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SOME BIFURCATION RESULTS FOR QUASILINEAR
DIRICHLET BOUNDARY VALUE PROBLEMS

FRANÇOIS GENOUD

Abstract. This article reviews some bifurcation results for quasilinear prob-

lems in bounded domains of RN , with Dirichlet boundary conditions. Some of

these are natural extensions of classical theorems in ‘semilinear bifurcation the-
ory’ from the 1970’s, based on topological arguments. In the radial setting, a

recent contribution of the present author is also presented, which yields smooth

solution curves, bifurcating from the first eigenvalue of the p-Laplacian.

1. Introduction

The typical problem we will consider in this review has the form

−∆p(u) = λ|u|p−2u+ h(x, u, λ) in Ω,
u = 0 on ∂Ω,

(1.1)

where ∆p(u) = div(|∇u|p−2∇u) is the p-Laplacian, p > 1, λ ∈ R, and Ω is a
bounded domain in RN , with a smooth enough boundary, as will be specified later.
We will suppose that h(x, ξ, λ) : Ω × R × R → R is (at least) a Caratheodory
function in its first two arguments (i.e. measurable in x and continuous in ξ), with

h(x, ξ, λ) = o(|ξ|p−1) as ξ → 0, (1.2)

uniformly for almost every x ∈ Ω and all λ in bounded subsets of R.
A (weak) solution of (1.1) is a couple (λ, u) ∈ R×W 1,p

0 (Ω) such that∫
Ω

|∇u|p−2∇u∇v dx− λ
∫

Ω

|u|p−2uv + h(x, u, λ)v dx = 0 ∀ v ∈W 1,p
0 (Ω).

Under assumption (1.2), we have a line of trivial solutions, {(λ, 0) : λ ∈ R}. Of
course, we will be interested in the existence of non-trivial solutions (i.e. with
u 6≡ 0). It turns out that the (p − 1)-subhomogeneity condition (1.2) is the min-
imum requirement to get bifurcation from the line of trivial solutions. Additional
hypotheses will be stated in due course, e.g. growth conditions as |ξ| → ∞, in order
to state various bifurcation results. A particular attention will be given to the radial
case, i.e. the case where Ω is a ball centred at the origin and h(x, ξ, λ) = h(|x|, ξ, λ).
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Some variants of (1.1) will also be considered, where ∆p is replaced by a more gen-
eral quasilinear operator.

The bifurcation theory for the semilinear case, i.e. for the Laplacian, ∆ ≡ ∆2,
has been well known since the work of Rabinowitz [16], Crandall-Rabinowitz [7]
and Dancer [8], in the 70’s (just to mention the most relevant works in the present
context, amongst an extensive literature). One of the first important contributions
to the general, quasilinear case, p > 1, is due to del Pino and Manásevich [10]. In
the spirit of [16], they use degree theoretic arguments to obtain a continuum — i.e.
a connected set — of solutions bifurcating from the first eigenvalue λ1(p) of the
homogeneous problem

−∆p(u) = λ|u|p−2u in Ω,
u = 0 on ∂Ω.

(1.3)

The eigenvalue λ1 = λ1(p) is characterized variationally by

λ1(p) = inf
{∫

Ω

|∇u|pdx : u ∈W 1,p
0 (Ω) with

∫
Ω

|u|pdx = 1
}
, (1.4)

and it was proved in [1] that, for any p > 1, λ1(p) is a simple isolated eigenvalue of
(1.3). In order to evaluate the Leray-Schauder degree of the relevant operator in
[10], the authors use a clever homotopic deformation along p (whence the explicit
dependence on p in their notation for λ1), already introduced in [9], that allows
them to relate the general case p > 1 to the semilinear case p = 2, where the
results are well known. They obtain a theorem analogous to Rabinowitz’s global
bifurcation theorem [16, Theorem 1.3] for problem (1.1). This result (Theorem 2.1
below) yields a component (i.e. a maximal connected subset) C of the set of non-
trivial solutions of (1.1), which bifurcates from (λ1(p), 0) and is either unbounded
or meets another point (λ̄, 0), for some eigenvalue λ̄ 6= λ1(p) of (1.3).

In the radial case, (1.1) is reduced to a one-dimensional problem — see [6] for
symmetry results in the quasilinear context —, which is thoroughly investigated in
[10]. It was previously known from [2] that the radial form of (1.3) has a strictly
increasing sequence of positive simple eigenvalues, 0 < µ1,p < µ2,p < . . . , such that
an eigenfunction corresponding to µn,p has exactly n − 1 nodal zeros in (0, 1), for
all n ∈ N. Using this information, together with similar degree theoretic arguments
to those used to obtain bifurcation from the first eigenvalue in the general (non-
radial) case, it is shown in [10] that an unbounded continuum of nodal solutions
Cn bifurcates from each eigenvalue µn,p, n ∈ N. The main results of [10] will be
presented in Section 2.

In the context of abstract semilinear bifurcation theory1, a few years after Rabi-
nowitz’s celebrated paper [16], Dancer made an important contribution [8] showing
that Rabinowitz’s results could be substantially improved. Following ideas already
put forth in [16], he proved that the continuum of solutions C obtained in Theo-
rem 1.3 of [16] — bifurcating from a point (µ, 0) in R×E, with E a Banach space
— can be decomposed as C = C+ ∪ C−, where the sets C± bifurcate from (µ, 0) in
‘opposite directions’, and either are both unbounded, or meet each other outside a
neighbourhood of (µ, 0) (see the proof of [8, Theorem 2] and the remarks following
it).2 This was an important improvement of Theorem 1.40 in [16].

1i.e. the abstract, functional analytic, theory that is naturally suited for semilinear equations
2The notation for the sets C± comes from concrete problems where (at least locally around

(µ, 0)) the bifurcating solutions are either positive or negative — see Sections 3-5 below.
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The quasilinear counterpart of Dancer’s theorem was given by Girg and Takáč
in [15] for a large class of Dirichlet problems (containing (1.1)). Their result, which
will be presented in Section 3, essentially follows from Dancer’s proof, albeit with
a fairly technical asymptotic analysis required by the quasilinear setting. The very
general result of Girg and Takáč (Theorem 3.2 below) completes the discussion of
bifurcation from the first eigenvalue, from the topological point of view.

Global bifurcation being established by topological arguments, it is natural to
seek conditions for the bifurcating continua to enjoy some regularity properties. A
fundamental local result was proved by Crandall and Rabinowitz in [7], which is
well-suited for applications in the semilinear case. Let p = 2 and λ0 be a simple
eigenvalue of the linear problem (1.3). Provided the nonlinearity in (1.1) is con-
tinuously differentiable, and a suitable transversality condition is satisfied by the
eigenspace corresponding to λ0, the Crandall-Rabinowitz theorem yields a unique
continuous curve of non-trivial solutions of (1.1), bifurcating from the line of trivial
solutions at (λ0, 0). In fact their abstract result, Theorem 1.7 in [7], applies to
much more general (semilinear) problems than (1.1). A version of the Crandall-
Rabinowitz theorem for (1.1) with p > 2 was stated by Garćıa-Melián and Sabina
de Lis [13] in the radial case, where all the eigenvalues of (1.3) are simple. (How-
ever, their proof contains a gap, and a slightly more general version of this result
was finally proved in [14].) Using this local result, further properties of the global
continua Cn obtained in [10] are also discussed in [13]. In particular it is shown
that, for each n ∈ N, Cn splits into two unbounded pieces C±n , that only meet at
the bifurcation point (λn, 0). Furthermore, the solutions in C±n retain the nodal
structure of the eigenvectors ±vn corresponding to λn. The main results of [13]
will be described in Section 4.

A major difficulty in studying bifurcation for (1.1) with p 6= 2 is that the problem
cannot be linearized at the trivial solution u = 0, since ∆p is not differentiable
at this point. Nevertheless, in the radial case, the inverse operator ∆−1

p can be
expressed explicitly by an integral formula, and its differentiability properties can
be obtained. This program was carried out by Binding and Rynne [5] while studying
the spectrum of the one-dimensional periodic p-Laplacian, and subsequently used
by Rynne [17] to prove the existence of a smooth curve of solutions to a one-
dimensional version of (1.1) (without radial symmetry).

Our contribution [14] was mainly motivated by [17] and [13], when we realized
that, in the radial setting, a differentiability analysis similar to that of [17] would
allow us to go beyond the local bifurcation result of [13]. In fact, under appropriate
regularity and monotonicity assumptions, we obtain a complete characterization of
the sets of positive and negative solutions of (1.1), as C1 curves parametrized by
λ > 0, bifurcating from the first eigenvalue of (1.3). Furthermore, we have precise
information about the asymptotic behaviour of these curves. A key ingredient
of [14] is the non-degeneracy of positive/negative solutions with respect to the
integral form of (1.1), allowing for global continuation via the implicit function
theorem. This non-degeneracy property requires a careful analysis of the inverse
operator ∆−1

p . Such an analysis was already attempted in [13] in order to prove
the local bifurcation result [13, Theorem 1], but there seems to be a mistake in
the proof of [13, Theorem 5] (see Remark 5.4 in Section 5 below) dealing with the
differentiability of ∆−1

p . Thus, in addition to extending the local bifurcation of [13]
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to a global one, our work also fills in this gap. The main results of [14] are presented
in Section 5.
Notation. For the sake of homogeneity, we have allowed ourselves to change
the original notations of the works reviewed here. For brevity, we will often refer
to properties of solutions (λ, u) (such as positivity) by actually meaning that u
possesses these properties. Throughout the paper, ‖ · ‖ will denote the usual norm
of W 1,p

0 (Ω). Finally, we will always use the same notation for a function and its
associated Nemitskii mapping, e.g. h(u, λ)(x) ≡ h(x, u(x), λ), x ∈ Ω, λ ∈ R.

2. del Pino and Manásevich

The bifurcation analysis presented in [10] is split into two parts: the general case
and the radial case.

2.1. The general case. The main result in the general case is the following.

Theorem 2.1 ([10, Theorem 1.1]). Let Ω ⊂ RN (N ≥ 1) be a bounded domain
with C2,α boundary, for some α ∈ (0, 1). Suppose that h : Ω × R × R → R is a
Caratheodory function in the first two variables, and satisfies:

(a) (1.2) holds, uniformly for a.e. x ∈ Ω and all λ in bounded subsets of R;
(b) there exists q ∈ (1, p∗) such that lim|ξ|→∞ h(x, ξ, λ)/|ξ|q−1 = 0, uniformly

for a.e. x ∈ Ω and all λ in bounded subsets of R.
There is a component3 C of the set of non-trivial solutions of (1.1) in R×W 1,p

0 (Ω),
such that its closure C contains the point (λ1(p), 0), and C is either unbounded or
contains a point (λ̄, 0), for some eigenvalue λ̄ 6= λ1(p) of (1.3).

In assumption (b), p∗ denotes the Sobolev conjugate of p > 1, i.e.

p∗ =

{
Np/(N − p) if p < N,

∞ if p ≥ N.

In particular, Theorem 2.1 implies that (λ1(p), 0) is a bifurcation point of (1.1) in R×
W 1,p

0 (Ω), in the sense that, in any neighbourhood of (λ1(p), 0) in R×W 1,p
0 (Ω), there

exists a non-trivial solution of (1.1). Furthermore, there holds global bifurcation in
the sense of Rabinowitz [16].

Proof. The proof of Theorem 2.1 follows in the same way as that of Rabinowitz’s
global bifurcation theorem [16, Theorem 1.3], provided the ‘jump’ of the Leray-
Schauder degree when λ crosses λ1 — used to contradict identity (1.11) in the last
part of the proof of [16, Theorem 1.3] — holds when p 6= 2. More precisely, define
Tλp : W 1,p

0 (Ω)→W 1,p
0 (Ω) by

Tλp (u) = Sp(λφp(u)), (2.1)

where
φp(s) = |s|p−2s, s ∈ R, (2.2)

and Sp : W−1,p′(Ω)→ W 1,p
0 (Ω) (with 1/p′ + 1/p = 1) denotes the inverse of −∆p;

i.e. for each v ∈W−1,p′(Ω), Sp(v) ∈W 1,p
0 (Ω) is the unique weak solution

−∆p(u) = v in Ω,
u = 0 on ∂Ω.

(2.3)

3i.e. a maximal (with respect to the order relation defined by set inclusion) connected subset
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Problem (1.1) is now equivalent to

u = Sp(λφp(u) + h(u, λ)),

while the eigenvalue problem (1.3) becomes

u = Tλp (u).

Using the invariance of the degree under completely continuous homotopies, the
proof of Theorem 2.1 can then be reduced to checking that, for r > 0 and λ ∈ R,

deg(I − Tλp , B(0, r), 0) =

{
1 if λ < λ1(p),
−1 if λ1(p) < λ < λ2(p).

(2.4)

Here, I : W 1,p
0 (Ω)→W 1,p

0 (Ω) is the identity, B(0, r) the ball of radius r centred at
the origin in W 1,p

0 (Ω), and4

λ2(p) = inf{λ > λ1(p) : λ is an eigenvalue of (1.3)}.

Note that the Leray-Schauder degree in (2.4) is well defined since Tλp : W 1,p
0 (Ω)→

W 1,p
0 (Ω) is a completely continuous mapping, as explained on p. 229 of [10].
Property (2.4) is [10, Proposition 2.2]. The proof of this result uses a clever

procedure, first introduced by del Pino et al. [9] in the one-dimensional setting.
The idea is to deform homotopically the operator Tλp to an operator Tλ

′

2 for which
(2.4) is known to hold, and then to use the invariance of the degree. This involves a
number of technical difficulties, and relies upon the continuous dependence of λ1 on
p > 1. In particular, one needs to check that the first eigenvalue λ1(p) is isolated,
uniformly for p in bounded subsets of (1,∞) (see Lemma 2.3 of [10]), in order to
be able to choose the deformation in such way that λ1(2) < λ′ < λ2(2) provided
one starts with λ1(p) < λ < λ2(p). �

2.2. The radial case. In Section 4 of [10], it is assumed that Ω is the unit ball
centred at the origin in RN , and that h(x, u, λ) ≡ h(|x|, u, λ). The hypotheses of
Theorem 2.1 are also supposed to hold.

In the radial variable r = |x|, problems (1.1) and (1.3) respectively become

−(rN−1φp(u′))′ = rN−1(λφp(u) + h(r, u, λ)), 0 < r < 1,

u′(0) = u(1) = 0,
(2.5)

and
−(rN−1φp(u′))′ = µrN−1φp(u), 0 < r < 1,

u′(0) = u(1) = 0.
(2.6)

We now use µ as an eigenvalue parameter in (2.6) since, a priori, there could be
more eigenvalues of (1.3) than those of (2.6).5 It follows from standard regularity
theory that the radial eigenfunctions of −∆p are such that u ∈ C1[0, 1] — we
slightly abuse the notation here, writing u(x) ≡ u(|x|) — and satisfies (2.6).

It is known since [2] (and proved in the appendix of [10]) that, for any p > 1,
the eigenvalues of (2.6) form an increasing sequence, 0 < µ1,p < µ2,p < . . . , with
limn→∞ µn,p =∞. Furthermore, µn,p is simple for all n ∈ N, with an eigenfunction

4It is known from [3] that λ2(p) is, in fact, the second eigenvalue of (1.3).
5Note that the spherical symmetry of positive solutions of (1.1) (and hence of (1.3)) is known

from [6]. However, higher order eigenvalues can have non-symmetric eigenfunctions, see [4].
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vn having exactly n− 1 zeros in (0, 1), all of them simple. The following result now
extends the global bifurcation from Theorem 2.1 to all the eigenvalues of (2.6).

Theorem 2.2 ([10, Theorem 4.1]). For each n ∈ N, there exists a component
Cn ⊂ R×C[0, 1] of the set of non-trivial solutions of (2.5), such that (µn,p, 0) ∈ Cn,
the closure of Cn. Furthermore, Cn is unbounded in R×C[0, 1], and all v ∈ Cn has
exactly n− 1 zeros in (0, 1).

Proof. Theorem 2.2 is proved similarly to Theorem 2.1. Since the eigenvalues
µn,p, n ∈ N, are isolated and simple, a homotopic deformation to the case p = 2
yields

deg(I − T̃µp , B(0, r), 0) =

{
1 if µ < µ1,p,

(−1)n if µn,p < µ < µn+1,p,
(2.7)

where T̃µp is the radial version of (2.1). Since T̃µp now has an explicit integral
representation, its analytic properties are much more easily established than in the
general case. Moreover, since the eigenvalues µn,p, n ∈ N, are isolated for all p > 1,
and depend continuously on p > 1 (which is proved in the appendix of [10]), the
discussion about the isolation of the first eigenvalue (Lemma 2.3 of [10]) is not
required any more to construct a suitable homotopic deformation. �

3. Girg and Takáč

The more general problem considered by Girg and Takáč in [15] has the form

−div(a(x,∇u)) = λB(x)|u|p−2u+ h(x, u, λ) in Ω,
u = 0 on ∂Ω,

(3.1)

with Ω ⊂ RN a bounded domain, such that the boundary ∂Ω is a compact C1,α

manifold for some α ∈ (0, 1), and Ω satisfies the interior sphere condition at every
point of ∂Ω (Ω is just a bounded open interval if N = 1).

The various coefficients in the equation are supposed to satisfy the following
hypotheses.

(A) The function a can be written as a(x, ζ) = 1
p∇ζA(x, ζ), with A ∈ C1(Ω×RN )

such that ai := 1
p
∂A
∂ζi
∈ C1(Ω× (RN \ {0})) for i = 1, . . . , N . Furthermore:

(A1) A(x, tζ) = |t|pA(x, ζ) for all t ∈ R and all (x, ζ) ∈ Ω× RN ;
(A2) there exist constants γ,Γ > 0 such that, for all (x, ζ) ∈ Ω× (RN \ {0}) and

all η ∈ RN ,

N∑
i,j=1

∂ai
∂ζj

(x, ζ)ηiηj ≥ γ|ζ|p−2|η|2,

N∑
i,j=1

∣∣∣∂ai
∂ζj

(x, ζ)
∣∣∣ ≤ Γ|ζ|p−2 and

N∑
i,j=1

∣∣∣ ∂ai
∂xj

(x, ζ)
∣∣∣ ≤ Γ|ζ|p−1.

(B) The weight B ∈ L∞(Ω,R+), and B 6≡ 0 a.e. in Ω.

(H) The function h : Ω×R×R→ R is a Caratheodory function, in the sense that
h(·, ξ, λ) : Ω → R is measurable for all fixed (ξ, λ) ∈ R2 and h(x, ·, ·) : R2 → R is



EJDE-2014/CONF/21 BIFURCATION FOR QUASILINEAR PROBLEMS 93

continuous for a.e. fixed x ∈ Ω. Furthermore, there exists a constant C > 0 such
that

|h(x, ξ, λ)| ≤ C|ξ|p−1, a.e. x ∈ Ω, (ξ, λ) ∈ R2, (3.2)
and (1.2) holds, for a.e. x ∈ Ω, uniformly for λ in bounded subsets of R.

Remark 3.1. (i) Assumption (A) is trivially satisfied by the p-Laplacian, with
a(x, ζ) = |ζ|p−2ζ (i.e. A(x, ζ) = |ζ|p) for all (x, ζ) ∈ Ω× RN .

(ii) Note that the subhomogeneity condition (3.2) yields a stronger growth re-
striction as |ξ| → ∞ than hypothesis (b) in Theorem 2.1.

We now extend the definition of the first eigenvalue λ1 in (1.4) to the context of
the more general (p− 1)-homogeneous eigenvalue problem

−div(a(x,∇u)) = λB(x)|u|p−2u in Ω,
u = 0 on ∂Ω.

(3.3)

Hence λ1 is now defined as

λ1(p) = inf
{∫

Ω

A(x, u)dx : u ∈W 1,p
0 (Ω) with

∫
Ω

B(x)|u|pdx = 1
}
. (3.4)

It follows by the compactness of the Sobolev embedding W 1,p
0 (Ω) ↪→ Lp(Ω) that

the above infimum is attained, satisfies 0 < λ1 < ∞, and is a simple eigenvalue of
(3.3). Furthermore, a corresponding eigenfunction ϕ1 can be chosen so that ϕ1 > 0
in Ω and

∫
Ω
B(x)|ϕ1|pdx = 1 (see the references given in Remark 2.1 of [15]).

In order to formulate the main result of [15], we still need to define the sets
C± that were briefly mentioned in the introduction. Consider the functional ` ∈
W−1,p′(Ω) defined by

`(φ) = ‖ϕ1‖−2
L2(Ω)

∫
Ω

ϕ1φdx ∀φ ∈W 1,p
0 (Ω).

Then for a fixed, small enough, η > 0, two convex cones can be defined by

K±η = {(λ, u) ∈ R×W 1,p
0 (Ω) : ±`(u) > η‖u‖},

so that Kη := K+
η ∪ K−η = {(λ, u) ∈ R × W 1,p

0 (Ω) : |`(u)| > η‖u‖}. Careful
local a priori estimates show that all non-trivial solutions of (3.1) in a sufficiently
small neighbourhood of (λ1, 0) lie in Kη (see [15, Lemma 3.6]). Furthermore, local
solutions (λ, u) in Kη can be represented as

u = τ(ϕ1 + v>), (3.5)

where τ = `(u), `(v>) = 0, with λ→ λ1 and v> → 0 as τ → 0 (see [15, Lemma 3.6]
for more precise statements). Hence, the component v> is in some sense ‘transverse’
to ϕ1; this transverse direction will also play an important role in the local results
of Sections 4 and 5.

Proposition 3.5 of [15] yields a continuum C of non-trivial solutions (λ, u) of (3.1)
bifurcating from the point (λ1, 0) in R×W 1,p

0 (Ω), in the spirit of Rabinowitz’s global
bifurcation theorem [16, Theorem 1.3] (this result reduces to Theorem 2.1 for the p-
Laplacian). Now the sets C± are essentially defined as follows: for ν = ±, Cν is the
component of C such that Cν ∩N ⊂ Kν

η , for any sufficiently small neighbourhood N
of (λ1, 0), and C−ν = C \ Cν . A more precise contruction is given on p. 287 of [15],
which is proved to be independent of η. Hence, C = C+∪C−, and it follows from the
properties of the decomposition (3.5) mentioned above that, roughly speaking, the
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subcontinua C± emerge from (λ1, 0) with u tangential to ±ϕ1 (i.e. with ±`(u) > 0)
respectively. Since ϕ1 > 0, they are referred to as the ‘positive’ and ‘negative’ parts
of C. Of course, this terminology does not mean that all solutions in these sets are
positive or negative. In fact, we have the following result.

Theorem 3.2 ([15, Theorem 3.7]). Either C+ and C− are both unbounded, or
C+ ∩ C− 6= {(λ1, 0)}.

Proof. To prove the main results of [15], the authors use the Browder-Petryshyn
and Skrypnik degree for perturbation of monotone operators, which is described
in Section 5.1 of [15]. In particular, in this approach, the crucial ‘jump’ property
of the degree (equation (5.13) in [15], corresponding to (2.4) in the context of
Section 2) is established directly for (3.1) with an arbitrary p > 1, without resorting
to the homotopic deformation procedure outlined in Section 2. Using this property,
the proof of the Rabinowitz-type bifurcation theorem [15, Proposition 3.5] follows
Rabinowitz’s original proof almost verbatim.

The proof of Theorem 3.2 is also almost identical to its semilinear counterpart,
Theorem 2 in Dancer [8]. However, the passage from Lemma 5.7 to Lemma 5.8 in
[15] (which correspond to Lemmas 2 and 3 of [8] respectively) is particularly difficult
in the quasilinear setting. Without going into the degree theoretic details of these
results, let us just mention that Lemma 5.7 is established under the assumption
that, for λ = λ1 fixed, u = 0 is an isolated solution of (3.1), while this condition
is removed in Lemma 5.8. The truncation procedure used in this step turns out
to be much more involved in the quasilinear case, and requires sharp estimates on
the difference λ− λ1, for solutions (λ, u) close to (λ1, 0). This significant technical
contribution is carried out in Section 4.2 of [15]. �

Remark 3.3. (i) A result similar to Theorem 3.2 was already stated by Drábek
[12, Theorem 14.20] in the context of (1.1), under the condition that, for λ = λ1,
u = 0 is an isolated solution of (1.1).

(ii) Using the inversion u 7→ v = u/‖u‖2, asymptotic bifurcation results (i.e.
with ‖u‖ → ∞ as λ → λ1) are also derived in [15], from the results mentioned
above. We will not comment further on this here.

4. Garćıa-Melián and Sabina de Lis

From now on, and until the end of the paper, we will suppose that Ω is the
unit ball of RN , centred at the origin, and that the function h : Ω × R × R → R
is spherically symmetric, that is, h(x, ξ, λ) ≡ h(|x|, ξ, λ) (with the obvious abuse
of notation). In particular, the assumptions on the smoothness of the domain in
Section 2 and 3 are trivially satisfied. For differentiability reasons6, we will also
suppose that p ≥ 2 throughout the rest of the paper.

We are then interested in solutions of (2.5), bifurcating from the simple eigenval-
ues 0 < µ1,p < µ2,p < . . . of (2.6). In addition to the properties of the eigenvalues
µn,p, n ∈ N, summarized in Section 2.2, note that the eigenfunctions vn can be
chosen so that v′n(1) < 0. (To simplify the notation we will omit the index p from
the eigenfunctions — this should cause no confusion here since p will be fixed.)

6See the proof of Lemma 5.5.
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In order to state the local bifurcation results of [13], for each n ∈ N we define a
set Zn ⊂ C1[0, 1] by

Zn =
{
u ∈ C1[0, 1] : u′(0) = u(1) = 0 and

∫ 1

0

|vn(r)|p−2vn(r)u(r) dr = 0
}
. (4.1)

Theorem 4.1 ([13, Theorem 1]). Suppose that h ∈ C1([0, 1]× R× R) satisfies
(h) h(r, 0, λ) = 0 for all (r, λ) ∈ [0, 1]×R, and ∂h

∂ξ (r, ξ, λ) = o(|ξ|p−2) as ξ → 0,
uniformly for x ∈ [0, 1] and λ in bounded subsets of R.

Then for every n ∈ N there exist ε = ε(n) > 0 and two continuous mappings
µn : (−ε, ε) → R, zn : (−ε, ε) → Zn such that µn(0) = µn,p, zn(0) = 0, and every
solution (µ, u) of (2.5) in a neighbourhood of (µn,p, 0) in R×C0[0, 1] has the form
(µn(s), s[vn + zn(s)]), for some s ∈ (−ε, ε).

We will only say a few words here about this result, and Section 5 will present
more details about the proof in the case n = 1, the other cases being treated simi-
larly. First, it is interesting to remark that the structure of the solutions given by
Theorem 4.1 is analogous to (3.5), although generalized to higher order eigenvalues,
and with the important difference that

(−ε, ε) 3 s 7→ (µn(s), s[vn + zn(s)])

now defines a continuous local curve, passing through (µn,p, 0). Of course, for
n ≥ 1, this should come as no surprise since Theorem 4.1 pertains to a special case
of the general problem considered in Section 3. We now observe a similar local
structure about each eigenvalue µn,p, with two branches emerging from (µn,p, 0),
one corresponding to s ∈ (0, ε), the other one to s ∈ (−ε, 0). These ‘positive’ and
‘negative’ curves bifurcate with the u component tangential to ±vn, respectively.

The second main result of [13] is a global one, showing that much more informa-
tion is available in the radial setting than what is given by Theorem 3.2. To state
it precisely, we need to introduce some new notation. For each n ∈ N we let

S±n = {u ∈ C1[0, 1] : u′(0) = u(1) = 0,

u has exactly n− 1 simple zeros in (0, 1), and ∓ u′(1) > 0}. (4.2)

Theorem 4.2 ([13, Theorem 2]). For each n ∈ N, let Cn be given by Theorem 2.2.
Under the assumptions of Theorem 4.1, the following properties hold.

(i) Cn = C+
n ∪ {(µn,p, 0)} ∪ C−n , where C±n are connected, C±n ⊂ R × S±n , and

therefore C+
n ∩ C−n = ∅.

(ii) Both connected pieces C+
n and C−n are unbounded and do not contain trivial

solutions (µ, 0).

Remark 4.3. (a) We see from (i) that, in the radial case, the positive and negative
components bifurcating from µ1,p truly consist of positive and negative solutions,
respectively.

(b) In view of Theorem 3.2, the assertion that C+
1 and C−1 are both unbounded

follows from (i). But Theorem 3.2 was not available to the authors of [13] since [15]
was published in 2008 and [13] in 2002.

Proof. Starting with the local informations of Theorem 4.1, the proof of Theo-
rem 4.2 given in [13] follows by standard topological arguments, which we shall not
repeat here. The key property is the conservation of the nodal structure of ±vn
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along the sets C±n . This prevents them from meeting the line of trivial solutions at
a point (µ, 0) 6= (µn,p, 0), hence implying that they are unbounded. �

5. Yours truly

In [14] we consider a slightly different form of (2.5), namely

−(rN−1φp(u′))′ = λrN−1f(r, u), 0 < r < 1,

u′(0) = u(1) = 0,
(5.1)

where we suppose that f ∈ C1([0, 1]× R) satisfies f(r, 0) = 0 for all r ∈ [0, 1], and
that there exist f0, f∞ ∈ C0[0, 1] such that

(f1) lim
ξ→0

f(r, ξ)
φp(ξ)

= f0(r) > 0 and (f2) lim
|ξ|→∞

f(r, ξ)
φp(ξ)

= f∞(r) > 0,

uniformly for r ∈ [0, 1]. We will make further hypotheses on f , all of which can
easily be compared to those of the previous sections by letting

h(r, ξ, λ) = λ[f(r, ξ)− f0(r)φp(ξ)], (r, ξ, λ) ∈ [0, 1]× R2.

In particular, two technical assumptions are made in [14] (see hypotheses (H4′) and
(H5′) there), which prescribe the behaviour of ∂f

∂ξ consistently with (f1) and (f2),
and ensure that the hypotheses of Theorem 4.1 are satisfied. Note, however, that
the present setting is more general than that of Sections 2 and 4, due to the weight
f0, corresponding to the coefficient B in equation (3.1) of Section 3.

Thanks to (f1) and (f2), we are able to control the asymptotic behaviour of the
solutions (λ, u), both as u → 0 and |u| → ∞. In this respect, the following two
(p− 1)-homogeneous problems play an important role:

−(rN−1φp(v′))′ = λrN−1f0/∞(r)φp(v), 0 < r < 1,

v′(0) = v(1) = 0.
(E0/∞)

Since the weights f0 and f∞ are both positive in [0, 1], the structure of the eigen-
values and eigenfunctions of (E0/∞) is quite analogous to that of (2.6) — see [19,
Section 5]. In particular, there exists a (first) eigenvalue λ0/∞ > 0, which is simple,
with a corresponding eigenfunction v0/∞ ∈ C1[0, 1] that can be chosen so that

v0/∞ > 0 in [0, 1) and v′0/∞ < 0 in (0, 1]. (5.2)

In the one-dimensional case, N = 1, we are also able to deal with f∞ ≡ 0, and λ∞
is then defined to be +∞.

Apart from the precise asymptotic behaviour as |u| → ∞ prescribed by (f2), our
main structural hypotheses are the following:

(f3) f(r, ξ)ξ > 0, for r ∈ [0, 1] and ξ 6= 0;

(f4) for r ∈ [0, 1] fixed, ξ 7→ f(r, ξ)
φp(ξ)

is

{
increasing for ξ ≤ 0,
decreasing for ξ ≥ 0.

Remark 5.1. (a) It follows from (f3) that any non-trivial solution (λ, u) of (5.1)
satisfies either u > 0 in [0, 1) and u′ < 0 in (0, 1], or u < 0 in [0, 1) and u′ > 0 in
(0, 1] (see Section 4 of [14]).

(b) By (f3) and (f4), we have 0 < f∞(r) ≤ f0(r) for all r ∈ [0, 1]. Note that
a little bit more than (f4) is actually required in [14]; the hypothesis (H3′) there
implies that ξ 7→ f(r,ξ)

φp(ξ) is strictly monotonous in an open (r, ξ)-set, which in turns
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implies that f∞(r) 6= f0(r) for r in some open interval. It then follows from the
comparison principle in [19, Section 4] applied to (5.1) and (E0/∞) that:

(i) λ0 < λ∞;
(ii) any non-trivial solution (λ, u) of (5.1) satisfies λ0 ≤ λ ≤ λ∞.

In order to state precisely the main result of [14], we introduce the spaces

Xp = {u ∈ C1[0, 1] : φp(u′) ∈ C1[0, 1], u′(0) = u(1) = 0} and Y = C0[0, 1].

We equip Y with its usual sup-norm, which we denote by | · |0.

Theorem 5.2 ([14, Theorem 2.4]). Let p > 2 and suppose (f1)-(f4). There exist
u± ∈ C1((λ0, λ∞), Y ) such that u±(λ) ∈ Xp, ±u±(λ) > 0 on [0, 1) and, for any
given λ ∈ (λ0, λ∞), (λ, u±(λ)) are the only non-trivial solutions of (5.1). Further-
more, for each ν = ±, we have

lim
λ→λ0

|uν(λ)|0 = 0 and lim
λ→λ∞

|uν(λ)|0 =∞. (5.3)

To prove Theorem 5.2, it is convenient to consider the integral form of (5.1),

u = Sp(λf(u)), (λ, u) ∈ R× Y, (5.4)

where Sp : C0[0, 1] → C1[0, 1] is the inverse of (minus) the radial p-Laplacian,
explicitly given by

Sp(h)(r) =
∫ 1

r

φp′
(∫ s

0

( t
s

)N−1

h(t) dt
)
ds, h ∈ C0[0, 1]. (5.5)

This operator is continuous, bounded and compact. Before we can explain the proof
of Theorem 5.2, we need a result about the differentiability of Sp, which depends on
the value of p > 1. This relies on the related work [5], and we borrow the following
notation from there:

Bp :=

{
C1[0, 1], 1 < p ≤ 2,
W 1,1(0, 1), p > 2.

(5.6)

Theorem 5.3 ([14, Theorem 3.5]).
(i) Suppose 1 < p < 2. Then Sp : C0[0, 1]→ Bp is C1, and for all h, h̄ ∈ C0[0, 1],

DSp(h)h̄(s) =
1

p− 1

∫ 1

r

|u(h)′(s)|2−p
∫ s

0

( t
s

)N−1

h̄(t) dt ds, (5.7)

where u(h) = Sp(h). Furthermore, v = DSp(h)h̄ ⇐⇒

v ∈ Bp and
{
−(p− 1)(rN−1|u(h)′(r)|p−2v′(r))′ = rN−1h̄(r),

v′(0) = v(1) = 0. (5.8)

(ii) Suppose p > 2 and let h0 ∈ C0[0, 1] be such that u(h0)′(r) = 0 ⇒ h0(r) 6= 0.
Then there exists a neighbourhood V0 of h0 in C0[0, 1] such that the mapping h 7→
|u(h)′|2−p : V0 → L1(0, 1) is continuous, Sp : V0 → Bp is C1, and DSp satisfies
(5.7) and (5.8), for all h ∈ V0, h̄ ∈ C0[0, 1].

Proof. The proof follows closely that of Theorem 3.4 in Binding and Rynne [5]. In
view of the definition of Sp in (5.5), the main difficulty is that, for 1 < p′ < 2,
the Nemistkii mapping u 7→ φp′(u) does not map C1[0, 1] into itself — this is due
to the lack of differentiability of φp′(s) at s = 0. Nevertheless, if g ∈ C1[0, 1] has
only simple zeros, then φp′ maps a neighbourhood of g in C1[0, 1] continuously
into L1(0, 1). This result [5, Lemma 2.1] is the key ingredient to the proof of
Theorem 5.3. �
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Remark 5.4. A similar result was stated in [13, Theorem 5] but there seems to be
a mistake in the proof presented there. We do not understand the application of the
mean-value theorem on p. 34 of [13], precisely because of the lack of differentiability
of the function φp′ . Indeed, we have 1 < p′ < 2 since it is supposed that p > 2 for
other differentiability reasons — see the proof of Lemma 5.5 below.

Proof of Theorem 5.2. The proof of Theorem 5.2 is in two steps:

(1) local bifurcation from (λ0, 0) in R× Y ;
(2) global continuation and asymptotic analysis.

Step 1. This is essentially given by the n = 1 case in Theorem 4.1, although we
consider a slightly more general setting here, where bifurcation occurs from the first
eigenvalue of the weighted problem (E0). However, our proof follows closely the
arguments in [13].

We normalize the eigenvector v0 of (E0) so that
∫ 1

0
rN−1f0|v0|p dr = 1 and,

similarly to (4.1), we define the subspace7

Z =
{
z ∈ Y :

∫ 1

0

rN−1f0|v0|p−2v0z dr = 0
}
.

Note that
Y = span{v0} ⊕ Z. (5.9)

The local bifurcation from (λ0, 0) now follows by applying the implicit function
theorem as stated in [7, Appendix A] to the function G : R2 × Z → Y defined by

G(s, λ, z) =

{
v0 + z − Sp(λf(sv0 + sz)/φp(s)), s 6= 0,
v0 + z − Sp(λf0φp(v0 + z)), s = 0.

Lemma 5.5 ([14, Lemma 5.1]). There exist ε > 0, a neighbourhood U of (λ0, 0)
in R × Z and a continuous mapping s 7→ (λ(s), z(s)) : (−ε, ε) → U such that
(λ(0), z(0)) = (λ0, 0) and

{(s, λ, z) ∈ (−ε, ε)× U : G(s, λ, z) = 0} = {(s, λ(s), z(s)) : s ∈ (−ε, ε)}. (5.10)

Proof. Let us first remark that we need p ≥ 2 here for the Nemitskii mapping
z 7→ φp(v0 + z) to be differentiable. We are thus in case (ii) of Theorem 5.3. Now,
(E0) is equivalent to

v0 = Sp(λ0f0φp(v0)),

and we have λ0f0(0)φp(v0(0)) > 0, where r = 0 is the only zero of v′0 by (5.2).
Therefore, Theorem 5.3 implies that Sp is C1 in a neighbourhood of λ0f0φp(v0)
in Y . This enables one to verify the regularity properties required by the implicit
function theorem [7, Theorem A]. To apply this theorem, one still needs to check the
usual non-degeneracy condition, namely that the linear mapping D(λ,z)G(0, λ0, 0) :
R × Z → Y be an isomorphism. In view of (5.9), an inspection of the Fréchet
derivative D(λ,z)G(0, λ0, 0) shows that this condition is equivalent to the invariance
of the subspace Z under the mapping

z̄ 7→ Lz̄ := λ0(p− 1)DSp(λ0f0φp(v0))f0|v0|p−2z̄.

7Our integral formulation of (5.1) automatically takes care of the boundary conditions, so we
do not incorporate them in the definition of Z, unlike (4.1).
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Using the properties of the derivative DSp, the relation Lz̄ = z can be expressed
as

−(rN−1|v′0|p−2z′)′ = λ0r
N−1f0|v0|p−2z̄, 0 < r < 1,

z′(0) = z(1) = 0.
(5.11)

Then, multiplying both sides of the differential equation in (5.11) by v0 and integrat-
ing by parts shows that z̄ ∈ Z =⇒ z ∈ Z, completing the proof of Lemma 5.5. �

Remark 5.6. Thanks to Theorem 5.3, we were thus able to fill in the gap in the
proof of Theorem 4.1, in the case n = 1. Since the cases n ≥ 2 are treated similarly,
we believe that the conclusions of Theorem 4.1 are true for all n ∈ N.

Step 2. Let us denote by S± ⊂ R× Y the sets of positive and negative solutions
of (5.4), respectively. We define a function F : [0,∞)× Y → Y by

F (λ, u) := u− Sp(λf(u)), (λ, u) ∈ [0,∞)× Y,
so that (5.1) is now equivalent to F (λ, u) = 0. It follows from Theorem 5.3 and
Remark 5.1 (a) that F is C1 in a neighbourhood of any (λ, u) ∈ S±, with

DuF (λ, u)v = v − λDSp(λf(u))∂2f(u)v, v ∈ Y.
Furthermore, using the monotonicity property (f4), standard ODE arguments show
that, for any (λ, u) ∈ S±, DuF (λ, u) : Y → Y is an isomorphism. Hence, through
each solution (λ, u) ∈ S± passes a unique local C1 curve, that can be parametrized
by λ. It then follows by compactness arguments that any of these curves can be
extended smoothly to the whole interval (λ0, λ∞), and that the solutions along
these curves satisfy

λ→ λ0 if and only if |u|0 → 0 and λ→ λ∞ if and only if |u|0 →∞.
Consequently, the uniqueness statement in Theorem 5.2 follows from the local
uniqueness in (5.10). This concludes the proof of Theorem 5.2. �
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[3] A. Anane, N. Tsouli; On the second eigenvalue of the p-Laplacian, in A. Benkirane,

J.-P. Gossez (Eds.), Nonlinear Partial Differential Equations (Fes 1994), Pitman Re-
search Notes in Mathematics Series, Vol. 343, Longman, Harlow (UK), 1996.
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