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D’ALEMBERT’S FORMULA AND PERIODIC MILD SOLUTIONS
TO ITERATED HIGHER-ORDER DIFFERENTIAL EQUATIONS
IN HILBERT SPACES

NEZAM IRANIPARAST, LAN NGUYEN

ABSTRACT. We give necessary and sufficient conditions for the periodicity of
solutions of mild solutions to the iterated higher-order differential equation
“eod
[1¢ = Au®) = f(1), 0<t<T,
joi dt

in a Hilbert space. Our results are illustrated with examples and applications.

1. INTRODUCTION

In this article we study the periodicity of solutions of the iterated higher-order
differential equation

HX%—AﬁMﬂ=ﬂﬂ,03t§ﬂ (1.1)

where A; are linear, closed and mutually commuting operators on a Hilbert space
E, and f is a function from [0,T] to E.

The asymptotic behavior and, in particular, the periodicity of solutions of the
higher-order differential equation

u™(t) = Au(t) + f(t), 0<t<T, (1.2)

has been a subject of intensive study for recent decades. When n = 1, it is well
known [7] that, if A is an n x n matrix on C", then admits a unique T-periodic
solution for each continuous T-periodic forcing term f if and only if A\, = 2kn /T,
k € Z, are not eigen-values of A. That result was extended by Krein and Dalecki
[] to the Cauchy problem in an abstract Banach space. It was shown [4, Theorem
IT 4.3] that, if A is a linear, bounded operator on E, then admits a unique
T-periodic solution for each f € C[0,T] if and only if 2kni/T € o(A), k € Z. Here
0(A) denotes the resolvent set of A. For an unbounded operator A, the situation
changes dramatically and the above statement generally fails. When A generates a
strongly continuous semigroup, periodicity of solutions of has intensively been
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studied recently (see e.g. [0, [10, 14l [I8]). Corresponding results on the periodic
solutions of the second order differential equation were obtained in [3] [20], when A
is the generator of a cosine family. Related results on the periodicity of solutions
of , when A is a closed operator, can be found in [B] 8 12 3], 19] and the
references therein.

Unfortunately, for the complete higher-order differential equations, we have little
consideration about the regularity of their solutions, mainly because of the com-
plexity of the structure of the equation. In [I5] and [16], the authors studied the
iterated higher-order Cauchy problem of the type

"o d
jl;[l (@ — A])u(t) =0, t>0, (13)

u(O) =z, €E (G=0,1,...,n—1)

and stated that, under some certain conditions, is well posed if and only if
A; are generators of Cy-semigroups. Moreover they found the formula of solutions
in the form u(t) = >°7 w;(t), where (d/dt — A;j)u; = 0. That result suggests that
is in some sense the correct way to con81der higher-order Cauchy problems.
Later, in [I7], the nonautonomous version of iterated evolution equation was
studied, where a nice structure of the solutions was found.

In this paper we investigate the periodicity of mild solutions of the iterated
higher-order differential equation when A;, j = 0,1,...,n — 1, are linear
and closed operators on a Hilbert space E. The main tool we use here is the
Fourier series method. For an integrable function f(t) from [0,T] to E, the Fourier
coefficient of f(t) is defined by

I :
= T/ f(s)e 2/ Tqs ke Z.
0

Then f(t) can be represented by Fourier series

oo

f(t)% Z e?k'n’it/Tfk'

k=—o0

We first give the definition of mild solution to (1.1)), when n = 1.

Definition 1.1. (i) A continuous function u(-) is a mild solution of the differential
equation

u'(t) = Au(t) + f(t), t€]0,T), (1.4)
if fo s)ds € D(A) and

u(t) +A/ ds+/f
for all t € [0,T7.

(ii) Suppose f is a continuous function. A function wu(-) is a classical solution
of (T.4) if u(t) is continuously differentiable, u(t) € D(A), and (L.4) holds for all
tel0,T).

It is not hard to see that, if a mild solution of (1.4)) is continuously differentiable,
then it is a classical solution. Furthermore, if u(¢) is a mild solution on [0, T] with
u(0) = u(T"), then u(t) can be continuously extended to a T-periodic mild solution
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of (1.4) on R, provided f(¢) has been extended T-periodically, too. Therefore, we
call a mild solution of (|1.4) T-periodic if u(0) = u(T).
We now consider the iterated differential equation (L.1) and employ the substi-
tution (see also [15]) by defining U(-) := (uy(-), u2(:), ..., un(-))T with
up(+) = u(-)
us(-) = ui(-)" = Arua ()

un() = unfl(')/ - Anflunfl(')-
Then we have
ur () = Ayua(-) + ug(-);
ug(-) = Agu' () + u®(-);

Un—l(')/ = An—lunil(') + ()3
un () = Apun () + £(-).

That can be written in matrix form as

U'(t)y=CU(t)+ F(t), teR, (1.5)
on the product space E™, where F(t) = (0,0,...,0, f(t))T and
A, T 0 - .. 0
0 Ay I :
C .= (1.6)
. . An—l 1
0 .- 0 A,

with D(C) := D(A;)xD(A3)x---xD(A,). Note that the product space E™ is again
a Hilbert space with the norm | (21,22,...,2,)7| = />1 [l2il|2. In [15], is was
stated that C is generator of a Cp-semigroup in E™ if and only if A; (i =1,2,...,n)
are generators of Cy semigroups in F. That suggests the following definition of
mild (classical) solutions for iterated higher-order differential equation.

Definition 1.2. A continuous function u(-) is a mild (classical) solution of the
higher-order differential equation (|1.1)) if u is the first component of a mild (classical)
solution of the first-order differential equation (|1.5]).

We next establish the relationship between the Fourier coefficients of the periodic
solutions of and those of the inhomogeneity f. Then, as the main result, we
give an equivalent condition so that admits a unique periodic solution for
each inhomogeneity f in a certain function space. Our result generalizes some well-
known ones, as in Section 3 we present several particular cases, among which, A
generates a Cj semigroup and a cosine family.

Throughout this article, if not otherwise indicated, we assume that E is a com-
plex Hilbert space and A;, ¢ = 1,...,n, are linear, closed and mutually commuting
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operators on E with D = D(A,), j =1,2,...,n, dense in E. The spectrum and re-
solvent set of A are denoted by o(A) and o(A), respectively and (A—A)~! is denoted
by R(A, A). Two unbounded operators A and B are said to commute if for each
A1 € o(A) and \g € o(B) we have (A — A)"1(Aa = B)"1 = (A2 — B)"1(\ — 4)~L.
That definition is equivalent to the fact that AB = BA as the following simple
lemma shows.

Lemma 1.3. Suppose A and B are two commuting operators. Then for each x € D
with Bx € D we have Ax € D and BAx = ABx.

Proof. Let a € g(A) and 8 € o(B) and put y = ABz. Then
(. — A)(B — B)x = afix — fAz — aBz +y
or
@ =(—B) (a—A) " (afr — fAr — aBz +y)
= (a—A)7 (B~ B)"(afz — fAz — aBz +y),
which implies
(8- B)(a — Az = afx — BAz — aBx +y
or BAz =y = ABz. O

Let J = [0,T]. For the sake of simplicity (and without loss of generality) we
assume T = 1. For p > 1, L,(J) denotes the space of E-valued p-integrable

functions on J with ||f|z,) = (fol |lf()||Pdt)/? < oo and C(J) the space of
continuous functions on J with ||fl|cs = m?x||f(t)||. Moreover, if m > 1, we

define the function space
Wi (J) == {f € La(J) : f', f", ..., f™ € Ly(J)}

which is a Hilbert space with the norm

1wy = (S IFOB)
=0

We will use the following simple lemma.

Lemma 1.4. If F is an absolutely continuous function on J such that f = F' €
L,(J), then for k # 0 we have

! F(0) — F(1)
it T

Fy,

where fi, and Fy, are the Fourier coefficients of f and F, respectively.

Finally, a continuous function wu(-) is said to be a 1-periodic solution of (|1.1))
(or to be a solution in W3*(.J)) if the corresponding mild solution #(-) of (1.5) is
1-periodic (or in WJ*(J, E™)) respectively.
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2. PERIODIC MILD SOLUTIONS OF HIGHER-ORDER DIFFERENTIAL EQUATIONS

Proposition 2.1. Suppose f € L,(J) and u is a mild solution of the first-order
differential equation

u'(t) = Au(t) + f(t), te . (2.1)
Then
(2kmi — A)ug, — fr. = u(0) — u(1) (2.2)
fork eZ.

Proof. Let u be a mild solution of (L.4)), i.e.,

u(t) = u(0) + A/o u(s)ds +/0 f(s)ds. (2.3)

First, if k& = 0, then using (2.3]) for ¢ = 1 we have u(1) = w(0) + Aug + fo, from
which (2.2)) holds for k& = 0.
Next, if k # 0, taking the k" Fourier coefficient on both sides of ([2.3]), we obtain

1 s 1 s
U = A/ 6_2]“”3/ u(T)des—i—/ e_%ms/ f(r)drds
0 0 0 0

= AU + Fy,

where Uy, is the kth Fourier coefficient of U(t) = fg u(7)dr and Fk is the k'" Fourier
coefﬁment of F(t fo 7)dr. Using now Lemma u for U(t fo 7)dT and
fo dT we obtain

A(up —U(1)) n Jr — F(1)
2kmi 2kmi

Uk =

from which we have

(2kmi — A)uy, = fr — (AU(1) + F(1))

g [l %+/f )ds)

= fr + (u(0) — u(1))
Hence, (2.2)) holds. Here we used the fact that u is a mild solution of (|1.4] .7 implying
u(l) =u(0)+ A fo s)ds + fo O

If w is a 1-periodic solution of (1.4)), then we have a nice relationship between
Fourier coefficients of v and those of f, as the following result shows.

Corollary 2.2. Suppose f € L,(J) and u is a continuous mild solution of (L.4).
Then w is 1-periodic if and only if

(2k7ri — A)uk = fk (24)
for every k € Z.

Next we give a sufficient condition for the existence of 1-periodic mild solutions
of (1),

Proposition 2.3. Suppose f € L,(J). Then the iterated differential equation (L.1)
admits a continuous, 1-periodic mild solution if and only if there is a sequence
(ur)P2 _ o C E, such that
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(i) For each m, 0 <m <n — 1, the function

> e[ (2kmi — Aj)uy (2.5)
j=1

k=—o0

is continuous on [0,1] and
(ii) The equality

[T @kmi - Aj)ur = fi (2.6)
j=1
holds for every k € Z.

Proof. Suppose (|1.1)) admits a 1-periodic mild solution w. By the definition of
solution wu, there is a 1-periodic mild solution U(t) = (uq(t),ua(t), ..., u,(t))? of

(1.5) with u = u;. By Corollary we have
(2kmi — C)Uy = (0,0, ..., fr)"

or
(2kmi — Ay) ~I 0 oo 0
0 (Qkﬂ'l - AQ) —I (ul)k 0
: : (Ug)k 0
(un)k fk
: " -1
0 0 (2kmi— Ay)

which implies
(UQ)k = (2k7m — Al)(ul)k = (2]€7TZ — Al)uk;
(U3)k = (2]{771'2 — ‘/42)(’11,2)}C = (2]€7T7, — AQ)(2/€7TZ — Al)uk;

n—1

(un)k = (2kmi — Ap—1)(Un—1)K = H(2k‘7ri — Aj)ug; (2.7)
j=1
n
fr = (2kmi — H (2kmi —
Hence, for each j, 0 < j <n —1, the functlon
oo J
vi(t) = Y e H (ki — A.)]uy
k=—o00 z=1

is the same as u;(t), which is continuous on [0, 1]. Moreover, follows from
7).

Conversely, suppose for each j, 0 < j < n—1, the function is continuous on
[0,1] and(2.6) holds. We show that there exists a mild solution U of (L.F]), which
is 1-periodic. To this end, for each k € Z we define

)
E er:'n'zt,uk

k=—o00
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o0
us(t) = Z 2P (ki — Ay )ug;
k=—oc0
00 n—1
Un(t) := Z g2hmit H(ka’ — Aj)ug.
k=—oc0 Jj=1
Then, by the assumption, U(t) := (uy(t), u2(t), ..., un(t))T is a continuous function

with the following Fourier coefficients:
(ug)p = (2kmi — A1) ug;
(us)r = (2kmi — Ag)(u2)k = (2kmi — Ag)(2kwi — Ay)uy

n—1

() = (2kmi — A1) (un—1)x = | [ (2kmi — A;)uy,
j=1

and by ,
(2kmi — Ap)(un) = [ [ (2kmi — Aj)ur = fi

j=1
Hence,
(2kmi — Ay) —I o - - 0
0 (2kmi—A) I . 5 (un)i 0
: : (u2)k 0
(wn)k T
: - - -1
0 e 0 (2kwi— Ap)

or (2km—C)Uy, = (0,0, ..., fr)T. By Corollary 2.2, U(t) = (u1(t), uz(t), ..., un(t))"
is a 1-periodic mild solution of (1.5) and hence, u(¢) is a 1-periodic mild solution

of . O

Note that Proposition Corollary 2.2] and Proposition [2.9] also hold if E is a
Banach space. We now can state the main result of the paper.

Theorem 2.4. Suppose E is a Hilbert space. Then the following are equivalent
(i) For each function f € W4 (J), Equation (L.1)) admits a unique 1-periodic

mild solution in W4 (J);
(ii) For each k € Z and 1 < j <n, 2kmi € o(A;) and there is a number M > 0
such that
sup ||(2kmi — A;) "1 (2kmi — Ajyq) " (2kmi — Ay) 7| = M < o0 (2.8)
keZ

Proof. (i) = (ii): Suppose for each function f € W} (J), Equation admits
a unique 1-periodic mild solution u € Wi (J). By the definition of solution u in
W4 (J), the corresponding solution U of belongs to W4 (J, E™). We prove that
U is the only mild solution of corresponding to f by showing that U = 0 is
the only mild solution of corresponding to f = 0. Indeed, if f =0, then u = 0.
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Hence, its Fourier coefficients uy, = 0 for all k € Z. In the proof of Theorem [2.3] we
have (ug)r = (2kmi — Ay)uy, = 0 for all k € Z. Hence, uz(t) = 0. Similarly, we have
u;j(t) =0 for all 1 < j < n and thus, U(t) = 0.

Define the operator:

G:feWy(J)—Gf c Wy (J,E")
as follows: (Gf)(t) is the unique solution of (1.5)) corresponding to f. Then G is a
linear, everywhere defined operator. We will prove its boundedness by showing G
is a closed operator.

To this end, suppose {fn}%°_; is a sequence of functions in F; = W (J) such
that f,, — f in I} and Gf,, approaches some function V = (V1,V4,...,V,,)T in
Fy, = W}(J,E™) as m — oo. We show that f € D(G) and Gf = V.

Since G f,, is a mild solution of (|1.5)) corresponding to f,,, we have

t t
Gfm(t) = Gfmn(0) + C/ Gfm(s)ds —|—/ Fr.(s)ds.
0 0

Hence,
t

(G )1 (t) = (G L)1 (0) + Ay / (G fom)()ds + / (G fon)a(s)ds

(Gfu)a(t) = (G fn)2(0) + A / (G fu)a(s)ds + / (G fun)s(s)ds

(2.9)

(G fnt () = (Gfa)n1(0) + An /0 (G fm)ns(s)ds + /0 (G fn)n(s)ds

(Gfm)n(t) = (Gfm)n(o) +An/0 (Gf7rL)n(5)d5+/O fm(S)dS-

Consider now the sequence {z,,}m>1 in E, where z,, = fOt(Gfm)l(s)ds. We
have

t t
Ty = / (Gfm)1(s)ds — / Vi(s)ds
0 0
as m — oo, and from (2.9)),

Alxm:A1/ (Gfm)i(s)ds = (Gfm)l(t)*(Gfm)l(O)*/ (Gfm)2(s)ds
0 0

=0 - i) - [ v
as m — o0o. Since A; is a closed operator, we have fg Vi(s)ds € D(A;) and
A / Vi (s)ds = Vi(t) — VA (0) — / Va(s)ds,
which implies i ’

Vi(t) = V1(0) + A1/0 Vi(s)ds +/0 Va(s)ds.

In the same manner, we can show that

Va(t) = Va(0) + Ay /0 Vy(s)ds + /O Vi(s)ds,
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t

Vie1(t) = Vi1 (0) + A /t Vi—1(s)ds +/ Va(s)ds,

0 0
V(t) = Va(0) + A, / Va(s)ds + / F(s)ds,

i.e., V is a mild solution of corresponding to f and consequently, Gf = V.
So, (G is a bounded operator from F; to F5.

Next we show that 2kmi € p(A;) for each k € Z and each 1 < j < n. Let x be
any vector in B, k € Z and take f(t) = e2*"z and V = (V3,Va,...,V,,)T be the
unique mild solution of corresponding to f. From Fourier coefficient Identity
(2.7) we have

[T ki — A)(Va)i = fi = =,
=1

which shows [];_, (2k7i — A;) and hence, (2kmi — A,,), is surjective. Using Lemma
we have (2kmi — A;) is surjective for each 1 < j < n.

Assume now that for some 1 < j < n, (2kmi — A;) contrarily is not injective.
Without loss of generality we can assume that A; is the first operator with non-
injective (2kmi — A;), i.e., (2kmi — A;) are injective for 1 < [ < j. Then there is
a vector yo # 0 in E with (2kmi — A;)yo = 0. Put y(t) := e2*™y,, then it is not
hard to see that

t
y0) =9(0)+ 4; [ ylds
0
holds for ¢ € J. Hence, we can see that the equation (1.5) with f = 0 has two
different mild solutions in Wi (J, E™) U(t) = 0 and

R(lem, Al) PN R(2]€’/TZ, Aj—l)yO
.R(2]€’]TZ7 AQ) e R(Qk’ﬂ'l, Ajfl)y(]

R(Qkﬂl, Aj—l)y()
Yo
0

V(t) — errrit

0
which contradicts the uniqueness of mild solutions. Hence, (2kmi — A;) is injective
and thus, 2kmi € o(A;) for all j =1,2,...,n.
Finally, we show that holds. To this end, for any = € E, let f(t) := e? 7ty
Then, by we see that
R(2kmi, A1) ... R(2kmi, A,)x
| R(2kmi, Ag) ... R(2kmi, Ay,)x
U(t) — eZkTrzt )

R(2kmi, Ap)x

is the unique mild solution of ([I.5]) corresponding to f = e2*™x. It is not difficult
to compute that

1 £330y = (1 + 4k272) ],



30 N. IRANIPARAST, L. NGUYEN EJDE-2016/CONF/23

Uz gy = (L4 4K77%) Y | R(2ki, Aj) - R(2km, Aji1) ... R(2kmi, Ay )|,

j=1

Using the inequality ||UH%V§(J,ETL) < ||G||2||f\|%,v21u) we have

S| R(2kri, A7) R(2Kr, Aj 1) -+ R(kri, Ay)z ]2 < |G

j=1
for all z € E, from which we obtain

|R(2kmi, Aj)R(2km, Aji1) - - - R(2kmi, Ay)|| < |G,
and hence, (2.8)) holds.
(ii) = (i): Suppose for each k € Z and 1 < j < n, 2kmi € o(A;) and (2.8)) holds.
If f(t) = e**™ity for some k € Z and = € E, then, from the previous part of the
proof, we see that
R(2kmi, A1) ... R(2kmi, A,)x
| R(2kwi, Ag) ... R(2kmi, Ay)x
U(t) — erﬂ"Lt ) n
R(2kmi, Ap)x

is the unique mild solution of (L.5)), which is in W3 (.J, E™).
Next, if f(t) = >, e*7ity;, for any finite sequence {zyx}y C E. Using the
linearity of mild solutions, we see that
R(2kmi, Ay) ... R(2kmi, Ap)xy
| R(2kmi, As) ... R(2kmi, Az
U(t) — Z€2k7mt .
k

R(2kmi, Ap)xy

is the unique mild solution of (1.5)) corresponding to f. Moreover, by using the
standard calculation we have

1Tz ) = D1+ 46%7%) [l |
k
and
U1y g,y
=> (1 +4K*%) Y ||R(2kmi, Aj)R(2km, Aji1) - - R(2Kkmi, Ay )ag||®
k j=1
<Y (1 +4K27%) Y ||R(2kmi, Aj)R(2km, Aj i) - - R(2kmi, Ay)||? (|12
k

j=1
<Y A+ 4kPT%) > M|
k j=1
= nM? Z(l + 4k %) ||z ]|
k

=nM?| f|%,
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which implies

||U||W21(J,E") < \/EMHfHWZl(J)- (2.10)
Put

L(JT):={f@t) = Ze%mtxk : {x} is a finite sequence in E}.
k

Inequality holds for all f € £(J). Observe that £(J) is dense in W3 (J).
Suppose now that f is any function in W} (J). Then there is a sequence {f,} C
L(J) such that lim,, oo frn = f in Wi (J). Let U, be the unique mild solution
of corresponding to f,,. Since (fn,, — fy) € L£(J) for all m,q € N we have
U = Ugllwz ,en) < VM| fi — fallwz sy — 0 for m,q — oo. Hence, there exists
a function U € W}(J, E™) such that lim,, .o, U,, = U in W}(J, E"). Using the
same arguments as in the (i) = (ii) part, where we proved that G is a bounded
operator, we can show that U is a mild solution of corresponding to f. The
uniqueness of U is obvious, and the proof is complete. ([l

Example. Suppose 4; (i =1,2,...,n) are mutually commuting infinitesimal gen-
erators of Cy semigroups on E. Then C generates a Cop-semigroup 7 (¢) in E™ (see
[15]) and the mild solution of (1.5 can be expressed by

U(t) = T(HU(0) + /0 t T(t —7)F(r)dr, (2.11)

where F(t) := (0,0,...,0, f(t))T. In this case each 1-periodic mild solution of (.1
in W3 (J) is a classical solution, as the following theorem states.

Theorem 2.5. If A; generates Cy semigroup in E, then the following statements
are equivalent.

(i) Foreach f € La(J) Equation admits a unique I1-periodic mild solution.
(ii) For each f € W4 (J), Equation admits a unique I1-periodic classical
solution.
(iii) For each f € W}(J), Equation admits a unique 1-periodic mild solu-
tion in W3 (J).
(iv) For each k € Z and 0 < j <, 2kmi € o(A;) and
sup ||(2kmi — A;) "N (2kmi — Ajpq) "t (2kTi — A,) 7| < . (2.12)
keZ
Proof. The equivalence between (i) and (ii) can be shown by standard argument and
between (iii) and (iv) is from Theorem [2.4)and the implication (ii) —(iii) is obvious.
It remains to show (iii) —(ii). To this end, let U(-) be the unique 1-periodic mild
solution of (L.5)), which belong to W3 (J, E™). Since F(t) € W3 (J, E™), we have
fot T(t—7)F(r)dr € D(C) and t — fg T (t —7)F (7)dr is continuously differentiable
(see e.g. [11]). From we obtain 7(-)U(0) € W, (J,E™). It follows that
T(t)U(0) € D(C) for t > 0 (since ¢t — 7 (t)z is differentiable at tq if and only if
T (to)z € D(C)). Hence, U(1), and thus, U(0) (the same as U(1)) belongs to D(C).
So U is a classical solution. The uniqueness of the 1-periodic classical solution is
obvious. g

If n = 1, then Theorem [2.5 becomes Gearhart theorem in [6] (See also [14]). We
see clearly that statement (iv) in Theorem holds if for each j, 0 < j < n, we
have 2kmi € p(A;) and

sup ||(2kmi — A;) 7| < oo. (2.13)
keZ
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But in general, condition is stronger than (they are equivalent if n = 1).
Hence, unless n = 1, the existence and uniqueness of 1-periodic mild solution of
does not imply . The next example shows that in some special cases the
two conditions are equivalent.

Example. Suppose B = A%, where A generates a Cy group on E. Consider the
second-order differential equation

u”’(t) = Bu(t) + f(t), 0<t<1. (2.14)

We can rewrite (2.14)) as

d d
— —A)(—= + Au(t) = :
(5 — A5 +Ault) = f(t)

Hence, from Theorem [2.5] we have the following result.

Theorem 2.6. The following statements are equivalent:
(i) For each function f € W}(J), Equation admits a unique 1-periodic
mild solution in W4 (J);
(ii) For each function f € W3 (J), Equation admits a unique 1-periodic
classical solution;

(i) For each k € Z, 2kmi € o(B) and

sup ||(2kmi — A)7Y| < o0. (2.15)
keZ
(iii) For each k € Z, —4k?*r? € o(B) and
sup ||(4k*7%i + B) 7| < oo, (2.16)
keZ

Proof. Let Ay = —A and As = A. Then it is easy to see that supycy ||(2kmi —
Ap)7H < oo is equivalent to sup,cy ||(2kmi — A2) 7| < oo, and that completes the
proof. ([l
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