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SECOND-ORDER FULLY DISCRETIZED PROJECTION
METHOD FOR INCOMPRESSIBLE NAVIER-STOKES

EQUATIONS

DANIEL X. GUO

Abstract. A second-order fully discretized projection method for the incom-

pressible Navier-Stokes equations is proposed. It is an explicit method for

updating the pressure field. No extra conditions of immediate velocity fields
are needed. The stability and convergence are investigated.

1. Introduction

The projection method (or fractional step method) for solving the incompress-
ible Navier-Stokes equations was originally introduced and studied independently
by Chorin [1, 2] and Temam [9, 10], it has had multiple applications, see e.g.,
Guermond, Shen, and Yang [3], Guermond, Minev, and Shen [4], Kim and Moin
[7], Temam [11], Yanenko [12], and the references therein, for the theoretical and
numerical aspects. Despite many advantages and extensive uses in the past by
numerous researchers, the projection method has a few major drawbacks for nu-
merical computations. In general, the original method is only first-order accurate
in time. It also needs the supplementary boundary conditions for the intermediate
level velocity field and the pressure, which are not supplied in the original equations.

A fully discretized projection method was studied in Guo [5, 6] on the staggered
grid. The idea was originated in the block LU decomposition, see Perot [8]. This
leaded to a whole class of methods (first-order, second-order and even higher order
methods). It depends on how the Navier-Stokes equations are discretized, higher
order methods can be possible.

In this article, we investigate the stability and convergence of a second-order fully
discretized projection method proposed in Guo [5, 6]. This article is organized as
follows. In Section 2, we introduce the Navier-Stokes equations and the boundary
conditions. The space discretization is listed in Section 3. The full discretization
of the Navier-Stokes equations is shown in Section 4. In Section 5, we present fully
discretized projection methods. The stability and convergence of second-order fully
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discretized projection method is studied in Section 6. The conclusion is in the last
section.

2. Incompressible Navier-Stokes equations

We will consider the non-dimensionalized unsteady incompressible Navier-Stokes
equations in space dimension two and three on a given regular domain Ω, namely

∂u

∂t
+ (u · ∇)u− 1

Re
∆u+∇p = f,

∇ · u = 0,

u|t=0 = u0,

(2.1)

with the boundary conditions on ∂Ω:

ηu+ (1− η)
∂u

∂−→n
= 0.

Here Re is the Reynolds number; the parameter η has the limit values of 0 for the
free-slip (no stress) condition (Neumann) and 1 for the no-slip condition (Dirichlet).
In general, we will not specify η, but keep in mind that 0 ≤ η ≤ 1.

For the stability and convergence, what we need are the boundary conditions
that guarantee the existence of the solution for the original equations. Actually,
the boundary conditions are also important in discretizing the equations near the
boundary. We may need to use different methods for the points near boundary. In
this article, we suppose that all discretizations have the same order on all of grid
points.

3. Space discretization

Two families of finite-dimensional Hilbert spaces Xh and Vh are given, which
depend on a parameter h ∈ Rd

+ (d = 2, 3). For finite differences, h is the mesh,
i.e. h = {h1, h2} = {∆x,∆y} in space dimension two and h = {h1, h2, h3} =
{∆x,∆y,∆z} in space dimension three.

Two scalar products ((·, ·))h and (·, ·)h with corresponding norms ‖ · ‖h and | · |h
are defined on each Vh. Since Vh is a finite-dimensional space the two norms ‖ · ‖h
and | · |h are equivalent. We assume that they are related as follows

|uh|h ≤ c1‖uh‖h, (3.1)

‖uh‖h ≤ S(h)|uh|h, ∀uh ∈ Vh. (3.2)

where c1 is independent of h and S(h) depends on h. We assume that S(h) → ∞
as h→ 0.

When convergence be studied, we will be interested in the passage to the limit
h → 0. The spaces Vh with scalar product ((·, ·))h will approximate in some sense
the space V , while the spaces Vh with scalar product (·, ·)h will approximate the
space H. The spaces V and H are defined as follows

V = the closure of V in H1
0 (Ω), H = the closure of V in L2(Ω),

V = {u ∈ D(Ω),div u = 0}.

A trilinear operator bh is defined on Vh × Vh × Vh as follows:

bh(uh, vh, wh) = ((uh · ∇)vh, wh), ∀uh, vh, wh ∈ Vh,
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and we have the properties:

|bh(uh, vh, wh)| ≤ c2|uh|1/2
h ‖uh‖1/2

h ‖vh‖h|wh|1/2
h ‖wh‖1/2

h , ∀uh, vh, wh ∈ Vh, (3.3)

in space dimension two, and

|bh(uh, vh, wh)| ≤ c2|uh|
1
4
h ‖uh‖3/4

h ‖vh‖h|wh|
1
4
h ‖wh‖3/4

h , ∀uh, vh, wh ∈ Vh, (3.4)

in space dimension three. The constant c2 in (3.3) and (3.4) is independent of h.
We also assume the skewness property:

bh(uh, vh, vh) = 0, ∀uh, vh ∈ Vh, (3.5)

which implies

bh(uh, vh, wh) = −bh(uh, wh, vh), ∀uh, vh, wh ∈ Vh.

We also define two operators Ah and Bh that are the discrete analogs of A and
B as follows:

(Ahuh, vh)h = ((uh, vh))h, ∀uh, vh ∈ Vh,

(Bh(uh, vh), wh)h = bh(uh, vh, wh), ∀uh, vh, wh ∈ Vh.

4. Full discretization of Navier-Stokes equations

Let T > 0 be fixed, and let the time step be denoted by ∆t = T/N where N
is an integer. We construct recursively elements un

h ∈ Vh, n = 0, 1, 2, . . . , N ; u0
h is

an approximation of u0; we assume that u1
h is constructed by a different scheme

because our scheme has two levels in time.
Hence starting from u2

h, we recursively define un
h, n = 2, . . . , N , by applying

the explicit Adams-Bashforth scheme of order two to the convective term and the
Crank-Nicholson scheme of order two to the viscous terms, the pressure term and
the right-hand side of equation (2.1),

1
∆
t(un+1

h − un
h) +

3
2
Bh(un

h)− 1
2
Bh(un−1

h )

+
1

Re
Ah(un+1

h + un
h) +

1
2
Gh(pn+1

h + pn
h) =

1
2

(fn+1
h + fn

h ),
(4.1)

Dhu
n+1
h = 0. (4.2)

where fn
h is an approximation of fn in Vh; Gh is the discrete gradient operator

(grad) mapping Xh into Vh, and Dh is the discrete divergence operator (div). In
fact, they are related as follows,

(uh, Ghph) = −(Dhuh, ph), for uh ∈ Vh, ph ∈ Xh. (4.3)

One can easily show that (4.1) and (4.2) are a second-order scheme in time for
the Navier-Stokes equations (2.1). We will assume that (4.1) and (4.2) are second-
order in space. It is possible to get higher order discretizations, but other procedure
would be needed. Therefore, (4.1) and (4.2) have the overall second-order accuracy.
They are a fully implicit coupled system. Generally speaking, it is hard to solve
this system.

Notice that if we consider the boundary conditions in equation (4.1) and (4.2),
we may need to add one or more terms to the right-hand side of equations (4.1)
and (4.2). For the sake of simplicity, we suppose that these terms are combined
in the terms of the right-hand side. So, the idea is that during fully discretizing



12 D. X. GUO EJDE-2015/CONF/23

procedure in time and spaces, we need all boundary conditions. And the final
discretized equations are a complete linear system.

For the rest of this article, we drop the subscript h. Define gn+1 as follows,

gn+1 =
1
2

(fn+1 + fn)− 3
2
B(un) +

1
2
B(un−1) (4.4)

then we rewrite (4.1) and (4.2) as

1
∆t

(un+1 − un) +
1

2Re
A(un+1 + un) +

1
2
G(pn+1 + pn) = gn+1, (4.5)

and

Dun+1 = 0. (4.6)

5. Fully discretized projection method

We then introduce the following method for the equations (4.5) and (4.6),

1
∆
t(un+ 1

2 − un) +
1

Re
A(un+ 1

2 + un) = gn+1,

1
∆
t(un+1 − un+ 1

2 ) +
1
2

(I − ∆t
Re

A)G(pn+1 + pn) = 0,

Dun+1 = 0.

(5.1)

Observe that in (5.1), A is a known operator, say a square matrix; G and D
also are two known operators, but they may be two non-square matrices. However,
they satisfy the equation below,

(Dun, pn) = −(un, Gpn), for un ∈ Vh, p
n ∈ Xh.

Let us check the difference between (4.5) and (5.1). First, we add the two
equations in (5.1) and we obtain:

1
∆
t(un+1 − un) +

1
Re
A(un+1 + un) = gn+1 − 1

2
G(pn+1 + pn) +Rn+1;

i.e.,

1
∆
t(un+1 − un) +

3
2
B(un)− 1

2
B(un−1)

+
1

Re
A(un+1 + un) +

1
2
G(pn+1 + pn) =

1
2

(fn+1 + fn) +Rn+1,

(5.2)

where

Rn+1 =
1
2

(
∆t
Re

)2AAG(pn+1 + pn).

Since Rn+1 is of order (∆t)2, this method is a second-order method to the Navier-
Stokes equations (2.1). However, to update pn+1, we need to solve a linear system
with the same size as A at each time step. In this paper, we study the stability and
convergence of the equations (5.1).
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6. Stability analysis and convergence

Let
Φn+1 =

1
2

(pn+1 + pn).

Then
Rn+1 = (

∆t
Re

)2AAGΦn+1.

Note that from the definition of G and D and the third equation of (5.1), it holds,

(GΦn+1, un+1) = −(Φn+1, Dun+1) = 0.

6.1. Stability analysis. It is assumed that

|u0| ≤ K1, ∆t
n=N∑
n=0

|fn|2 ≤ K2,

|u1|2 + |u1/2|2 +
∆t
Re
{‖u1‖2 + ‖u1/2‖2} ≤ K3,

(6.1)

where K1, K2 and K3 are independent of h and ∆t. Let

δn+1 =
1
2

(un+1 − un), δn+ 1
2 =

1
2

(un+ 1
2 − un);

then
1
2

(un+1 + un) = un+1 − δn+1,
1
2

(un+ 1
2 + un) = un+ 1

2 − δn+ 1
2 .

Now rewriting the first equation in (5.1) with gn+1 defined in (4.4), it reads
1

∆t
(un+ 1

2 − un) +
1

2Re
A(un+ 1

2 + un)

=
1
2

(fn+1 + fn)− 3
2
B(un) +

1
2
B(un−1).

(6.2)

Solve the second equation in (5.1) for un+ 1
2 as follows

un+ 1
2 = un+1 + ∆t(I − ∆t

Re
A)GΦn+1.

Substituting un+ 1
2 in (6.2), it results,

1
∆t

(un+1 − un) +
1

Re
A(un+1 − δn+1)

=
1
2

(fn+1 + fn)− 3
2
B(un) +

1
2
B(un−1)−GΦn+1 +Rn+1.

(6.3)

Multiply equation (6.3) with 2∆tun+1, we obtain

2(un+1 − un, un+1) +
2∆t
Re

((un+1 − δn+1, un+1))

= ∆t(fn+1 + fn, un+1)− 2∆tb(un, un, un+1)

−∆t[b(un, un, un+1)− b(un−1, un−1, un+1)] + 2∆t(Rn+1, un+1),

or

|un+1|2 − |un|2 + 4|δn+1|2 +
2∆t
Re
‖un+1‖2

=
2∆t
Re

((δn+1, un+1)) + ∆t(fn+1 + fn, un+1) + 4∆tb(un, δn+1, un+1)

− 2∆t[b(δn, un, un+1) + b(un−1, δn, un+1)] + 2∆t(Rn+1, un+1).

(6.4)
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We now estimate each term in the right-hand side of (6.4) in space dimension
two. The first one is majorized, thanks to the Schwarz and Young inequalities, and
(3.2) (note, S = S(h)):

2∆t
Re

((δn+1, un+1)) ≤ 2∆t
Re
‖δn+1‖‖un+1‖

≤ 2∆t
Re

S|δn+1‖|un+1‖

≤ 1
8
|δn+1|2 +

8∆t2

Re2 S
2‖un+1‖2.

For the second term we use the Schwarz and Young inequalities again and thanks
to (3.1):

∆t(fn+1 + fn, un+1) ≤ ∆t(|fn+1|+ |fn|)|un+1|
≤ c1∆t(|fn+1|+ |fn|)‖un+1‖

≤ ∆t
4Re
‖un+1‖2 + c21Re∆t(|fn+1|2 + |fn|2).

For the third term we use (3.1), (3.2) and (3.3) and majorize it by

4∆tb(un, δn+1, un+1) ≤ 4c2∆t|un|1/2‖un‖1/2|δn+1|1/2‖δn+1‖1/2‖un+1‖
≤ 4c2S∆t|un‖δn+1‖|un+1‖

≤ 1
8
|δn+1|2 + 32c22S

2∆t2|un|2‖un+1‖2.

(6.5)

Thanks to (3.3) the fourth term is approximated by

2∆t[b(δn, un, un+1) + b(un−1, δn, un+1)]

≤ 2c2∆t|δn|1/2‖δn‖ 1
2 (|un|1/2‖un‖1/2 + |un−1| 12 ‖un−1‖1/2)‖un+1‖

≤ 2c2S∆t|δn|(|un|+ |un−1|)‖un+1‖

≤ 1
4
|δn|2 + 4c22S

2∆t2(|un|2 + |un−1|2)‖un+1‖2.

(6.6)

Finally, by the definition of Rn+1 we have

2∆t(Rn+1, un+1) = 2∆t(
∆t
Re

)2(AAGΦn+1, un+1).

Rewriting the second equation of (5.1), it results

GΦn+1 = − 1
∆
t(I − ∆t

Re
A)−1(un+1 − un+ 1

2 )

= − 1
∆
t[I +

∆t
Re

A+ (
∆t
Re

)2AA+ . . . ](un+1 − un+ 1
2 ),

(6.7)

if ∆t
Re is small enough.
Then, substituting GΦn+1 in Rn+1, we obtain

2∆t(Rn+1, un+1)

= −2(
∆t
Re

)2(AA[I +
∆t
Re

A+ (
∆t
Re

)2AA+ . . . ]un+1, un+1)

+ 2(
∆t
Re

)2(AA[I +
∆t
Re

A+ (
∆t
Re

)2AA+ . . . ]un+ 1
2 , un+1)
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= −2(
∆t
Re

)2[(AAun+1, un+1) +
∆t
Re

(AAAun+1, un+1) + . . . ]

+ 2(
∆t
Re

)2[(AAun+ 1
2 , un+1) +

∆t
Re

(AAAun+ 1
2 , un+1) + . . . ]

≤ 2(
∆t
Re

)2(S2‖un+1‖2 +
∆t
Re

S4‖un+1‖2 + . . . ]

+ 2(
∆t
Re

)2[S2(
1
4
‖un+1‖2 + ‖un+ 1

2 ‖2) +
∆t
Re

S4(
1
4
‖un+1‖2 + ‖un+ 1

2 ‖2) + . . . ]

≤ 2(
∆t
Re

)2 5
4

(S2 +
∆t
Re

S4 + . . . )‖un+1‖2 + 2(
∆t
Re

)2(S2 +
∆t
Re

S4 + . . . )‖un+ 1
2 ‖2

≤ 2(
∆t
Re

)2 S2

1− ∆t
ReS

2
(
5
4
‖un+1‖2 + ‖un+ 1

2 ‖2)

≤ ∆t2

Re2S
2(

5
4
‖un+1‖2 + ‖un+ 1

2 ‖2),

where we assume that ∆t
ReS

2 < 1/2.
Gathering all these estimates, we deduce from (6.4) that

|un+1|2 − |un|2 +
15
4
|δn+1|2 − 1

4
|δn|2 +

7
4

∆t
Re
‖un+1‖2

≤ c21Re∆t(|fn+1|2 + |fn|2) +
∆t2

Re2S
2‖un+ 1

2 ‖2

+
37
4

∆t2

Re2S
2‖un+1‖2 + c3S

2∆t2(|un|2 + |un−1|2)‖un+1‖2,

(6.8)

where c3 = 32c22.
We multiply equation (6.2) by 2∆tun+ 1

2 to obtain

2(un+ 1
2 − un, un+ 1

2 ) +
2∆t
Re

((un+ 1
2 − δn+ 1

2 , un+ 1
2 ))

= ∆t(fn+1 + fn, un+ 1
2 )− 2∆tb(un, un, un+ 1

2 )

−∆t[b(un, un, un+ 1
2 )− b(un−1, un−1, un+ 1

2 )].

(6.9)

Thanks to (3.5), the above equation can be rewritten as

|un+ 1
2 |2 − |un|2 + 4|δn+ 1

2 |2 +
2∆t
Re
‖un+ 1

2 ‖2

=
2∆t
Re

((δn+ 1
2 , un+ 1

2 )) + ∆t(fn+1 + fn, un+ 1
2 ) + 4∆tb(un, δn+ 1

2 , un+ 1
2 )

− 2∆t[b(δn, un, un+ 1
2 ) + b(un−1, δn, un+ 1

2 )].

(6.10)

Note that (6.10) is similar to (6.4) with un+1 and δn+1 replaced by un+1/2 and
δn+1/2 respectively. So, we can repeat the estimation procedures as for (6.4). In
space dimension two we have the following estimates:

2∆t
Re

((δn+ 1
2 , un+ 1

2 )) ≤ 1
8
|δn+ 1

2 |2 +
8∆t2

Re2 S
2‖un+ 1

2 ‖2.

∆t(fn+1 + fn, un+ 1
2 ) ≤ ∆t

4Re
‖un+ 1

2 ‖2 + c21Re∆t(|fn+1|2 + |fn|2)

4∆tb(un, δn+ 1
2 , un+ 1

2 ) ≤ 1
8
|δn+ 1

2 |2 + 32c22S
2∆t2|un|2‖un+ 1

2 ‖2 (6.11)
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2∆t[b(δn, un, un+ 1
2 ) + b(un−1, δn, un+ 1

2 )]

≤ 1
4
|δn|2 + 4c22S

2∆t2(|un|2 + |un−1|2)‖un+ 1
2 ‖2.

(6.12)

We gather these inequalities with (6.10), and obtain

|un+ 1
2 |2 − |un|2 +

15
4
|δn+ 1

2 |2 − 1
4
|δn|2 +

7
4

∆t
Re
‖un+ 1

2 ‖2

≤ c21Re∆t(|fn+1|2 + |fn|2) +
8∆t2

Re2 S
2‖un+ 1

2 ‖2

+ c3S
2∆t2(|un|2 + |un−1|2)‖un+ 1

2 ‖2.

(6.13)

Adding (6.13) to (6.8), we obtain

|un+1|2 + |un+ 1
2 |2 − 2|un|2 +

15
4
|δn+1|2 +

15
4
|δn+ 1

2 |2 − 1
2
|δn|2

+
7
4

∆t
Re

[1− 37∆t
7Re

S2 − c3Re∆tS2(|un|2 + |un−1|2)](‖un+1‖2 + ‖un+ 1
2 ‖2)

≤ c21Re∆t(|fn+1|2 + |fn|2),

(6.14)

where c3 is the same as in (6.8).
We now prove the following result.

Theorem 6.1. In dimension two we assume that (6.1) holds. Then there exists
K4 independent of h and ∆t such that if

∆t < 16c21Re, ∆tS(h)2 ≤ max{ Re
148

,
c

ReK4
} (6.15)

where c1 is defined in (3.1) and c = 1
56c3

, c3 the constant is defined in (6.8). Then

|un|2 ≤ K4, n = 0, . . . , N (6.16a)

|un+ 1
2 |2 ≤ 14K4, n = 0, . . . , N (6.16b)
N∑

n=1

|un − un−1|2 ≤ 3K4, (6.16c)

N∑
n=1

|un − un− 1
2 |2 ≤ 6K4, (6.16d)

N∑
n=1

|un− 1
2 − un−1|2 ≤ 3K4, (6.16e)

∆t
Re

N∑
n=1

‖un‖2 ≤ 17K4, (6.16f)

∆t
Re

N∑
n=1

‖un− 1
2 ‖2 ≤ 17K4, (6.16g)

Proof. Taking the inner product of the equation (6.5) with un+1 and in light of
(3.3), we obtain

([I +
∆t
Re

A+ (
∆t
Re

)2AA+ . . . ](un+1 − un+ 1
2 ), un+1) = 0;
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i.e.,

(un+1 − un+ 1
2 , un+1) = −∆t

Re
([A+ (

∆t
Re

)AA+ . . . ](un+1 − un+ 1
2 ), un+1).

Thanks to (3.1), we have

(un+1 − un+ 1
2 , un+1) ≤ 5

4
(
∆t
Re

)
1

1− ∆t
ReS

2
(‖un+1‖2 + ‖un+ 1

2 ‖2).

Since ∆tS2 ≤ Re/148 from (6.15), then ∆t
ReS

2 ≤ 1/6 and it results

1
2

(|un+1|2 − |un+ 1
2 |2 + |un+1 − un+ 1

2 |2) ≤ 3
4

∆t
Re

(‖un+1‖2 + ‖un+ 1
2 ‖2)

or

|un+1|2 − |un+ 1
2 |2 + |un+1 − un+ 1

2 |2 ≤ 3
2

∆t
Re

(‖un+1‖2 + ‖un+ 1
2 ‖2). (6.17)

We first show (6.16a) by induction. Assuming that (6.16a) holds for n =
0, . . . ,m, we infer from (6.12), (6.13) that

|un+1|2 + |un+ 1
2 |2 − 2|un|2 +

15
4
|δn+1|2

+
15
4
|δn+ 1

2 |2 − 1
2
|δn|2 +

13∆t
8Re

{‖un+1‖2 + ‖un+ 1
2 ‖2}

≤ c21Re∆t{|fn+1|2 + |fn|2}.

(6.18)

Adding (6.18) to (6.17), we obtain

2|un+1|2 − 2|un|2 + |un+1 − un+ 1
2 |2 +

15
4
|δn+1|2

+
15
4
|δn+ 1

2 |2 − 1
2
|δn|2 +

∆t
8Re
{‖un+1‖2 + ‖un+ 1

2 ‖2}

≤ c21Re∆t{|fn+1|2 + |fn|2};

i.e.,

|un+1|2 − |un|2 +
1
2
|un+1 − un+ 1

2 |2 +
15
8
|δn+1|2 +

15
8
|δn+ 1

2 |2 − 1
4
|δn|2

+
∆t
16
{‖un+1‖2 + ‖un+ 1

2 ‖2} ≤ c21Re∆t{|fn+1|2 + |fn|2}.
(6.19)

Thanks to (3.1), we obtain

|un+1|2 − |un|2 +
15
8
|δn+1|2 − 1

4
|δn|2 +

∆t
16c21Re

|un+1|2

≤ c21Re∆t{|fn+1|2 + |fn|2}.
(6.20)

Therefore, if we define

ξn = |un|2 +
1
4
|δn|2, γn = c21Re∆t{|fn+1|2 + |fn|2},

then, from (6.20) the following inequality holds

(1 +
∆t

16c21Re
)ξn+1 ≤ ξn + γn.
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By applying Lemma 6.2 below with β = 0 and α = − ∆t
16c2

1Re
(from (6.15), α < 1),

we find, for n = 1, 2, . . . ,m, that

ξn+1 ≤ (1 +
∆t

16c21Re
)−n{ξ1 + c21Re∆t

n∑
j=1

(|fn+1|2 + |fn|2)};

i.e.,

|un+1|2 +
1
16
|un+1 − un|2 ≤ |u1|2 +

1
16
|u1 − u0|2 + c21Re∆t

N∑
j=1

|f j |2,

≤ 9
8
|u1|2 +

1
8
|u0|2 + c21Re∆t

N∑
j=1

|f j |2,

≤ 9
8
K3 +

1
8
K2

1 + c21ReK2.

We choose

K4 =
3
2
K3 +K2

1 + 2c21ReK2,

and conclude that (6.16a) is proved for n = 0, 1, . . . ,m + 1, hence for all n. Then
(6.17) is valid for all n and summing these relations for n = 1, 2, . . . , N − 1, we find

|uN |2 +
1
2

N∑
j=2

|uj − uj− 1
2 |2 +

N∑
j=2

|δj |2 +
15
8

N∑
j=2

|δj− 1
2 |2

+
∆t
16

N∑
j=2

{‖uj‖2 + ‖uj− 1
2 ‖2}

≤ |u1|2 +
1
4
|δ1|2 + 2c21Re∆t

N∑
j=1

|f j |2

≤ |u1|2 +
1
16
|u1 − u0|2 + 2c21Re∆t

N∑
j=1

|f j |2 ≤ K4.

Hence
N∑

j=2

|uj − uj− 1
2 |2 ≤ 2K4,

N∑
j=2

|uj − uj−1|2 ≤ K4,

N∑
j=2

|uj− 1
2 − uj−1|2 ≤ K4,

∆t
Re

N∑
j=2

{‖uj‖2 + ‖uj− 1
2 ‖2} ≤ 16K4.

Thanks to (6.1), we know that

|u1 − u1/2|2 ≤ 2|u1|2 + 2|u1/2|2 ≤ 4K3 ≤ 4K4,

|u1 − u0|2 ≤ 2|u1|2 + 2|u0|2 ≤ 2K3 + 2K2
1 ≤ 2K4,

|u1/2 − u0|2 ≤ 2|u1/2|2 + 2|u0|2 ≤ 2K3 + 2K2
1 ≤ 2K4,

∆t
Re

(‖u1‖2 + ‖u1/2‖2) ≤ K3.

Then (6.16c)–(6.16g) are proved.
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Finally, from the inequality

|un+ 1
2 |2 ≤ 2|un+1|2 + 2|un+1 − un+ 1

2 |2,

then (6.16b) holds following (6.16a) and (6.16d). �

We state the Lemma used in the proof of Theorem 6.1.

Lemma 6.2. Consider two sequences of numbers ξn, γn ≥ 0 such that

(1− α)ξn ≤ (1 + β)ξn−1 + γn,

for all n ≥ 1 and for some α < 1 and β > −1. Then for all n:

ξn ≤ (
1 + β

1− α
)nξ0 +

(1 + β)n−1

(1− α)n

n∑
j=1

γj . (6.21)

If γj ≤ γ, for all j, we also have

ξn ≤ (
1 + β

1− α
)n(ξ0 +

γ

β + α
). (6.22)

Proof. For m = 0, . . . , n− 1, we write

ξn−m ≤ 1 + β

1− α
ξn−m−1 +

1
1− α

γn−m.

We multiply this relation by ((1+β)/(1−α))m and add the corresponding inequal-
ities for m = 0, . . . , n− 1; (6.21) and (6.22) follow easily. �

6.2. Convergence. We introduce the approximate functions u1k, u2k, ũk (k = ∆t)
defined as follows:

u1k = un+ 1
2 for t ∈ [n∆t, (n+ 1)∆t), n = 0, . . . , N − 1,

u2k = un+1 for t ∈ [n∆t, (n+ 1)∆t), n = 0, . . . , N − 1,

ũk is continuous from [0, T ] to H, linear on each interval
((n− 1)∆t, n∆t) and equal to un at n∆t, n = 0, . . . , N .

Then (6.14) yields the following result.

Theorem 6.3. As k = ∆t→ 0, the functions u1k, u2k and ũk remain bounded in
L∞(0, T ;L2(Ω)d); u1k and u2k remain bounded in L∞(0, T ;H1(Ω)d), and the same
is true for ũk if u0 ∈ V .

Furthermore u1k − u2k and u2k − ũk converge to 0 in L∞(0, T ;L2(Ω)d) as k =
∆t→ 0, their norm being bounded.

The above theorem follows directly from Theorem 6.1.
Because of Theorem 6.3 there exists a subsequence k′ → 0 such that

u1k′ → u1 in L∞(0, T ;H) weak-star and L2(0, T ;H1(Ω)d) weakly,

u2k′ → u2 in L∞(0, T ;H) weak-star and L2(0, T ;H1(Ω)d) weakly,

ũk′ → u in L∞(0, T ;H) weak-star and L2(0, T ;H1(Ω)d) weakly.

Theorem 6.3 also implies that u1 = u2 = u and thus

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ).
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Conclusions. In this article, we proved the stability and convergence of a sec-
ond order fully discretized projection method for the incompressible Navier-Stokes
equations. We did not specify the boundary conditions, but all necessary boundary
conditions should be supplied in order to have a solution. It is possible to construct
higher order methods, but the numerical analysis is much more complicated.
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