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EXISTENCE OF THREE SOLUTIONS FOR A TWO-POINT
SINGULAR BOUNDARY-VALUE PROBLEM WITH AN

UNBOUNDED WEIGHT

DHANYA RAJENDRAN, EUNKYUNG KO, RATNASINGHAM SHIVAJI

Abstract. We show the existence of three solution for the singular boundary-

value problem

−z′′ = h(t)
f(z)

zβ
in (0, 1),

z(t) > 0 in (0, 1),

z(0) = z(1) = 0,

where 0 < β < 1, f ∈ C1([0,∞), (0,∞)) and h ∈ C((0, 1], (0,∞)) is such

that h(t) ≤ C/tα on (0, 1] for some C > 0 and 0 < α < 1 − β. When
there exist two pairs of sub-supersolutions (ψ1, φ1) and (ψ2, φ2) where ψ1 ≤
ψ2 ≤ φ1, ψ1 ≤ φ2 ≤ φ1 with ψ2 6≤ φ2, and ψ2, φ2 are strict sub and super

solutions. The establish the existence of at least three solutions z1, z2, z3
satisfying z1 ∈ [ψ1, φ2], z2 ∈ [ψ2, φ1] and z3 ∈ [ψ1, φ1] \ ([ψ1, φ2] ∪ [ψ2, φ1]).

1. Introduction

In this article we consider the two point boundary-value problem

−z′′ = h(t)
f(z)
zβ

in (0, 1),

z(t) > 0 in (0, 1),

z(0) = z(1) = 0,

(1.1)

where 0 < β < 1, f ∈ C1([0,∞), (0,∞)) is nondecreasing, h ∈ C((0, 1], (0,∞)) is
such that h(t) ≤ C/tα on (0, 1] for some C > 0 and 0 < α < 1 − β. In particular,
we are interested in weights h which are unbounded at the origin. This makes
the reaction term in (1.1) singular at t = 0 not only due to the term zβ in the
denominator but also due to this unbounded weight h.

Our main focus in this paper is to establish the existence of three positive
solutions in C1[0, 1] ∩ C2(0, 1) when certain pair of sub-super solutions can be
constructed for (1.1). By a sub solution ψ of (1.1) we mean a function ψ ∈
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C2(0, 1) ∩ C[0, 1] such that

−ψ′′ ≤ h(t)
f(ψ)
ψβ

in (0, 1),

ψ(t) > 0 in (0, 1),

ψ(0) = ψ(1) = 0,

and by a super solution of (1.1) we mean a function φ ∈ C2(0, 1)∩C[0, 1] such that

−φ′′ ≥ h(t)
f(φ)
φβ

in (0, 1),

φ(t) > 0 in (0, 1),

φ(0) = φ(1) = 0.

Let g(z) = (f(z)− f(0))/zβ , then problem (1.1) can be equivalently re-formulated
as

−z′′ − h(t)f(0)
zβ

= h(t)g(z) in (0, 1),

z(0) = z(1) = 0.
(1.2)

By the mean value theorem g(t) = f ′(s)t1−β for some s ∈ (0, t). Since 0 < β < 1
and lims→0 |f ′(s)| < ∞, we have g(0) = 0. Thus we can treat g as a Hölder
continuous function on [0,∞) with g(0) = 0 and extend g to be identically zero on
the negative x-axis. We assume that

(G1) There exists a non-negative constant k̃ such that g̃(t) = g(t) + k̃t is strictly
increasing in [0,∞).

Remark 1.1. Without lost of generality, we assume throughout this article that g
is strictly increasing in R+(i.e k̃ = 0 in (G1)). If not, we can study

−z′′ − h(t)f(0)
zβ

+ k̃z = h(t)g̃(z) in (0, 1),

z(0) = z(1) = 0
(1.3)

instead of (1.2) and establish our results.

In this article, we prove the following results:

Theorem 1.2 (Minimal and maximal solutions). Let ψ, φ be positive sub and super
solution of (1.1) satisfying ψ ≤ φ. Then there exists a minimal as well as a maximal
solution for (1.1) in the ordered interval [ψ, φ].

Theorem 1.3 (Three solution theorem). Suppose there exists two pairs of ordered
sub and super solutions (ψ1, φ1) and (ψ2, φ2) of (1.1) with the property that ψ1 ≤
ψ2 ≤ φ1, ψ1 ≤ φ2 ≤ φ1 and ψ2 6≤ φ2. Additionally assume that ψ2, φ2 are not
solutions of (1.1). Then there exists at least three solutions z1, z2, z3 for (1.1)
where z1 ∈ [ψ1, φ2], z2 ∈ [ψ2, φ1] and z3 ∈ [ψ1, φ1] \ ([ψ1, φ2] ∪ [ψ2, φ1]).

We first note that when a sub solution ψ and a super solution φ exists such that
ψ ≤ φ there are results in the history which establish a solution z for (1.1) such
that z ∈ [ψ, φ] (see [2]). Here the author establishes the result by first studying the
non singular boundary value problem

−z′′ = h(t)
f(z)
zβ

in [ε, 1− ε],

z(ε) = ψ(ε), z(1− ε) = ψ(1− ε)
(1.4)
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for ε > 0 and then by analyzing the limit of the solution uε ∈ [ψ, φ] of (Iε) as ε→ 0.
In this paper we will provide a direct method and in Theorem 1.2 we establish also
the existence of maximal and minimal solutions of (1.1) in [ψ, φ].

Next, in [6] the authors study positive radial solutions on exterior domains to
problem of the form

−∆u = λK(|x|)f(u)
uβ

in ΩE ,

u(x) = 0 on |x| = r0,

u(x)→ 0 as |x| → ∞,

(1.5)

where λ > 0, ΩE = {x ∈ RN : |x| > r0, r0 > 0, N > 2} and K ∈ C((r0,∞), (0,∞))
such that K(|x|) → 0 as |x| → ∞. Assume 0 ≤ K(r) ≤ C̃

rN+µ1 where β(N − 2) <
µ1 < N − 2. Then the change of variables r = |x| and t = ( rr0 )2−N transform (1.5)
into

−u′′ = λh̃(t)
f(u)
uβ

in (0, 1),

u(0) = u(1) = 0,
(1.6)

where

h̃(t) ≤ C̃

(N − 2)2rN−2+µ1
0

t−1+
µ1
N−2

and hence this study reduces to study of positive solutions to the boundary-value
problem of the form (1.1). In [6], the authors study classes of nonlinearities f
where for certain range of λ they are able to construct the two pairs of sub-super
solutions as in Theorem 1.3. Using the result by Cui [2] they were able to conclude
the existence of two positive solutions for these ranges of λ. However, now using
Theorem 1.3 we conclude that there are in fact three positive solutions in this range
of λ. This three solutions theorem (Theorem 1.3) is motivated by earlier work for
non-singular problems by Amann[1], Shivaji[8], and by our recent work in [3] for
singular problems on bounded domain without the burden of an unbounded weight
in the reaction term. We will establish some preliminaries and then prove Theorems
.

2. Proofs of main theorems

Now onwards instead of looking for a positive solution of (1.1) we work with the
equivalent formulation (1.2).

Lemma 2.1. There exists a unique positive weak solution θ ∈ H1
0 (0, 1) ∩ C2(0, 1)

to −θ′′ − h(t)
θβ

= 0 in (0, 1) and θ(0) = θ(1) = 0.

Proof. Let us define the functional

E1(u) =
1
2

∫ 1

0

|u′|2 − 1
1− β

∫ 1

0

h(t)(u+)1−β . (2.1)

By the Sobolev embedding H1
0 (0, 1) ↪→ Cγ [0, 1] for some γ ∈ (0, 1) and the fact

that α < 1− β we have E1 is a well-defined map in the entire space H1
0 (0, 1). The

functional E1 restricted to the set H+ = {u ∈ H1
0 (0, 1) : u ≥ 0} is convex. Let ϕ1
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be a positive eigenfunction corresponding to the first eigenvalue λ1 of −u′′ = λu
with u(0) = u(1) = 0. Then, we note that for all ε small enough

E1(εϕ1) =
ε2λ1

2

∫ 1

0

ϕ1
2 − ε1−β

1− β

∫ 1

0

h(t)ϕ1−β
1 < 0 = E1(0).

Hence coercive and weakly lower semicontinuous functional E1 admits a non-zero
global minimizer θ in H1

0 (0, 1). We observe that E1(|θ|) ≤ E1(θ). Unless θ− ≡ 0,
this would contradict the fact that θ is a global minimizer of E1. Hence θ(t) ≥ 0 in
[0, 1]. One can repeat the arguments in [5, Lemma A.2] and infer that the functional
E1 is Gateaux differentiable at any u ≥ εϕ1(t), and for w ∈ H1

0 (0, 1) we have

〈E′1(u), w〉 =
∫ 1

0

u′w′ −
∫ 1

0

h(t)u−βw.

Thus to prove that global minimizer θ is a weak solution, it suffices to prove the
following claim.

Claim: θ(t) ≥ ε0ϕ1(t) for some positive constant ε0.
For a given ε > 0, let v = (εϕ1 − θ)+ and Ω+ = {x ∈ (0, 1) : v(x) > 0}. On
the contrary, suppose that v does not vanish in Ω for ε small enough, and then we
derive a contradiction. Clearly, θ + v ≥ εϕ1 and

〈E′1(θ + v), v〉 =
∫

Ω+

εϕ′1(εϕ′1 − θ′)−
∫

Ω+

h(t)(εϕ1)−β(εϕ1 − θ)

= λ1

∫
Ω+

(εϕ1)(εϕ1 − θ)−
∫

Ω+

h(t)(εϕ1)−β(εϕ1 − θ)

=
∫

Ω+

(εϕ1)−β [λ1(εϕ1)1+β − h(t)](εϕ1 − θ).

(2.2)

If we choose ε0 small enough so that λ1(εϕ1)1+β − inft∈(0,1) h(t) < 0, then we have

(E′1(θ + v), v) < 0 for all ε ≤ ε0. (2.3)

To complete the claim we need to show that Ω+ is empty or v ≡ 0 for ε small
enough. Let ξ(s) = E1(θ + sv) for s ∈ [0,∞). The function ξ : [0,∞) → R is
convex, since it is a composition of the convex function E1 restricted to H+ with a
linear function. We already know that θ is a global minimizer of E1 and hence we
have ξ(s) ≥ ξ(0). Also θ + sv ≥ max{θ, εsϕ1} ≥ sεϕ1 whenever 0 < s ≤ 1. Thus
ξ is differentiable for all s ∈ (0, 1]. Also we note that ξ′ is nondecreasing and is
non-negative since ξ(s) ≥ ξ(0). Thus,

0 ≤ ξ′(1)− ξ′(s) = (E′1(θ + v), v)− ξ′(s) ≤ (E′1(θ + v), v). (2.4)

From (2.3) and (2.4) we have a contradiction for all ε ≤ ε0. Hence v = 0, or
in other words θ ≥ ε0ϕ1. Finally, we conclude that θ(t) is a weak solution of
−θ′′ − h(t)

θβ
= 0 and by the interior regularity θ ∈ C2(0, 1). Since h(t) > 0 we can

prove the uniqueness of weak solution by a standard test function approach(for e.g.
see [3, Lemma 3.2]). �

Lemma 2.2. For a given nonnegative function v ∈ C[0, 1] there exists a unique
weak solution w ∈ C1,ε[0, 1] of −w′′ − h(t)

wβ
= v(t) in (0, 1) and w(0) = w(1) = 0.

Also there exists a constant C = C(‖v‖∞, β, α) such that

‖w‖C1,ε[0,1] ≤ C where ε = 1− β − α.
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Proof. The existence of a unique solution w ∈ H1
0 (0, 1) follows exactly as in [4,

Lemma 4.1] or [3, Lemma 3.2]. Note that −w′′ − h(t)
wβ

= v(t) ≥ 0 = −θ′′ − h(t)
θβ

and
hence by comparison principle w(t) ≥ θ(t) ≥ ε0ϕ1. By the Greens representation
formula:

w(t) =
∫ 1

0

G(t, ξ)
(h(ξ)
wβ

+ v(ξ)
)
dξ, (2.5)

where

G(t, ξ) =

{
(1− t)ξ 0 ≤ ξ ≤ t
(1− ξ)t t ≤ ξ ≤ 1.

If we write h1(ξ) = h(ξ)
wβ

+ v(ξ), then from the lower estimate on w there exists C0

such that

h1(ξ) ≤ C0ξ
−α

ϕβ1 (ξ)
≤ C0ξ

−αd(ξ)−β ,

where the distance function d(ξ) is

d(ξ) =

{
ξ 0 ≤ ξ ≤ 1

2

(1− ξ) 1
2 ≤ ξ ≤ 1.

For 0 < t < s < 1 we have

w′(t)− w′(s) =
∫ s

t

h1(ξ)dξ.

We can write h1(ξ) ≤ C̃d(ξ)−α−β where C̃ depends on ‖v‖∞ and thus there exists
a constant C = C(‖v‖∞, β, α) such that

|w′(t)− w′(s)| ≤ C|t− s|1−β−α (2.6)

which completes the proof. �

We now recall some results from Amann[1]. Let e ∈ C2[0, 1] denote the unique
positive solution of

−e′′(s) = 1 in (0, 1),

e(0) = e(1) = 0.

Then e(s) = 1
2s(1 − s) and e′(1) = −e′(0) = −1. Also e(s) ≥ k d(s) for some

constant k > 0. Let Ce[0, 1] be the set of functions in u ∈ C0[0, 1] such that −se ≤
u ≤ se for some s > 0. Ce[0, 1] equipped with ‖u‖e = inf{s > 0 : −se ≤ u ≤ se} is
a Banach space. Also the following continuous embedding holds

C1
0 [0, 1] ↪→ Ce[0, 1] ↪→ C0[0, 1]. (2.7)

Further Ce[0, 1] is an ordered Banach space(OBS) whose positive cone Pe =
{u ∈ Ce[0, 1] : u(s) ≥ 0} is normal and has non empty interior. In particular the
interior P 0

e consists of all those functions u ∈ Ce[0, 1] with s1e ≤ u ≤ s2e for some
s1, s2 > 0.

For a given v ∈ Ce[0, 1], let ṽ(t) = h(t)g(v(t)). Using the assumptions on
g and the blow up estimate on h, we have |ṽ(t)| ≤ Ct−α|v(t)|1−β . This upper
bound implies that ṽ ∈ C0[0, 1] and by Lemma 2.2 there exists a unique solution
w ∈ C1,ε[0, 1]∩H1

0 (0, 1) solving −w′′− f(0)h(t)
wβ

= h(t)g(v(t)). We make the following
definition.
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Definition 2.3. We define the operator Ag : Ce[0, 1] → C1,ε
0 [0, 1] as Ag(v) = w,

where w is the unique positive weak solution of −w′′ − h(t)f(0)
wβ

= h(t)g(v(t)) in
(0, 1) and w(0) = w(1) = 0.

We first establish the following result.

Proposition 2.4. The map Ag : Ce[0, 1] → Ce[0, 1] is completely continuous and
strictly increasing.

Proof. Clearly Ag maps Ce[0, 1] into C1,ε
0 [0, 1] and we need to prove that the map-

ping is continuous. For a proof consider v, v0 ∈ Ce[0, 1] and ‖v − v0‖Ce < ε. Let
Ag(v0) = w0 and Ag(v) = w. Then from the weak formulation of the solution∫ 1

0

|w′ − w′0|2

=
∫ 1

0

h(t)f(0)

(
1
wβ
− 1

wβ0

)
(w − w0) +

∫ 1

0

h(t)(g(v)− g(v0))(w − w0)

≤
∫ 1

0

h(t)(g(v)− g(v0))(w − w0).

Since g is assumed to be Hölder continuous of exponent 1−β and by the continuous
embedding (2.7) we have the estimate

|g(v(t))− g(v0(t))| ≤ C0|v(t)− v0(t)|1−β

≤ C0‖v − v0‖1−βC0(Ω)

≤ C1‖v − v0‖1−βCe(Ω) < C1ε
1−β .

Hence, ∫ 1

0

|w′ − w′0|2 ≤ C2 ε
1−β

∫ 1

0

|w − w0|
t

t1−α.

Now by Hardy’s inequality we have∫ 1

0

|w′ − w′0|2 ≤ Cε1−β‖w − w0‖H1
0 (0,1).

Therefore if vn → v0 in Ce[0, 1] then the corresponding solutions Ag(vn) = wn →
w0 = Ag(v0) in H1

0 (0, 1). Next we note that if vn → v0 in Ce[0, 1] then ṽn =
h(t)g(vn) is uniformly bounded in C0[0, 1] and hence by Lemma 2.2, ‖wn‖C1,ε[0,1] is
bounded. By Ascoli-Arzela theorem wn has a convergent subsequence in C1,ε′ [0, 1]
for every ε′ < ε and the from the previous discussion the limit has to be w0. Hence
Ag : Ce[0, 1] → C1,ε′

0 [0, 1] is continuous. Since C1,ε
0 [0, 1] ⊂⊂ C1

0 [0, 1] (compact
imbedding), we have Ag : Ce[0, 1] → C1

0 [0, 1] is completely continuous. Therefore,
Ag : Ce[0, 1]→ Ce[0, 1] is completely continuous.

To prove the map Ag is strictly increasing we assume that g is strictly increasing
(otherwise see Remark 1.1). We need to show that if v1 ≤ v2, v1 6= v2 then
Ag(v1) < Ag(v2). By the test function approach one can easily show that 0 < w1 =
Ag(v1) ≤ Ag(v2) = w2. Let ρ : (0, 1) → R be such that w1(t) ≤ ρ(t) ≤ w2(t) is
defined by mean value theorem. Then we have

− (w2 − w1)′′ +
h(t)f(0)
ρ(t)1+β

(w2 − w1) = h(t) (g(v2)− g(v1)) ≥ 0. (2.8)
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Since (w1 − w2)|{t=0,1} = 0, we have by Theorem 3 in Chapter 1 of Protter and
Weinberger [7], w1 < w2, or in other words Ag is strictly increasing. �

Lemma 2.5. The map Ag : Ce[0, 1]→ Ce[0, 1] is strongly increasing, i.e. Ag(v2)−
Ag(v1) ∈ P 0

e .

Proof. The idea of the proof is same as in [3, Theorem 3.6] with a slight change
in the singular exponent β. Let us write w̃ = (w2 − w1), then from equation (2.8)
and by the upper bound on h(t)

ρβ+1 we have −w̃′′+ c w̃ d(t)−1−β−α ≥ 0. I f we denote
β′ = α+ β, then β′ ∈ (0, 1). Thus we obtain

−w̃′′ + cw̃

d(t)1+β′
≥ 0 in (0, 1),

w̃ > 0 in (0, 1),

w̃(0) = w̃(1) = 0.

Rest of the proof is exactly as in [3, Theorem 3.6] and hence we skip the details. �

Now Proposition 2.4 combined with [1, Corollary 6.2] easily establishes the proof
of Theorem 1.2. Further, since Lemma 2.5 holds, repeating the arguments in [3]
the proof of Theorem 1.3 follows.
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Departamento de Matemática, Universidad de Concepción, Chile

E-mail address: dhanya.tr@gmail.com



138 D. RAJENDRAN, E. KO, R. SHIVAJI EJDE-2016/CONF/23

Eunkyung Ko

PDE and Functional Analysis Research Center, Department of Mathematical Sciences,

Seoul National University, Seoul, 151-747, South Korea
E-mail address: ekko1115@snu.ac.kr

Ratnasingham Shivaji
Department of Mathematics and Statistics, University of North Carolina at Greens-

boro, Greensboro, NC 27412, USA

E-mail address: shivaji@uncg.edu


	1. Introduction
	2. Proofs of main theorems
	Acknowledgements

	References

