the problem (1.1) has a positive solution.

The main tool in our proofs is Krasnoselskii’s compression-expansion theorem
(see Theorem 1.2 below) which we state for sake of completeness. For a proof of
this theorem the reader is referred to [12, Theorem 13.D]. To apply Theorem 1.2
to Theorem 1.1, in Section 3 we use of a priori estimates for elliptic equation with
Neumann boundary conditions, see [11].
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Theorem 1.2. Let X be a real ordered Banach space with positive cone K. If
Υ : K → K is a compact operator and there exist real numbers 0 < R < R such
that

Υ(x) 
 x, for x ∈ K, ‖x‖ = R,

Υ(x) � x, for x ∈ K, ‖x‖ = R.

then Υ has a fixed point with ‖x‖ ∈ (R,R).

There is rich literature on systems like (1.1) in the presence of variational struc-
ture and Dirichlet boundary condition, see [2, 3, 4, 6, 7, 8]. Costa and Magalhaes
[3] study system (1.1) for nonlinearities with subcritical growth. The reader may
consult [2] for applications of the Mountain Pass Lemma to the study of fourth or-
der systems. In [8], (1.1) is studied for Lipschitzian nonlinearities and α = δ = λ1,
where λ1 is the principal eigenvalue of −∆ with Dirichlet boundary condition in Ω.
For a survey on the study of elliptic systems the reader is referred to [4].

Throughout this paper we denote by ‖ · ‖p the norm in Lp(Ω) and by ‖cdot‖k,p
the norm in the Sobolev space W k,p(Ω) (see [1]).

2. Linear Analysis

In this section we study the linear problem
−∆u+ αu− βv = P1(x) in Ω

−∆v − γu+ δv = P2(x) in Ω
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω,

(2.1)

where P1(x) ≥ 0, P2(x) ≥ 0, α > 0, β > 0, γ > 0, and δ > 0.

Lemma 2.1. For each P1, v ∈ L2(Ω), then the equation

−∆u+ αu = P1(x) + βv in Ω
∂u

∂n
= 0 in ∂Ω,

(2.2)

has a unique solution. Moreover, there exists c > 0, independent of (P1, v), such
that

‖u‖1,2 ≤ c‖P1 + βv‖2, (2.3)

Proof. Let H be the Sobolev space H1(Ω), and B : H×H → R defined by B[u, v] =∫
Ω
∇u∇v + αuv. Since α > 0, B[u, u] ≥ min{1, α}‖u‖2. By the Lax-Milgram

theorem (see [5]) there exists u ∈ H such that

B[u, z] =
∫

Ω

∇u∇z + α

∫
Ω

uz =
∫

Ω

z(x)(P1(x) + βv(x))dx. (2.4)

Hence u is a weak solution to (2.2). Taking z = u and c−1 = min{1, α} the lemma
is proved. �

Lemma 2.2. Let P1, v, and u be as in Lemma 2.1. If v ≥ 0 then u ≥ 0.

Proof. Suppose u is not positive. Let A = {x ∈ Ω, u(x) < 0}, and z = uχA. By
the definition of weak solution∫

Ω

z(P1 + βv) =
∫

Ω

∇u∇z + α

∫
Ω

uz =
∫
A

∇u∇u+ α(
∫
A

u2). (2.5)
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This is a contradiction since
∫
A
∇u∇u + α(

∫
A
u2) > 0, while

∫
A
z(P1 + βv) < 0.

This proves the lemma. �

Lemma 2.3. For each v ∈ L2, let u(v) ≡ u ∈ H1(Ω) be the solution to (2.2) given
by Lemma 2.1. If w ∈ H1(Ω) is the weak solution to

−∆w + δw = P2(x) + γu(v) in Ω
∂w

∂n
= 0 in ∂Ω,

(2.6)

then

‖w‖2 ≤
1
α
‖P2‖2 +

δ

αγ
‖P1‖2 +

βγ

δα
‖v‖2. (2.7)

Proof. Multiplying (2.6) by w and using the Cauchy-Schwartz inequality we have∫
Ω

∇w∇w + δ

∫
Ω

w2 =
∫

Ω

P2(x) · w + γu(v) · w

≤ ‖P2‖2 · ‖w‖2 + γ‖u(v)‖2 · ‖w‖2
≤ (‖P2‖2 + δ‖u(v)‖2) · ‖w‖2.

(2.8)

Hence

‖w‖2 ≤
1
δ
‖P2‖2 +

γ

δ
‖u(v)‖2. (2.9)

Similarly,

‖u‖2 ≤
1
α
‖P1‖2 +

β

α
‖v‖2. (2.10)

Replacing (2.9) in (2.10),

‖w‖2 ≤
1
γ
‖P2‖2 +

γ

δ
‖u(v)‖2

≤ 1
γ
‖P2‖2 +

δ

γ
(

1
α
‖P1‖2 +

β

α
‖v‖2)

≤ 1
α
‖P2‖2 +

δ

αγ
‖P1‖2 +

βγ

δα
‖v‖2,

(2.11)

which proves the lemma. �

Theorem 2.4. Given (P1, P2) ∈ L2(Ω)×L2(Ω), there exists a unique pair (u, v) ∈
H ×H satisfying (2.1). In addition, (u, v) depends continuously on (P1, P2).

Proof. Let v1, v2 ∈ L2(Ω). Let u(v1) and u(v2) be given by Lemma 2.1 and w1, w2

as given by Lemma 2.3. Hence∫
Ω

|∇(w1 − w2)|2 + δ

∫
Ω

|(w1 − w2)|2

= γ

∫
Ω

u(v1)− u(v2))(w1 − w2)

≤ γ(‖u(v1)− u(v2))‖L2)‖w1 − w2)‖2.

(2.12)

Therefore,

‖w1 − w2‖ ≤
γ

δ
(‖u(v1)− u(v2))‖L2 . (2.13)
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Multiplying (2.2) by u(v1)− u(v2) and subtracting we have∫
Ω

|∇(u1 − u2)|2 + α

∫
Ω

(u(v1)− u(v2))2

= β

∫
Ω

((v1 − v2)(u(v1)− u(v2))

≤ β‖v1 − v2‖2‖u(v1)− u(v2)‖2.

(2.14)

Thus

‖(u(v1)− u(v2)‖2 ≤
β

α
‖(v1 − v2)‖2. (2.15)

Replacing this in (2.13) yields ‖w1 − w2‖2 ≤ γβ
αδ ‖(v1 − v2)‖2. Hence by the con-

traction mapping principle there exists a unique w such that w = v. That is (u, v)
satisfies

−∆u+ αu = βv + P1(x) in Ω

−∆v + δv = γu+ P2(x) in Ω
∂u

∂n
= 0 =

∂v

∂n
on ∂Ω,

(2.16)

By Lemma 2.1, u depends continuously on (P1, v). Also, by Lemma 2.3, v depends
continuously on (P1, P2). Hence (u, v) depends continuously on (P1, P2), which
proves the theorem. �

Lemma 2.5. Let h1, h2 ∈ L∞(Ω). For each p > 1 there exist C2(p) ≡ C2 > 0 such
that if (y, z) satisfies

−∆y + αy = βz + h1,

−∆z + δz = γy + h2, in Ω
∂y

∂n
=
∂z

∂n
= 0 in ∂Ω,

(2.17)

then
‖y‖2,p + ‖z‖2,p ≤ C2(‖h1‖∞ + ‖h2‖∞) (2.18)

(see [5]). In particular, by the Sobolev imbedding theorem, taking p > N/2 we may
assume that

‖y‖∞+ sup
|y(ζ)− y(η)|
‖ζ − η‖

+ ‖z‖∞+ sup
|z(ζ)− z(η)|
‖ζ − η‖

≤ C2(‖h1‖p + ‖h2‖p). (2.19)

Proof. Multiplying the first equation in (2.17) by y we have∫
Ω

|∇y|2 + α

∫
Ω

y2 = β

∫
Ω

(yz) +
∫
ω

h1y

≤ β
∫

Ω

(yz) + ‖h1‖∞|Ω|1/2‖y‖2.
(2.20)

Similarly, ∫
Ω

|∇z|2 + δ

∫
Ω

z2 = γ

∫
Ω

(yz) +
∫
ω

h2z

≤ γ
∫

Ω

(yz) + ‖h2‖∞|Ω|1/2‖z‖2.
(2.21)



EJDE-2014/CONF/21 EXISTENCE OF POSITIVE SOLUTIONS 27

Since α > 0 and αδ − βγ > 0, the quadratic form G(s, t) = αs2 − (β + γ)st + δt2

positive definite. That is, there exists C > 0 such that G(s, t) ≥ C(s2 + t2) for all
s, t ∈ R. This, (2.20), and (2.21) imply

C(‖y‖2 + ‖z‖2) ≤ 2|Ω|1/2(‖h1‖∞ + ‖h2‖∞). (2.22)

By (2.20) and (2.22),

ᾱ‖y‖21,2 ≤ ‖y‖2(β‖z‖2 + |Ω|1/2(‖h1‖∞ + ‖h2‖∞))

≤ (
2β
C

+ 1)|Ω|1/2‖y‖2(‖h1‖∞ + ‖h2‖∞)

≡ C3‖y‖2(‖h1‖∞ + ‖h2‖∞)

≤ C3‖y‖1,2(‖h1‖∞ + ‖h2‖∞).

(2.23)

Hence

‖y‖1,2 ≤
C3

ᾱ
(‖h1‖∞ + ‖h2‖∞). (2.24)

Similarly,

‖z‖1,2 ≤
C3

δ̄
(‖h1‖∞ + ‖h2‖∞). (2.25)

From (2.24), (2.25) and the Sobolev imbedding theorem (see [5, Theorem ??]) we
see that

‖y‖2N/(N−2) + ‖z‖2N/(N−2) ≤ S(1, 2)(‖y‖1,2 + ‖z‖1,2)

≤ S(1, 2)
(C3

ᾱ
+
C3

δ̄

)
(‖h1‖∞ + ‖h2‖∞)

≡ C4(‖h1‖∞ + ‖h2‖∞).

(2.26)

By regularity properties for elliptic boundary value problems there exists a positive
real number C2 such that if −∆u+ τu = f en Ω and (∂u)/(∂η) = 0 in ∂Ω ‖u‖2,P
when p ∈ (1, (N/2) + 1). This and (2.26) imply

‖y‖2, 2N
N−2

+ ‖z‖2, 2N
N−2
≤ C2(C4 + |Ω|

N−2
2N )(‖h1‖∞ + ‖h2‖∞)). (2.27)

Iterating this argument finitely many times we see that there exist p > N/2 and
C3 > 0 such that

‖y‖2,p + ‖z‖2,p ≤ C3(‖h1‖∞ + ‖h2‖∞)), (2.28)

which proves the lemma. �

3. Proof of Theorem 1.1

Let ρ = max{α/m, δ/m} and R̄ = 2(2Mρ|Ω|)1/(2−b) (see (1.2)). For i = 1, 2, let

gi(x, u, v) =

{
fi(x, u, v) for 0 ≤ u+ v ≤ R̄,
fi(x, R̄u/(u+ v), R̄v/(u+ v)) for u+ v ≥ R̄.

Let X be the ordered Banach space C(Ω̄)× C(Ω̄) with positive cone

K =
{

(u, v) ∈ X : u ≥ 0, v ≥ 0, ‖u− 1
|Ω|

∫
Ω

u‖∞ ≤ bMR̄b−1

∫
Ω

u,

‖v − 1
|Ω|

∫
Ω

v‖∞ ≤ bMR̄b−1

∫
Ω

v
}
.

(3.1)
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Let (see (1.2) and Lema 2.5)

R ∈
(
0,min{R̄, (2C2M)1−b}

)
. (3.2)

For (u, v) ∈ K, ‖(u, v)‖X ≥ R, we define Υ(u, v) = (U, V ) as the only solution to

−∆U + αU = βV + g1(x, u, v) in Ω

−∆V + δV = γU + g2(x, u, v) in Ω
∂u

∂n
= 0 =

∂v

∂n
in ∂Ω.

(3.3)

If (u, v) ∈ K and ‖(u, v)‖X ≤ R we define

Υ(u, v) = ‖(u, v)‖XΥ((R/‖(u, v)‖X)(u, v)), Υ(0, 0) = (0.0). (3.4)

Since g1, g2 are nonnegative continuous functions, Υ(u, v) = (U, V ) satisfies U ≥ 0
y V ≥ 0 for (u, v) ∈ K (see Lemma 2.2).

Suppose that for some (U, V ) = Υ(u, v) we have

‖U − 1
|Ω|

∫
Ω

U‖∞ > bMR̄b−1

∫
Ω

U, (3.5)

with ‖(u, v)‖X ≥ R. Hence ‖U‖∞ ≥ bMRb−1
∫

Ω
U , which implies that if ‖U‖∞ =

U(x), x ∈ Ω̄, then there exists y ∈ Ω̄ such that ‖y − x‖ ≤ m1R̄
(1−b)/n and U(y) ≤

U(x)/2, with m1 a constant depending only on Ω. Hence

U(x)− U(y)
‖x− y‖

≥ ‖U‖∞
2m1R̄(b−1)/N

. (3.6)

Let now p > N be such that

N + p− b(p− 1)
(p− 1)N

+
b

p
> 0. (3.7)

This and Lemma 2.5 imply

‖U‖∞R̄(b−1)/n ≤ C2‖g1(·, u, v)‖p

≤ C2M
(∫

Ω

(u+ v)bp
)1/p

≤ C2M
(∫

Ω

(u+ v)b(u+ v)b(p−1)
)1/p

≤ C2M‖u+ v‖b(p−1)/p
∞

(∫
Ω

(u+ v)b
)1/p

.

(3.8)

Integrating the first equation in (3.3) on Ω,

α

∫
Ω

U ≥ m
∫

Ω

(u+ v)b, (3.9)

(see (1.2)). From (3.8) and (3.9),

‖U‖∞R̄
b−1

n ≤ C2M‖u+ v‖b(p−1)/p
∞

( α
m

∫
Ω

U
)1/p

≤ C2M‖u+ v‖b(p−1)/p
∞

( α

2mM
R̄1−b‖U‖∞

)1/p

≤ C2M
(

2MR̄b−1

∫
Ω

(u+ v)
) b(p−1)

p
( α

2mM
R̄1−b

∫
Ω

‖U‖∞
)1/p

.

(3.10)
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Therefore

‖U‖(p−1)/p
∞ ≤ m2R̄

(b−1)(
b(p−1)

n − 1
p−

1
n )
(∫

Ω

(u+ v)
)b(p−1)/p

≤ m3R̄
(b−1)(

b(p−1)
n − 1

p−
1
n )
(∫

Ω

(u+ v)b
)(p−1)/p

≤ m3R̄
(b−1)(

b(p−1)
n − 1

p−
1
n )
( α
m

∫
Ω

U
)(p−1)/p

≤ m4R̄
(b−1)(

b(p−1)
n − 1

p−
1
n )
(
R̄1−b‖U‖∞

)(p−1)/p

.

(3.11)

Since m2, m3, m4 are independent of U ,

1 ≤ m4R̄
(b−1)(

b(p−1)
n − 1

p−
1
n−

p−1
p ). (3.12)

By (1.2), there exists p > N such that

(b− 1)
(b(p− 1)

n
− 1
p
− 1
n
− p− 1

p

)
< 0. (3.13)

Taking R̄ sufficiently large we have a contradiction to (3.5). Thus Υ(u, v) ∈ K. For
‖(u, v)‖X < R the proof follows from the definition of Υ. Thus Υ̂(K) ⊂ K.

Let C2 be as in 2.5 and x ∈ Ω̄ be such that U(x) = max{U(y); y ∈ Ω̄}. From
the definition of C2 we conclude that if y ∈ Ω̄ and ‖y − x‖ ≤ C2M(‖u‖b∞ + ‖v‖b∞)
then by the definition of g1, g2, if {uj , vj}j is a bounded sequence in X so are
{g1(x, uj , vj)}j and {g2(x, uj , vj)}j in C(Ω̄). Since g1, g2 are bounded functions,
due to Lemmas 2.5, {Uj , Vj}j is bounded in W 2,p(Ω)×W 2,p(Ω). Taking p > N/2,
by the Sobolev imbedding theorem (see [5]) we see that {Uj , Vj}j has a converging
subsequence in the space X, which proves that Υ is a compact operator.

Suppose that for some (u, v) such that ‖u‖∞ + ‖v‖∞ = R, U ≥ u, V ≥ v. By
(2.18),

R = ‖u‖∞ + ‖v‖∞ ≤ ‖U‖∞ + ‖V ‖∞
≤ 2C2M‖u+ v‖b∞
≤ 2C2MRb,

(3.14)

which contradicts the definition of R. This proves that Υ(u, v) 6≥ (u, v) for ‖(u, v)‖X
= R.

Suppose that (U, V ) = Υ(u, v) ≤ (u, v) for some (u, v) with ‖(u, v)‖X = R̄.
Without loss of generality we may assume that ‖u‖ ≥ R̄/2. Hence, by the definition
of K, ∫

Ω

u ≥ R̄ 1
2(|Ω|−1 + bMR̄b−1)

≥ C3R̄
2−b. (3.15)

Integrating the first equation in (3.3) we infer that

α

∫
Ω

U = β

∫
Ω

V +
∫

Ω

g1(u, v)

= β

∫
Ω

V +m

∫
Ω

(u+ v)b

≥ β
∫

Ω

V +m

∫
Ω

(U + V )b.

(3.16)
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Similarly,

δ

∫
Ω

V ≥ γ
∫

Ω

U +m

∫
Ω

(U + V )b.

By Holder inequality and the definition of ρ,∫
Ω

(U + V )b ≤ ρ|Ω|. (3.17)

Since (U, V ) ∈ K,

R̄ ≤ 2‖U‖∞ ≤ 4MRb−1

∫
Ω

U ≤ 2MR̄b−1ρ|Ω|, (3.18)

which contradicts the definition of R̄. Thus Υ satisfies the hypotheses of Theorem
1.2. Hence Υ has a fixed point (u, v) in {(y, z); ‖(y, z)‖ ∈ (R , R). Therefore (u, v)
is a positive solution to (1.1), which proves Theorem 1.1.
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