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SOLVABILITY OF NONLINEAR DIFFERENTIAL SYSTEMS
WITH COUPLED NONLOCAL BOUNDARY CONDITIONS

JEONGMI JEONG, CHAN-GYUN KIM, EUN KYOUNG LEE

ABSTRACT. This article shows the existence of at least one solution to non-
linear differential systems with coupled nonlocal boundary conditions on an
infinite interval. Our main tool is the Alternative of Leray-Schauder.

1. INTRODUCTION

Boundary value problems on an infinite interval arise quite naturally in the study
of radially symmetric solutions of nonlinear elliptic equations and in various appli-
cations such as an unsteady flow of gas through a semi-infinite porous media and
theory of draining flows (see, e.g., [1l 2, §]). Nonlocal boundary value problems
also represent a very interesting and important class of problems that have multi-
point and integral boundary conditions as special cases. The study on nonlocal
elliptic boundary value problems was started by Bicadze and Samarskii [3], and
later continued by II'in and Moiseev [I3] and Gupta [I1]. Since then, the exis-
tence of solutions for nonlocal boundary value problems has received a great deal
of attention in the literature. Recently, Zhang [26] investigated the existence of
positive solutions for multipoint boundary value problems on an infinite interval
with uncoupled boundary conditions in view of cone theory with Mdnch fixed point
theorem and a monotone iterative technique. Cui et al [5] studied the existence and
uniqueness of the positive solutions for a singular differential system with coupled
integral boundary conditions by using mixed monotone methods. For more recent
results, we refer the reader to [6} [7, O] 12} 14 [T5] 16l 17, 18| 19, 20| 2T, 221 23|, 24, 25]
and the references therein.

Inspired by the above results, we consider the nonlinear differential system with
coupled nonlocal boundary conditions,

(wi@P(u;))/(t) + fi(tvul(t)7 s qu(t)vu/l(t)v LR UGV(t)) =0, te (07 OO),

N oo
w(0) =" / ki (s)uy(s)ds,  lim (0, (wi)u})(H) = I, 1< i< N,

t—o0
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where N > 1, p > 1, ¢,(s) = [s|P7%s for s € (—00,00), I € (—00,00), w; :
(0,00) — (0,00) is a continuous function, f; : [0,00) x (—o0,00)*V — (—o00,00)
is a Carathéodory function, i.e., f; = fi(t,u,v) is Lebesgue measurable in ¢ for all
(u,v) € (—00,00)N x (—o0,00)¥ and continuous in (u,v) for almost all ¢ € [0, o),
and k;j : (0,00) — (—00,00) is measurable function for 1 <4i,j < N. We further
assume the following conditions hold:

(H1) ¢, (3-) € Li,.[0,00) \ L'(0,00) and (1 + ;)k;; € L'(0,00), where i, =

1,2,...,N and

0;(t) ::/0 w;l(%(s))ds, t € (0, 00);

(H2) det(K) # 0, where K = (KZ-') € My N with
K, — fo ii(s)ds  for i = j,
’ fo s)ds  for i # j;

(H3) for i = 1,2,..., N, there exist nonnegative measurable functions oy, 3;, 7y
such that

(14000, 2%, € 14(0,00)

and, for almost all ¢ € [0, 00) and all u,v € (—o0, 00)"N withu = (uy,...,ux)
and v = (v1,...,VN),
N
|fit,u,v) Z (Ol [P~ + B (w771 + (D). (1.2)

The main tool of this paper is the following theorem, which is related to the
Leray-Schauder, see, e.g., [10, p.124].

Theorem 1.1. Let C be a conver subset of a Banach space X, and assume that
0eC. Let L:C — C be a compact operator, and let
E={xeC:x= ALz for some A € (0,1)}.
Then either £ is unbounded or L has a fixed point.
By using the above theorem, the existence of solutions for problem is in-

vestigated. An example to illustrate the main result is also provided in Section
2.

2. MAIN RESULT
Fori = 1,...,N, X; is the set of the functions u; € C[0,00) N C*(0,00) such
that
hm (gop (w;)u})(t) and tlim (cpgl(wl)u;)(t) exist.
Then X; is the Banach space with norm

|ul(t)‘ -1 /
Uill; ;= sup 7—1— sup (@, (w;)|u;])(€).
Julli= sup G+ s oy w0

Let
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be a Banach space with norm
N

(u, - un)llx =D [lwills-

i=1

Let Y := L*(0, 00) with norm |[h|ly := [ |h(s)|ds.
Fori=1,2,...,N, we define P; : Y — X; by, for h; € Y and ¢ € [0, 00),
t

1 o0
() = ] o0 .
P(h)(®) : /0% (wi(s) NG )+/S hi(r)dr ) ) ds.
For h = (hy,...,hx) € YV, we define F; : YV — (—00,00) by, for i =1,2,..., N,

N rco
Fz(h) :ZZ . kij(S)Pj(hj)(S)dS.
j=1
From (H2), K~! := (a;;) € Mnxn exists and let

N
Ai(h) = a;;Fi(h) for he YN andi=1,2,...,N,
j=1

- (Ar(h),...,AN(W)T = K=Y (Fy(h),...,Fx(h)T.
Then
N 00
Fih) = =3~ Ay(n) /O iy (s)ds + Ay (h). (2.1)

Define T : YN — X by, for he YV,
T(h)(t) :== (T1(h)(t), Ta(h)(t),..., Tn(h)(t)) for all ¢ € [0, 00).
Here, for i =1,2,...,N, T; : Y~ — X; is defined by, for h = (hy,...,hy) € YV,
T;(h)(t) .= Ai(h) + P;i(h;)(t) forall t € [0, 00).
For h = (hy,...,hx) € YV, consider the problem
(wipp(uy)) (t) + hi(t) =0, a.e. t € (0,00),
N o , (2.2)
w0 =3 [ (i, Jim (g w0 =17, 1<i< N
j=1
Then we have the following lemma.

Lemma 2.1. Assume that (H1), (H2) hold. For each h = (hy,...,hy) € YV,
(2.2) has a unique solution w=T(h) in X.

Proof. Let u = (u1,...,uy) be a solution of (2.2) with a fixed h = (hq,...,hy) €
YN, Then, for j =1,2,..., N,

u;j(t) = u;(0) + Pj(h;)(t), t € [0,00).
Thus, for 1 <1i,j < N,

A %@W@M=W@A @@@+A Fiy ()P () ()4,
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which implies

Zu] / (s)ds + Fi(h), 1<i<N.

Thus,

K(u1(0),...,un(0)" = (Fi(h),..., Fx(h)T,
where K is the matrix in the assumption (H2). By (H2), u;(0) = A;(h) for 1 <4 <
N, and thus v = T'(h). In a similar manner, one can show that T'(h) is a solution
to for each h € YN by (2.1] . The proof is complete. O

Lemma 2.2. Assume that (H1)—(H3) hold. For h = (hq,...,hn) € YV,

2

1T (Rl < Z P+ [ally) 7

where 1 < 5,1 < N and
S aslllkiilly +2 if i =,
Cji = (5 e
2ot lagz|k=i0i ]y if i # j.
Proof. Let h = (hy,...,hy) € YV be given. Then, for 1 < j,2 < N,

N joo
IR XGIEIN) Y AN TRELIRIBIE

N
< Jagalllkibilly (2P + ([l y) 7

=1
which implies

O f—
. (2.3)
< |aj|k=ailly (15517~ + llhally)
=1 z=1
wd 1Py (hy) (1)
1Py (h)ll; = sup L2024 sup (0t (w))|(P(hy)) ()
I o) THO;(8) ey P T (2.4)
< ([ie Pt + (|hylly ) 7T
By (2.3)) and (2.4),
N 1
T3 (M) < 1A () + 1P (B3 < > Coa(I° P~ + (il )7
=1
for 1 < j < N, and thus the proof is complete. O

We define the Nemytskii operators Ny, : X — Y by, for u = (uq,...,un) € X,
Ny, (u)(t) := fi(t,u(t),u'(t)) for almost all ¢ € (0, 00),
and define L : X — X by
L(u) = (L1(u),...,Ln(uw)) := T(Ny, (uw),...,Ngy(u) forue X.
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Then L is well defined, and by Lemma problem has a solution u in X if
and only if L has a fixed point v in X.

To show the compactness of the operator L, we use the following compactness
criterion:

Theorem 2.3 ([]). Let Z be the space of all bounded continuous real-valued func-
tions on [0,00) and S C Z. Then S is relatively compact in Z if the following
conditions hold:
(i) S is bounded in Z;
(ii) S is equicontinuous on any compact interval of [0, 00);
(iii) S is equiconvergent at co, that is, given € > 0, there exists a T =T(e) > 0
such that |p(t) — ¢(o0)| < € for allt > T and all p € S.

Lemma 2.4. Assume that (H1)-(H3) hold. Then the operator L : X — X s
completely continuous.

Proof. We only prove that L, : X — X; is compact, since the compactness of
L;: X — X;,2 < i< N, can be proved in a similar manner, and consequently
L: X — X is compact. Recall that Ly (u) = T1(Ny, (u), ..., Ny, (u)) for v € X.
Let ¥ be bounded in X, i.e., there exists Ry > 0 such that |ju||x < Ry for all
u=(ug,...,un) € X. Let Z = (C[0,00) NL>(0,00)) x (C[0,00) N L>(0, 00)) with

norm [|(,v)[|z = [[ull L (0,50) + [0 L (0,00, and
_ Ll(u) —1 , )
- {(1 1o, (w1)(L1(u)) ) €Z:uc 2}.

Set, for almost all ¢ € [0, 00),

S L Bi(t) \ o1
s(t) = 3 (0 + 0500 s (0 + L JRE +9(0)

By (H3), hy € Y and, for each 1 <i < N,

[Ny (w)(#)] < hx(?) (2:5)
for almost all ¢ € [0,00) and all w € ¥. Indeed, for v € ¥ and for almost all
t € [0,00), by (H3),

| Ny (u By ()1~ + B;(D)|u ()P + (1)

w;(t)

Thus Ny, (%) is bounded in Y for all 1 < < N. It follows from Lemma [2.2]that S
is bounded in Z.
Let R > 0 be fixed and t1,t2 € [0, R] with 1 < to, for u € X,

‘Tl(Nfl(u)7"'7NfN(u))(t1) B Tl(Nfl(u)7"'7NfN(u))(t2)‘
14 6:1(t1) 1+01(t2)
1 1
< |A1(Nf1(u)7'~'7NfN(u))||1+91(t1) - 1+91(t2)|

P (Np, (w)(t1) Pl(Nfl(u))(t2)|
14 61(t1) 1+46:(t2)

N

)< 2 (el

al 4 B;(t) 4

Z ( (1+6;( a;(t) + > ||u|\§( +7(t) = hs(t).

+|
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< [AL(Ny, (w), -, Ny (w))|(01(t2) — 61(t1))

i~ o) RO ) 0)

+ H%(z)IPl(Nfl (w))(t2) = Pr(Ny, (w))(t1)]
<AL (Nygy (), - Ny ()] (01(t2) — 01(1)) + [Pr(Ny, (w)(R)|(01(t2) — 01(t1))
+ [P1(Ny, () (t2) — Pr(Ny, (w))(t1)]

< [sup{|A1(N (w), ..., Npy(u))}

+ (01(R) + (1P~ + sl ) 77 [ (01(t2) — 61(11))
+ [Pu(Ny, (w))(t2) = PL(Ny, (w) (8]

and

| (e (wi)(T1 (N, (), -, Ny (u)))) (1)
= (0 (w1)(Ta(Ny, (u), ..., Ny () ) (t2)]

= @51(%(1?’) +/too Nfl(u)(s)ds)
ot () + [ N )s)as)

which yield that S is equicontinuous on any finite subinterval of [0, c0) by (H1) and

23).

For u € 3, by L’Hospital’s rule,
i T, (), Ny () (1)
t—oo 1+ 91( )

and

= Jin ¢ (4, (7) + [ N (r)ar)

Jim (5 () (L (N, (). ... Ny, ()))(D)

= lim o, (oo 1) + [ Ny (w)(r)ar).
t

It follows from ({2.5)) that, as ¢t — oo,

Ty (Ny, (u), - - Ny (u))(E)
14 64(t)

— [§°

and
(0 (w1 (T1(Ng, (w), -, Ny (w))(8) — 15°

uniformly on 3. Then, S is equiconvergent at co. Thus, in view of Theorem [2.3] S
is relatively compact in Z, i.e., Ly : X — Xj is compact. U

Now we give the main result in this paper.

Theorem 2.5. Assume that (H1)—(H3) hold. Then problem (1.1)) has at least one
solution u = (uy,...,uyn) in X provided that, for each 1 <i < N,

ZfepD” @+ 0;)P- ag|\y+|| v (2.6)
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holds. Here k), = max{1,2N-"DC=2Y " and for 1 < j,i < N,

by [Gim1 i
Cji if j # i
Proof. Let u = (u1,...,uy) € X satisfying u = AL(u) for some A € (0,1). Then
u; = N (Ny, (w), ..., Nypy (w)).

It is well known that, for ¢ > 0 and for any a,, € (—00,00) for 1 <m < N,

N N
q
‘ Z am‘ < max{1,2(V"Dla-1 Z |am]9. (2.7)
m=1 m=1
By the same arguments as in the proof of Lemma for1<j <N,

IO, N @)
t€[0,00) 140;()

N
_ _1
<3 Dyl + 1INy, (w)]ly) 7T

m=1

and

oop | (05 (i) (T3 (N, (u), -, Ny ()Y )(8)] < (15271 + [N, ()| ) 7

Then, using the assumption (H3) and the inequality (2.7) with ¢ = p—1 and a,, =
D;m(122P=1 + || Ny, (u)]ly)7 T, for almost all £ € (0,00) and for all 1 <i < N,

[Ny (uw)(8)]

N
< Z(%(lt)l’uj(lt)l”*1 + B (OGP + ()

J=1

N — .
=S (o e (fE0)" + e ) eP ) (0

§ zN: (140,610, 0 T3 (N, (u1)+0] (tz\;fN (u))(t)|)p71}

<.
Il
—_

3 ﬁj(t) 1w, . ’ p—1
0[S |6 ) (T (N () Ny () )@ | 4708

al -1
(40,0 () (X Daam (1517 + N7, ))77) ]

J=1 m=1

IN

N
3 [P 1 ) 1)) 200

N N
<D0 me DY (L 80P oy (O (1P + [N, (u)lly)
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- [Z%D’) 4,07 a0 + 22U v, @l

m=1 wm(t)
N N
+ X [ SR DE )yt + 22 el 4t
m=1 j=1 m
Thus, foreach 1 <i < N
1N ()
N N
< S (S m DI+ B ol 2y VI, ()
m=1 j=1
N N
£ 3 (S DI + 0 gl + 15y Y i +
m=1 j=1 W
Consequently,
N
ST IV @)y
=1

DY+ 07 by + 122y ) [N, ]

<[ (

N N
FN]Y (S m DL+ 6 el + 12y Y512~ + Il

m=1 j=1 m

-

M=

N
_ _ Bi
<N wp DI+ 0, gl + 1y ) 1N, ()

i=1 j=1

+N[Z(Z%D“ (1070l + 12y Yz + ]

i=1

and it follows from ) that there exists a constant C' > 0 such that, for all
1<i<N,

[N (uw)lly < C.

By Lemmal[2.2] there exists R > 0 such that ||u||x < R for all u satisfying u = AL(u)
for some A € (0,1). Thus problem (|1.1)) has at least one solution u in X in view of
Theorem [L11 O

Finally, we give an example to illustrate the main result.

Example 2.6. Consider the system

(O ()" + f1(t, ua (t), ua(2), u (2), us(8)) = 0, ¢ € (0,00),
(lug (D)]us(£))" + f2(t, ua (t), ua(t), uy (1), us(£)) = 0, ¢ € (0,00),
u1(0) = / (—e *ui(s) + 2 *uy(s)) ds, tlingo uy(t) =15° (2.8)
0

u(0) = /000 (e™*ui(s) + e *uy(s)) ds, Jim ub(t) = 13°,
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where [§° ,12 (—oo,oo). Corresponding to the problem (1.1), p = 3, N = 2,
kll(t) —t kl = 2e” kgl( ) = eit, kgg(t) = 67215, wl(t) = 1, and ZUQ(t) =1.

(t)
Then 6 (¢ ) = t 02(t) = and
2 =2
K= (—1 1/2)7

and thus (H1) and (H2) hold. Then

-1 (Y2 =2\ _ fan ar Dy Dip\ _ (7/2 3/2
-1 —2 ao21 Qa29 ’ D271 D272 3 7/2 ’

Let
2
fi(t,u,v,y,2) = aq(t)usin(tv) +042(75)712<1i 5) +B1(t)y* + Ba(t)z cos (yz) + 71 (t)
and
t — o (t)u? t AT £)22 t
Ja(t,u,v,y,2) = ar(t)u” + a(t)v + B1(t)y (m) + Ba(t)2" 4+ 72(1),

where oy (t) = 1072e (1 + )72, az(t) = 1072 24(1 +¢)72

107272, te(0,1) 10715, te(0,1)
t =
hul®) {10—%—2, te(l,o0)’ balt) = {10 14=5 te[l,00)’

and 71,72 are any functions in Y. Then
|fi(t w0y, 2)| < ax(B)u® + aa(B)o® + Bi(H)y® + Ba(t)2” + ax(t) + Ba(t) + [ (t)]
and
[fo(t,u,v,y,2)] < ar(B)u® + az(t)o? + Bi()y” + B2(t)2” + az(t) + [1a2(1)].

Taking 7(t) = a1 (t) + aa(t) + B2(t) + [11(8)] + |12(8)], then (E3) holds, and

1 1 3 3
L4601 ailly = =, [I(1+62)%aslly = 5= 5 =50
(1 +61) a1lly 100" [(1+ 02) ally 500" || HY 100" H HY 50
By direct calculation, k3 = 2,
1
2D7 | [|(1+ 61)*cnlly +2D3 1 [[(1+ 62) |y + || ||Y <3
1
D3 oll(1+ 61)nlly +2D3 5| (1 + 62)? az||Y+|| ||Y 7

Consequently, (2.6) holds for ¢ = 1,2. By Theorem the system (2.8)) has at
least one solution for any I1$°,15° € (—o0, 00).
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