2014 Madrid Conference on Applied Mathematics in honor of Alfonso Casal, *Electronic Journal of Differential Equations*, Conference 22 (2015), pp. 47–51. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

A CONVERGENCE THEOREM FOR A TWO-SPECIES COMPETITION SYSTEM WITH SLOW DIFFUSION

GEORG HETZER, LOURDES TELLO

Dedicated to Professor Alfonso Casal on his 70th birthday

ABSTRACT. This article concerns the effect of slow diffusion in two-species competition-diffusion problem with spatially homogeneous nearly identical reaction terms. In this case all (nonnegative) equilibria are spatially homogeneous, and the set of nontrivial equilibria is the graph of a C^1 -curve. This article shows convergence of positive solutions to an equilibria which is determined by the initial data. The proof relies on the existence of a Lyapunov function and is adapted from [6] which dealt with linear diffusion.

1. INTRODUCTION

We study the asymptotic behavior of positive solutions of the two-species system

$$u_t - \Delta_p u = ug(u, v) \quad \text{in } (0, \infty) \times \Omega,$$

$$v_t - d\Delta_q v = rvg(u, v) \quad \text{in } (0, \infty) \times \Omega,$$

$$\partial_n u = 0 = \partial_n v \quad \text{on } (0, \infty) \times \partial\Omega.$$

$$u(0, x) = u_0(x) \qquad \text{in } \Omega,$$

$$v(0, x) = v_0(x) \qquad \text{in } \Omega.$$

(1.1)

under the following hypotheses:

- (H1) $N \in \mathbb{N}, \Omega \subseteq \mathbb{R}^N$ bounded smooth domain, $p, q > \max\{2, N\}, d, r > 0$;
- (H2) $g \in C^2(\mathbb{R}^2_+, \mathbb{R}), \ \partial_j g < 0$ for $j = 1, 2, \ g(0, 0) > 0; \ g$ is negative outside a bounded region.

Slow diffusion (p, q > 2) arises in filtration, and (1.1) could, e.g., model the spread of microorganisms in lymph nodes. The case considered here can be thought of as competition between a species and one of its mutants. The crucial difference is the dispersal, but no spatial adaptation has taken place, and the fitness function differ at most by a constant factor r > 0, in applications r = 1.

Our main result states that every positive solution of (1.1) converges to one of the nontrivial equilibria. The same result has been obtained in [6] for linear

²⁰¹⁰ Mathematics Subject Classification. 35K57, 35K65.

Key words and phrases. Two-species competition-diffusion system; slow dispersal;

identical species; convergence to equilibria.

^{©2015} Texas State University.

Published November 20, 2015.

diffusion p = q = 2. The case where spatial adaption has occurred is different (isolated equilibria) and has found quite some interest over the years. The reader is referred to the classical papers [8] and [5] for linear dispersal, where the "slower diffuser" persists and can invade, to [12] for nonlocal diffusion, and to [14] for linear vs. nonlocal dispersal. Other related papers are [9], [10], [11], [13], and [15] but slow dispersal has not been considered to our knowledge.

We remark that system (1.1) with degenerate operators (p > 2, q > 2) may involve a time dependent free boundary problem for some initial data (see e.g [1]), but this issue is not considered here.

The paper is organized as follows. The next section recalls some well-known results for the solution semiflow of (1.1) and outlines the proof for global existence and nonnegativity. These results are used in Section 3 to establish the convergence result.

2. Preliminaries

Let $r \in \{p,q\}$ and $A_r: L^2(\Omega) \supset \operatorname{dom}(A_r) \to L^2(\Omega)$ be the subdifferential of

$$w \mapsto \begin{cases} \frac{1}{r} \int_{\Omega} |\nabla w|^r & w \in W^{1,r}(\Omega) \\ \infty & w \in L^2(\Omega) \setminus W^{1,r}(\Omega) \end{cases},$$

then $A = (A_p, dA_q)$ is the realization of the principal (elliptic) part of (1.1) in $L^2(\Omega)$. A is densely defined, m-accretive, and generates a completely continuous solution semigroup in $L^2(\Omega) \times L^2(\Omega)$. Therefore the standard theory of local Lipschitz perturbations of A (cf. [18], e.g.) guarantees that (1.1) generates a local solution semiflow in $L^2(\Omega) \times L^2(\Omega)$, if g is smoothly extended to \mathbb{R}^2 . The reader is also referred to [17] for a general setting involving set-valued solution semiflows. Since one is dealing with a competition problem, one is interested in nonnegative solutions only. Thus, solutions of (1.1) satisfying $u(0, \cdot) \ge 0$, $v(0, \cdot) \ge 0$ should be global and nonnegative. For our main result it suffices to consider smooth initial conditions (regularity properties), hence one can assume for solutions (u, v) of (1.1) on [0, T]that $u \in L^p([0,T], W^{1,p}(\Omega)) \cap W^{1,p'}([0,T], W^{-1,p'}(\Omega))$ and $v \in L^p([0,T], W^{1,p}(\Omega)) \cap$ $W^{1,p'}([0,T], W^{-1,p'}(\Omega))$. Moreover, if p, q > N as assumed in (H1), one has $W^{1,r}(\Omega) \hookrightarrow C(\overline{\Omega})$ for $r \in \{p,q\}$.

Lemma 2.1. Let (H1)–(H2) be satisfied, T > 0, $u_0, v_0 \in \text{dom}(A)$ be positive, and (u, v) be the solution of (1.1) on [0, T) with $(u(0, \cdot), v(0, \cdot)) = (u_0, v_0)$. Then $0 \le u(t, \cdot) \le ||u_0||_{\infty} + \beta + 1$ and $0 \le v(t, \cdot) \le ||v_0||_{\infty} + \beta + 1$ for $0 \le t < T$.

Proof. It suffices to deal with the statements for u. Let $\sigma > g(0,0)$ and $w(t,\cdot) = e^{-\sigma t}u(t,\cdot) \ge 0$ for $t \in [0,T]$. Then w satisfies

$$\partial_t w - e^{(p-2)\sigma t} \Delta_p w + \sigma w - wg(e^{\sigma t} w, v) = 0.$$
(2.1)

Note that the function $h(t, x, y) := \sigma y - yg(e^{\sigma t}y, v(t, \cdot))$ is strictly increasing in y in view of (H2) and the choice of σ . Weak p-Laplacian comparison theorems have been established beginning with [2], and the proof of proposition 2.2 in [3] or that of Lemma 4.9 in [16] (Dirichlet case) apply immediately. We also refer to [4] for a more general quasilinear operator. In fact, let ϕ be the solution of $\dot{\phi} = \phi g(\phi, 0)$, $\phi(0) = 0$, and $\psi(t) = e^{-\sigma t}\varphi(t)$, then ψ satisfies

$$\psi(t) + \sigma\psi(t) - \psi g(e^{\sigma t}\psi, 0) = 0,$$

EJDE-2015/CONF/22

hence

$$\psi(t) + \sigma\psi(t) - \psi g(e^{\sigma t}\psi, v(t)) \ge 0$$

in view of (H2). Thus,

$$\int_{\Omega} \left((\partial_t w(t,x) - \dot{\psi}(t)) [w(t,x) - \psi(t)]^+ - e^{(p-2)\sigma t} \Delta_p w(t,x) [w(t,x) - \psi(t)]^+ + \sigma(w(t,x) - \psi(t)) [w(t,x) - \psi(t)]^+ - (w(t,x)g(e^{\sigma t}w(t,x),v(t,x)) - \psi g(e^{\sigma t}\psi,v(t,x))) [w(t,x) - \psi(t)]^+ \right) dx \le 0,$$

hence the m-accretiveness of the p-Laplacian and h monotone increasing imply that

$$\int_{\Omega} [w(t,x) - \psi(t)]^+ \, dx \le \int_{\Omega} [w(0,x) - \psi(0)]^+ \, dx = 0,$$

hence $w(t, \cdot) \leq \psi(t)$ for $t \in [0, T)$, therefore,

$$u(t, \cdot) \le \phi(t) \le \|u_0\|_{\infty} + \beta + 1$$

for $t \in [0,T)$. The nonnegativity of u follows from the same weak comparison argument and the fact that the constant 0 solves (2.1).

3. Main Result

Let $Z := \{(y, z) \in \mathbb{R}^2_+ : y^2 + z^2 > 0, g(y, z) = 0\}$. It follows from (H2) that there exists a $\beta > 0$ with $g(\beta, 0) = 0$ and a strictly decreasing function $\gamma \in C^1([0, \beta], \mathbb{R}_+)$ with $Z = \{(y, \gamma(y)) : y \in [0, \beta]\}$. In fact, $\gamma'(y) = -\frac{\partial_1 g(y, \gamma(y))}{\partial_2 g(y, \gamma(y))}$ and in particular $\gamma'(\beta) < 0.$

Theorem 3.1. Let (H1)–(H2) be satisfied, $u_0, v_0 \in \text{dom}(A)$ be positive, and (u, v)be the solution of (1.1) with $(u(0,\cdot),v(0,\cdot)) = (u_0,v_0)$. Then $(u(t,\cdot),v(t,\cdot))$ converges uniformly to some $(\zeta, \eta) \in Z$.

Proof. Select $\epsilon \in (0, \beta)$ with $\epsilon < \min(\{\gamma(\xi) - \xi\gamma'(\xi) : 0 \le \xi \le \beta\})$. Set

$$\kappa(\xi) := \begin{cases} \epsilon - \gamma(\xi) & 0 \le \xi \le \beta \\ \epsilon/\xi/\beta & \xi > \beta \end{cases}$$

and

$$V_0(y,z) := \int_1^y \left(\frac{\kappa(\xi)}{\xi}\right) d\xi + \frac{1}{r} \int_1^z \left(1 - \frac{\epsilon}{\xi}\right) d\xi$$

for $(y, z) \in (0, \infty) \times (0, \infty)$.

Clearly, V_0 is continuously differentiable on \mathbb{R}^2_+ and has, as outlined in [6], the following properties:

- $V_0 \ge 0;$

- $V_0(y, z) \to \infty$, if $y \to 0+$ or $z \to 0+$; $V_0(y, z) \to \infty$, if $y \to \infty$ or $z \to \infty$; $\nabla V_0(y, z) \cdot (yg(y, z), rzg(y, z)) \le 0$ and "=" implies $(y, z) \in Z$.

The last statement follows from

$$\nabla V_0(y,z) \cdot (yg(y,z), rzg(y,z)) = \begin{cases} (\epsilon - \gamma(y))g(y,z) + (1 - \frac{\epsilon}{z})zg(y,z) & 0 < y \le \beta \\ \frac{\epsilon}{\beta}yg(y,z) + (1 - \frac{\epsilon}{z})zg(y,z) & y > \beta. \end{cases}$$

Thus, we obtain $-\gamma(y)g(y,z) + zg(y,z) = (z - \gamma(y))g(y,z)$ if $0 < y < \beta$, which is ≤ 0 , since $\operatorname{sgn}(z - \gamma(y)) = -\operatorname{sgn}(g(x, y))$. Note that the expression is equal to 0, if and only if $(y, z) \in \mathbb{Z}$. If $y \ge \beta$ and z > 0, then $\frac{\epsilon}{\beta}y - \epsilon > 0$ and g(y, z) < 0, hence $\frac{\epsilon}{\beta}yg(y, z) + (1 - \frac{\epsilon}{z})zg(y, z) < 0$. Set

$$V(\varphi,\psi) := \int_{\Omega} V_0(\varphi(x),\psi(x)) \, dx \quad \text{for } \varphi,\psi \in L^{\infty}(\Omega).$$

Then

$$\begin{aligned} &\frac{d}{dt}V(u,v)(t) \\ &= \int_{\Omega} \partial_1 V_0(u(t,x),v(t,x))u_t(t,x)\,dx + \int_{\Omega} \partial_2 V_0(u(t,x),v(t,x))v_t(t,x)\,dx \\ &= \int_{\Omega} \partial_1 V_0(u(t,x),v(t,x))\Delta_p u(t,x)\,dx + d\int_{\Omega} \partial_1 V_0(u(t,x),v(t,x))\Delta_q u(t,x)\,dx \\ &+ \int_{\Omega} \nabla V_0(u(t,x),v(t,x)) \cdot (u(t,x)g(u(t,x),v(t,x)),rv(t,x)g(u(t,x),v(t,x))\,dx \end{aligned}$$

Integration by parts shows that

$$\int_{\Omega} h(w(x))\Delta_p w(x) = -\int_{\Omega} h'(w(x))|\nabla w(x)|^p \le 0,$$

if $h \in C^1(\mathbb{R})$ is nondecreasing and $w \in \text{dom}(A_p)$. This and the corresponding A_q statement imply

$$\int_{\Omega} \partial_1 V_0(u(t,x), v(t,x)) \Delta_p u(t,x) \, dx \le 0,$$
$$d \int_{\Omega} \partial_1 V_0(u(t,x), v(t,x)) \Delta_q u(t,x) \, dx \le 0,$$

which yields that $\frac{d}{dt}V(u,v)(t) \leq 0$ and equal to zero, if and only if $(u,v)(t) \in Z$. Thus, the ω -limit set of (u,v) contains only pairs (ζ,η) with $(\zeta(x),\eta(x)) \in Z$ for $x \in \Omega$. Since the ω -limit set is backward invariant (cf. [7]), each (ζ,η) is constant on Ω .

Assume that $(a_j, \gamma(a_j)) \in \omega(u, v)$ for j = 1, 2 and that $a_1 < a_2$, then $(\rho, \gamma(\rho)) \in \omega(u, v)$, and we can assume without loss of generality that $0 < a_1 < a_2 < \beta$. Moreover, $\rho \mapsto V_0(\rho, \gamma(\rho))$ is constant, hence $\frac{\epsilon - \gamma(\rho)}{\rho} + \frac{1}{r} \left(1 - \frac{\epsilon}{\gamma(\rho)}\right) \gamma'(\rho) = 0$ for $a_1 \leq \rho \leq a_2$. This yields $\gamma'(\rho) = \frac{r}{\rho} > 0$ for $a_1 \leq \rho \leq a_2$ which contradicts $\gamma' < 0$.

Remark 3.2. Our results imply that mutations affecting dispersal alone do not drive the original species into extinction.

Acknowledgments. The work by L. Tello is partially supported by the research projects MTM2013-42907-P and MTM2014-57113-P of Ministerio de Economía y Competitividad, Spain.

References

- S. N. Antontsev, J. I. Díaz, S. Shmarev; Energy methods for free boundary problems: Applications to Nonlinear PDEs and Fluid Mechanics. Springer Science & Business Media, Boston, 2012.
- [2] A. N. Carvalho, C. B. Gentile; Comparison results for nonlinear parabolic equations with monotone principal part, J. Math. Anal. Appl. 259 (2001), 319–337.
- [3] A. Derlet, P. Takáč; A quasilinear parabolic model for population evolution, DEA 4 (2012), 121–136.

EJDE-2015/CONF/22

- [4] J. I. Díaz, F. De Thelin; On a nonlinear parabolic problem arising in some models related to turbulent flows. Siam Journal on Mathematical Analysis, 25 (4) (1994), 1085–1111.
- [5] J. Dockery, V. Hutson, K. Mischaikow, M. Pernarowski; The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol., 37 (1998), 61–83.
- [6] H. Engler, G. Hetzer; Convergence to equilibria for a class of reaction-diffusion systems, Osaka J. Math., 29 (1992), 471–481.
- [7] J. Hale; Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs 25, AMS, Providence, RI, 1988.
- [8] A. Hastings; Can spatial variation alone lead to selection for dispersal? Theor. Pop. Biol., 24 (1983), 244–251.
- [9] G. Hetzer, T. Nguyen, W. Shen; Effects of small spatial variation of the reproduction rate in a two species competition model, Electronic Journal of Differential Equations, 2010 (2010), No. 160, pp. 1–16.
- [10] V. Hutson, Y. Lou, K. Mischaikow; Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Differential Equations, 185 (2002), 97–136.
- [11] V. Hutson, Y. Lou, K. Mischaikow, P. Poláčik; Competing species near a degenerate limit, SIAM J. Math. Anal., 35 (2003), 453–491.
- [12] V. Hutson, S. Martinez, K. Mischaikow, G. T. Vickers; The evolution of dispersal, J. Math. Biol., 47 (2003), 483–517.
- [13] V. Hutson, K. Mischaikow, P. Poláčik; The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501–533.
- [14] C.-Y. Kao, Y. Lou, W. Shen; Random dispersal vs. nonlocal dispersal, Discrete and Continuous Dynamical Systems, 26 (2010), 551–596.
- [15] Y. Lou, S. Martínez, P. Poláčik; Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Differential Equations, 230 (2006) 720–742.
- [16] J. F. Padial, P. Takáč, L. Tello; An antimaximum principle for a degenerate parabolic problem, Advances in Differential Equations 15 (2010), 601–648.
- [17] J. Simsen, C. B. Gentile; On p-Laplacian differential inclusions Global existence, compactness properties and asymptotic behavior, Nonlinear Anal. 71 (2009), 3488–3500.
- [18] I. I. Vrabie; Compactness Methods for Nonlinear Evolutions, Second ed., Pitman Monographs and Surveys in Pure and Applied Mathematics, New York, 1995.

Georg Hetzer

DEPARTMENT OF MATHEMATICS AND STATISTICS, AUBURN UNIVERSITY, AUBURN, AL 36849, USA *E-mail address:* hetzege@auburn.edu

Lourdes Tello

DEPARTMENT OF APPLIED MATHEMATICS, ETS ARQUITECTURA. UNIVERSIDAD POLITÉCNICA DE MADRID, 28040 MADRID, SPAIN

E-mail address: l.tello@upm.es