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UNIQUENESS OF POSITIVE SOLUTIONS FOR COOPERATIVE
HAMILTONIAN ELLIPTIC SYSTEMS

JUNPING SHI, RATNASINGHAM SHIVAJI

Abstract. The uniqueness of positive solution of a semilinear cooperative

Hamiltonian elliptic system with two equations is proved for the case of sub-
linear and superlinear nonlinearities. Implicit function theorem, bifurcation

theory, and ordinary differential equation techniques are used in the proof.

1. Introduction

We consider positive solutions of semilinear elliptic system

∆u+ λf(v) = 0, x ∈ Ω,

∆v + λg(u) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,
(1.1)

where λ > 0, Ω is a bounded smooth domain, and throughout the paper we always
assume that f, g are continuously differentiable functions defined on R+ := [0,∞).
System (1.1) is called cooperative, if f and g satisfy

f ′(v) > 0, for v > 0, and g′(u) > 0, for u > 0. (1.2)

For our main results, we also assume that

f(0) ≥ 0 and g(0) ≥ 0. (1.3)

Hence f(v) and g(u) are both positone, i.e. positive and monotone. The word
“positone”was invented by Keller and Cohen [12] in a now classical paper.

In various situations, we will obtain the uniqueness of positive solutions of (1.1)
in this paper. This is motivated by the extensive study of exact multiplicity (and
uniqueness) of positive solutions of the scalar semilinear elliptic equation

∆u+ λf(u) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.4)

starting from Korman, Li and Ouyang [15, 16], Ouyang and Shi [21, 22], and also
the recent results on the existence and uniqueness of positive solution of semilinear
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elliptic systems. In general, the exact number of solutions to semilinear elliptic
system

∆u+ λf(u, v) = 0, x ∈ Ω,

∆v + λg(u, v) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,
(1.5)

is more difficult to determine. However when f(u, v) ≡ f(v) and g(u, v) ≡ g(u),
some nice properties of scalar equations are still valid, hence some parts of the
approach given in [21, 22] can be extended to obtain exact multiplicity for systems.
Note that system (1.1) has been considered previously by many people, since it
possesses a variational structure and in some literature it is called a Hamiltonian
elliptic system (see de Figueiredo [9]).

The positone condition on f, g alone does not imply the exact multiplicity/
uniqueness of positive solutions. Even for the scalar case, a positone problem could
have a unique solution or multiple solutions, see for example Shivaji et.al. [3, 27, 28]
in the case of a combustion model. It has been shown that the shape of the graph
of f(u)/u is an important factor on the global bifurcation diagram of (1.4), see
Lions [18] and Ouyang and Shi [22]. To state our results, we recall the following
definitions from [22]:

Definition 1.1. Let f ∈ C1(R+). f is said to be sublinear (resp. superlinear) if
f(u)/u is strictly decreasing (resp. f(u)/u is strictly increasing) for u > 0.

Clearly f is sublinear (or superlinear) if f(u)/u ≥ (or ≤) f ′(u). Note that
these definitions emphasize the global convexity properties of the nonlinear function
f(u). In literature, the phrases sublinear and superlinear have also been defined
differently, mostly on the asymptotical behavior of the function f(u)/u, see for
example, Lions [18] for the scalar case and Sirakov [29] for the system case.

Assume that f and g are positone, i.e. f , g satisfy (1.2) and (1.3). Our main
results can be summarized as follows:

(1) If f and g are sublinear, then for a general bounded domain Ω, (1.1) has
at most one positive solution for any given λ > 0. (This result holds even
without the positone condition.)

(2) If n = 1 (i.e. Ω is an interval), f and g are superlinear, then (1.1) has at
most one positive solution for any given λ > 0.

Moreover in all these cases, the set of positive solutions (λ, u, v) of (1.1) consist of
a smooth curve; the λ-component of the solution curve is monotone.

All these results resemble the corresponding uniqueness of positive solutions to
the scalar equation (1.4), which can be found in [22]. Indeed, the sublinear case
is known as early as [12], and the superlinear case also hold for n-dimensional ball
domains if f , g satisfy some subcritical growth conditions (see [22]). Earlier work
on the superlinear scalar equations can be found in [12], Crandall and Rabinowitz
[7], and the review article of Amann [1].

While there are more exact multiplicity results for the solutions of scalar semi-
linear elliptic equations, there are not so many for the systems. Some known results
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are about the Lane-Emden system:
∆u+ vq = 0, x ∈ Ω,

∆v + up = 0, x ∈ Ω,

u(x) > 0, v(x) > 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(1.6)

where Ω is either Rn or Bn, the unit ball in Rn. When (p, q) is supercritical or
critical, i.e.

p > 0, q > 0, and
1

p+ 1
+

1
q + 1

≤ n− 2
n

, (1.7)

then for each central value u(0) > 0, there exists a v(0) > 0 such that (1.6) has
a radial ground state on Rn with the central value (maximum) (u(0), v(0)) (see
Serrin and Zou [23]). On the other hand, for ball domain Bn, it is known that
for any p, q > 0 except pq = 1, (1.6) has at most one solution (see Dalmasso [8],
and Korman and Shi [17]), and the existence of a solution on a ball depends on
whether (p, q) is above or below the curve 1

p+1 + 1
q+1 = n−2

n . If (1.7) holds, there
is no solution of (1.6) on a ball, and if the opposite one holds, there is a unique
solution. The proof of uniqueness for (1.6) heavily depends on the scaling property
of (1.6), which does not hold for almost any other f, g. Our results hold for much
more general nonlinearities which are defined by the monotonicity and convexity
of the functions. But on the other hand, we require that both f and g satisfy such
geometric properties such as sublinear and superlinear. It would be interesting to
obtain results with certain combined conditions on f and g instead of individual
ones. The result for n = 1 and f, g superlinear has also been proved in Korman
[13, 14]. But our approach is different.

The approach in this article includes several ingredients. First we apply abstract
analytical bifurcation theory based on implicit function theorem used by Crandall
and Rabinowitz [5, 6], Shi [25] and Liu, Shi and Wang [20]. Such applications were
first used for scalar equation (1.4) in [15, 16, 21, 22]. In general the methods for
scalar equations cannot be easily generalized to systems, but we are able to carry
that over for the special system (1.1). Secondly we give a comprehensive study of
the solutions to the linearized equations when f, g are positone and n = 1, following
some recent work by An, Chern and Shi [2]. This is vital for the result when f, g are
superlinear and n = 1. Finally the maximum principle for the cooperative system
(satisfying (1.2)) also plays an essential role. It is used to proved the symmetry of
the solutions of either nonlinear and the linearized equations. Moreover we show
that in the case of n = 1, the solution set of the cooperative system (5.1) is actually
parameterized by one of u(0) or v(0) not the two-dimensional value (u(0), v(0)).
This is similar to a result in [17], which holds for radially symmetric solutions
on balls in Rn. The study of the linearized equations also heavily relies on the
maximum principle.

The organization of the remaining part of the paper is as follows: in Section 2,
we recall some classical abstract bifurcation theorems, and we apply these abstract
theorems to the equation (1.1) in general, and also derive some basic properties
of the degenerate solutions; the stability property of the solution is considered in
Section 3. In Section 4 we prove the result for sublinear case in general domains.
Various properties for the n = 1 case are studied in Section 5, and we prove the
result for superlinear and n = 1 case in Section 6.
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2. Implicit function theorem and bifurcation theory

In this section, we recall some well-known abstract implicit function theorem
and bifurcation theorems.

Theorem 2.1 (Implicit function theorem). Let X,Y and Z be Banach spaces, and
let U ⊂ X × Y be a neighborhood of (λ0, u0). Let F : U → Z be a continuously
differentiable mapping. Suppose that F (λ0, u0) = 0 and Fu(λ0, u0) is an isomor-
phism, i.e. Fu(λ0, u0) is one-to-one and onto, and F−1

u (λ0, u0) : Z → Y is a linear
bounded operator. Then there exists a neighborhood A of λ0 in X, and a neigh-
borhood B of u0 in Y , such that for any λ ∈ A, there exists a unique u(λ) ∈ B
satisfying F (λ, u(λ)) = 0. Moreover u(·) : A → B is continuously differentiable,
and u′(λ0) : X → Y is defined as u′(λ0)[ψ] = −[Fu(λ0, u0)]−1 ◦ Fλ(λ0, u0)[ψ].

In the following theorem, we assume that X,Y are Banach spaces, N(L), R(L)
are the null space and range space of a linear operator L respectively, 〈·, ·〉 is the
duality between Banach space Y and its dual space Y ∗, and Fu, Fλ and Fuu etc. are
the partial derivatives of the nonlinear operator F in u, λ and 2nd order derivative
in u etc.

Theorem 2.2 (Transcritical and pitchfork bifurcation theorem). Let U be a neigh-
borhood of (λ0, u0) in R×X, and let F : U → Y be a twice continuously differen-
tiable mapping. Assume that F (λ, u0) = 0 for (λ, u0) ∈ U . At (λ0, u0), F satisfies
the following assumptions:

(A1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and
N(Fu(λ0, u0)) = span{w0};

(A2) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)).

Let Z be any complement of span{w0} in X. Then the solution set of F (λ, u) = 0
near (λ0, u0) consists precisely of the curves u = u0 and {(λ(s), u(s)) : |s| < ε},
where s 7→ (λ(s), u(s)) ∈ R×X is a continuously differentiable function, such that
u(s) = u0 + sw0 + sz(s), λ(0) = λ0, z(0) = 0, z(s) ∈ Z and

λ′(0) = −〈l, Fuu(λ0, u0)[w0, w0]〉
2〈l, Fλu(λ0, u0)[w0]〉

, (2.1)

where l ∈ Y ∗ satisfying N(l) = R(Fu(λ0, u0)).

The implicit function theorem is well-known and Theorem 2.2 appears in [5]. If
λ′(0) 6= 0 in Theorem 2.2, then it is s transcritical bifurcation; if λ′(0) = 0 and F is
C3, then the solution curve is C2 near the bifurcation point, and λ′′(0) 6= 0, then a
pitchfork bifurcation occurs.

To apply Theorems 2.1 and 2.2 to the semilinear system (1.1), we define

F (λ, u, v) =
(

∆u+ λf(v)
∆v + λg(u)

)
, (2.2)

where λ ∈ R and u, v ∈ C2,α
0 (Ω). Here we assume that f, g are at least C1, then F :

R×X → Y is continuously differentiable, where X = [C2,α
0 (Ω)]2 and Y = [Cα(Ω)]2.

For weak solutions (u, v), one can also consider X = [W 2,p(Ω) ∩ W 1,p
0 (Ω)]2 and

Y = [Lp(Ω)]2 with p > n.
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Suppose that (λ, u(x), v(x)) is a positive solution of (1.1), then this solution is
degenerate if the linearized equation

∆φ+ λf ′(v(x))ψ = 0, x ∈ Ω,

∆ψ + λg′(u(x))φ = 0, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω.

(2.3)

has a nontrivial solution (φ, ψ). To apply Theorem 2.2 to F defined in (2.2), we
assume that (2.3) has a one-dimensional solution space spanned by (φ0, ψ0) at
(λ, u, v) = (λ0, u0, v0) ∈ R×X. Notice that here

F(u,v)(λ, u, v)
(
φ
ψ

)
=
(

∆φ+ λf ′(v)ψ
∆ψ + λg′(u)φ

)
, (2.4)

hence N(Fu(λ0, u0, v0)) = span{(φ0, ψ0)} is one-dimensional. Suppose that (h1, h2)
belongs to R(Fu(λ0, u0, v0)), then there exists (φ, ψ) ∈ X such that

F(u,v)(λ, u, v)
(
φ
ψ

)
=
(
h1

h2

)
. (2.5)

Hence ∫
Ω

(h1ψ0 + h2φ0)dx

= λ

∫
Ω

f ′(v)ψψ0dx+
∫

Ω

∆φψ0dx+ λ

∫
Ω

g′(u)φφ0dx+
∫

Ω

∆ψφ0dx

= λ

∫
Ω

f ′(v)ψψ0dx+
∫

Ω

φ∆ψ0dx+ λ

∫
Ω

g′(u)φφ0dx+
∫

Ω

ψ∆φ0dx

=
∫

Ω

(∆φ0 + λf ′(v)ψ0)ψdx+
∫

Ω

(∆ψ0 + λg′(u)φ0)φdx = 0.

(2.6)

On the other hand, if
∫

Ω
(h1ψ0 + h2φ0)dx = 0, then (h1, h2) ∈ R(Fu(λ0, u0, v0))

from Fredholm theory. Hence codimR(Fu(λ0, u0, v0)) = 1, and

R(Fu(λ0, u0, v0)) =
{

(h1, h2) ∈ Y :
∫

Ω

(h1ψ0 + h2φ0)dx = 0
}
. (2.7)

Therefore condition (A1) is satisfied.
To conclude this section, we prove a non-existence result regarding the positive

solutions of (1.1). Here let (λ1, ϕ1) be the principal eigen-pair of

−∆ϕ = λϕ, x ∈ Ω, ϕ(x) = 0, x ∈ ∂Ω, (2.8)

such that ϕ1(x) > 0 in Ω.

Proposition 2.3. Suppose that a, b are positive constants, and (u, v) is a positive
solution of (1.1).

(1) If f(v) ≤ av for any v ≥ 0 and g(u) ≤ bu for any u ≥ 0, then λ ≥ 2λ1
a+b . In

particular, (1.1) has no positive solution if λ < 2λ1
a+b .

(2) If f(v) ≥ av for any v ≥ 0 and g(u) ≥ bu for any u ≥ 0, then λ ≤ λ1
min{a,b} .

In particular, (1.1) has no positive solution if λ > λ1
min{a,b} .
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Proof. First we assume that f(v) ≤ av for any v ≥ 0 and g(u) ≤ bu for any u ≥ 0.
Multiplying the equation of u in (1.1) by u, multiplying the equation of v in (1.1)
by v, integrating over Ω and adding the two equations, we obtain∫

Ω

|∇u|2dx+
∫

Ω

|∇v|2dx = λ

∫
Ω

f(v)udx+
∫

Ω

g(u)vdx ≤ λ(a+ b)
∫

Ω

uvdx. (2.9)

By using Cauchy-Schwarz inequality and Poincaré inequality, from (2.9), we have

λ1

(∫
Ω

u2dx+
∫

Ω

v2dx
)
≤ λ(a+ b)

2

(∫
Ω

u2dx+
∫

Ω

v2dx
)
, (2.10)

which implies λ ≥ 2λ1
a+b .

Next we assume that f(v) ≥ av for any v ≥ 0 and g(u) ≥ bu for any u ≥ 0.
Multiplying the equations of u and v in (1.1) by ϕ1, integrating over Ω and adding
the two equations, we obtain

λ1

(∫
Ω

uϕ1dx+
∫

Ω

vϕ1dx
)

= λ

∫
Ω

f(v)ϕ1dx+ λ

∫
Ω

g(u)ϕ1dx

≥ λa
∫

Ω

vϕ1dx+ λb

∫
Ω

uϕ1dx

≥ λmin{a, b}
(∫

Ω

uϕ1dx+
∫

Ω

vϕ1dx
)
,

(2.11)

which implies λ ≤ λ1/min{a, b}. �

3. Stability and linearized equations

Let (u, v) be a solution of (1.1). The stability of (u, v) is determined by the
linearized equation:

∆ξ + f ′(v)η = −µξ, x ∈ Ω,

∆η + g′(u)ξ = −µη, x ∈ Ω,

ξ(x) = η(x) = 0, x ∈ ∂Ω,

(3.1)

which can be written as
Lu = Hu + µu, (3.2)

where

u =
(
ξ
η

)
, Lu =

(
−∆ξ
−∆η

)
, H =

(
0 f ′(v)

g′(u) 0

)
. (3.3)

If we assume that (f, g) is cooperative (satisfying (1.2)), then the system (3.2) and
(3.3) is a linear elliptic system of cooperative type, and the maximum principles
hold for such systems. Here we recall some known results.

Lemma 3.1. Suppose that L,H are given by (3.3), u ∈ X ≡ [W 2,2(Ω)∩W 1,2
0 (Ω)]2,

and (f, g) satisfies (1.2).
(1) µ1 = inf{Re(µ) : µ ∈ spt(L − H)} is a real eigenvalue of L − H, where

spt(L−H) is the spectrum of L−H.
(2) For µ = µ1, there exists a unique (up a constant multiple) eigenfunction

u1 ∈ Y ≡ [L2(Ω)]2, and u1 > 0 in Ω.
(3) For µ < µ1, the equation Lu = Hu + µu + f is uniquely solvable for any

f ∈ Y , and u > 0 as long as f ≥ 0.
(4) (Maximum principle) For µ ≤ µ1, suppose that u ∈ [W 2,2(Ω)]2, satisfies

Lu ≥ Hu + µu in Ω, u ≥ 0 on ∂Ω, then u ≥ 0 in Ω.
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(5) If there exists u ∈ [W 2,2(Ω)]2, satisfies Lu ≥ Hu in Ω, u ≥ 0 on ∂Ω, and
either u 6≡ 0 on ∂Ω or Lu 6≡ Hu in Ω, then µ1 > 0.

For the result and proofs, see Sweers [30, Prop. 3.1 and Thm. 1.1]. Moreover
from a standard compactness argument, the eigenvalues {µi} of L−H is countably
many, and |µi−µ1| → ∞ as i→∞. We notice that µi is not necessarily real-valued.
We call a solution (u, v) is stable if µ1 > 0, and it is unstable if µ1 ≤ 0.

We prove the following stability result when (f, g) is sublinear or superlinear.

Proposition 3.2. Suppose that (u, v) is a positive solution of (1.1).
(1) If f, g are sublinear, then (u, v) is stable;
(2) If f, g are superlinear, then (u, v) is unstable with µ1(u, v) < 0.

Proof. Multiplying the equation of u in (1.1) by η, multiplying the equation of η
by u, integrating over Ω and subtracting, we obtain

λ

∫
Ω

f(v)ηdx = λ

∫
Ω

g′(u)uξdx+ µ1

∫
Ω

uηdx. (3.4)

Similarly form the equation of v and ξ, we find

λ

∫
Ω

g(u)ξdx = λ

∫
Ω

f ′(v)vηdx+ µ1

∫
Ω

vξdx. (3.5)

Adding (3.4) and (3.5), we obtain

µ1

(∫
Ω

vξdx+
∫

Ω

uηdx

)
= λ

∫
Ω

[f(v)−f ′(v)v]ηdx+λ

∫
Ω

[g(u)−g′(u)u]ξdx. (3.6)

From Lemma 3.1, ξ > 0 and η > 0 in Ω. If f, g are sublinear, then f(v)−vf ′(v) > 0
and g(u)−ug′(u) > 0 for u, v > 0. Hence µ1 > 0 from (3.6). If f, g are superlinear,
then f(v)− vf ′(v) < 0 and g(u)− ug′(u) < 0 for u, v > 0. Thus µ1 < 0. �

We remark that the stability for solution to sublinear problem implies the nonde-
generacy of the solution, which will play an important role in the proof of uniqueness
of the solution.

4. Sublinear problem

We have the following result for the existence and uniqueness of the positive
solution to (1.1) with sublinear nonlinearities f and g.

Theorem 4.1. Assume that Ω is a bounded domain with smooth boundary ∂Ω,
f, g : R+ → R+ are sublinear, and

lim
u→∞

g(u)
u

= lim
v→∞

f(v)
v

= 0. (4.1)

(1) If at least one of f(0) and g(0) is positive, then (1.1) has a unique positive
solution (uλ, vλ) for all λ > 0;

(2) If f(0) = g(0) = 0, and f ′(0) > 0, g′(0) > 0, then for some λ∗ =
λ1/
√
f ′(0)g′(0) > 0, (1.1) has no positive solution when λ ≤ λ∗, and (1.1)

has a unique positive solution (uλ, vλ) for λ > λ∗.
Moreover, {(λ, uλ, vλ) : λ > λ∗} (in the first case, we assume λ∗ = 0) is a smooth
curve so that uλ and vλ are strictly increasing in λ, and (uλ, vλ)→ (0, 0) as λ→ λ+

∗ .
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Note that if f is sublinear, then it is necessary that f(0) ≥ 0. Hence f and g are
positive for u > 0 here. If f(0) = 0 and f is sublinear, then we must have f ′(0) > 0
since f ′(0) > f(u)/u for u > 0. Note that here we assume f, g are asymptotical
sublinear (see (4.1)), and we also have corresponding results for asymptotical linear
and asymptotical negative cases, see Theorem 4.2.

Proof of Theorem 4.1. First we assume at least one of f(0) and g(0) is positive.
Recall the operator F defined in (2.2). Then F(u,v)(0, 0, 0) is an isomorphism,
and the implicit function theorem (Theorem 2.1) implies that F (λ, u, v) = 0 has a
unique solution (λ, uλ, vλ) for λ ∈ (0, δ) for some small δ > 0, and

(u′(0), v′(0)) = (
∂uλ
∂λ

,
∂vλ
∂λ

)|λ=0

is the unique solution of

∆φ+ f(0) = 0, ∆ψ + g(0) = 0, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω.
(4.2)

Then (u′(0), v′(0)) = (f(0)e, g(0)e) where e is the unique positive solution of

∆e+ 1 = 0, x ∈ Ω, e(x) = 0, x ∈ ∂Ω. (4.3)

If f(0) > 0 and g(0) > 0, then (uλ, vλ) is positive for λ ∈ (0, δ). If f(0) = 0 and
g(0) > 0, then vλ > 0. But ∆uλ = −f(vλ) and f is positive, hence uλ > 0 as well.
Therefore (1.1) has a positive solution (uλ, vλ) for λ ∈ (0, δ) in this case.

Next we assume that f(0) = g(0) = 0, and f ′(0) > 0, g′(0) > 0. In this case
(0, 0) is a trivial solution of (1.1) for any λ > 0. We show that there is a bifurcation
point λ∗ where nontrivial solutions bifurcate from the branch of trivial solutions.
The linearized operator is

F(u,v)(λ, 0, 0)[Φ,Ψ] = [∆Φ + λf ′(0)Ψ,∆Ψ + λg′(0)Φ],

and the eigenvalues are λ̃i = λi/
√
f ′(0)g′(0) with eigenfunction

[Φi,Ψi] = [1,
√
g′(0)/f ′(0)]ϕi,

where (λi, ϕi) is the i-th eigen-pair of −∆ on W 1,2
0 (Ω). In particular, λ∗ = λ̃1 is a

bifurcation point where positive solutions of (1.1) bifurcate. Since λ∗ is a simple
eigenvalue, R(F(u,v)(λ∗, 0, 0)) = {(h1, h2) ∈ Y :

∫
Ω

(h1Ψ1 + h2Φ1)dx = 0} from
(2.6), and

Fλ(u,v)[Φ1,Ψ1] = [f ′(0)Ψ1, g
′(0)Φ1] 6∈ R(F(u,v)(λ, 0, 0)),

then one can apply Theorem 2.2 to obtain a curve of positive solutions of (1.1):
{(λ(s), u(s), v(s)) : s ∈ (0, δ)}. We claim that (1.1) has no positive solution when
λ ≤ λ∗. Note that (1.1) has no positive solutions when λ ≤ 2λ1/(f ′(0)+g′(0)) from
Proposition 2.3, but we can improve that lower bound here. Since f(v) ≤ f ′(0)v
and g(u) ≤ g′(0)u for u, v ≥ 0, then

0 =
∫

Ω

[∆u+ λf(v)]Ψ1dx+
∫

Ω

[∆v + λg(u)]Φ1dx

=
∫

Ω

Φ1[−λ∗g′(0)u+ λg(u)]dx+
∫

Ω

Ψ1[−λ∗f ′(0)v + λf(v)] < 0,
(4.4)

if λ ≤ λ∗ and u, v > 0. Hence (1.1) has no positive solution when λ ≤ λ∗. In
particular, λ(s) > λ∗ for s ∈ (0, δ).
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In the two cases above, we obtain a curve of solutions to (1.1) for λ ∈ (λ∗, λ∗+δ)
and (u, v) is close to (0, 0). From Proposition 3.2, each positive solution (u, v)
of (1.1) with f, g sublinear is stable thus non-degenerate, then implicit function
theorem implies that the solution set is always locally a C1 curve near a positive
solution (u, v). Thus in the second case, the solution (λ(s), u(s), v(s)) can also be
parameterized as (λ, uλ, vλ) for λ ∈ (λ∗, λ∗+δ). With implicit function theorem, we
can extend this curve to a largest λ∗. Let Γ = {(λ, uλ, vλ) : λ∗ < λ < λ∗}. We show
that (uλ, vλ) is strictly increasing in λ for λ ∈ (λ∗, λ∗). In fact, (∂uλ/∂λ, ∂vλ/∂λ)
satisfies the equation:

∆
∂uλ
∂λ

+ λf ′(vλ)
∂vλ
∂λ

+ f(vλ) = 0, ∆
∂vλ
∂λ

+ λg′(uλ)
∂uλ
∂λ

+ g(uλ) = 0,

hence (∂uλ/∂λ, ∂vλ/∂λ) > 0 from the maximum principle (Lemma 3.1 part 3) and
the fact that µ1((uλ, vλ)) > 0 from Proposition 3.2. If λ∗ < ∞, and ‖uλ‖X +
‖vλ‖X < ∞, then one can show that the curve Γ can be extended to λ = λ∗

from some standard elliptic estimates; if λ∗ < ∞, and ‖uλ‖X + ‖vλ‖X = ∞, a
contradiction can be derived with the asymptotical sublinear condition (4.1) (see
similar arguments for scalar equation in [26]). Hence we must have λ∗ =∞.

If there is another positive solution for some λ > λ∗, then the arguments above
show this solution also belongs to a solution curve defined for λ ∈ (λ∗,∞), and the
solutions on the curve are increasing in λ, but the nonexistence of positive solutions
for λ < λ∗ and the local bifurcation at λ = λ∗ excludes the possibility of another
solution curve. Hence the positive solution is unique for all λ > λ∗. This completes
the proof. �

Some examples of sublinear functions satisfying the conditions in Theorem 4.1
are f(u) = ln(u+ 1) + k, f(u) = 1− e−u + k, f(u) = (1 + u)p − 1 + k (0 < p < 1)
with k ≥ 0. Indeed the proof of Theorem 4.1 can also be used to prove similar
results when asymptotical sublinear condition (4.1) is not satisfied. We state the
following theorem without proof.

Theorem 4.2. Assume that f, g : R+ → R are sublinear.
(1) If f, g are asymptotically linear, that is

lim
u→∞

g(u)
u

= k1 > 0, lim
v→∞

f(v)
v

= k2 > 0, (4.5)

then the results in Theorem 4.1 still hold except the solutions only exist for
λ ∈ (λ∗, λ∗), where λ∗ = λ1/

√
k1k2, and (1.1) has no positive solutions for

λ ≥ λ∗;
(2) If f, g are negative for u, v large, then the results in Theorem 4.1 still hold

for λ ∈ (λ∗,∞).

In the first case, we have a bifurcation from infinity at λ = λ∗, and examples of
such functions are f(u) =

√
u2 + 2u + k, f(u) = 2u + k −

√
u2 + 1 for k ≥ 0. In

the second case, a typical example is the logistic function f(u) = u− up for p > 1.
Hence the second case of Theorem 4.2 describes the solution set of the following
diffusive logistic system:

∆u+ λ(av − bv2) = 0, x ∈ Ω,

∆v + λ(cu− du2) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(4.6)



164 J. SHI, R. SHIVAJI EJDE-2016/CONF/23

where a, b, c, d > 0. One can show that as λ → ∞, the unique solution (uλ, vλ)
tends to (a/b, c/d) (the carrying capacity) on any compact subset of Ω as λ→∞.

5. One-dimensional problem

In this section we establish some results for the equation (1.1) and related lin-
earized equation when n = 1 and Ω = (−1, 1). Hence we consider

u′′ + λf(v) = 0, x ∈ (−1, 1),

v′′ + λg(u) = 0, x ∈ (−1, 1),

u(±1) = v(±1) = 0,

(5.1)

and for a degenerate solution (u, v) of (5.1), the equation

φ′′ + λf ′(v(x))ψ = 0, x ∈ (−1, 1),

ψ′′ + λg′(u(x))φ = 0, x ∈ (−1, 1),

φ(±1) = ψ(±1) = 0

(5.2)

has a nontrivial solution. We first prove the following symmetry result.

Theorem 5.1. Assume that f, g : R+ → R are C1 satisfy (1.2). Let (λ, u(x), v(x))
be a positive solution of (5.1). Then

(1) u and v are symmetric with respect to x = 0, i.e. u(−x) = u(x) and
v(−x) = v(x), and u′(x) > 0 and v′(x) > 0 in (−1, 0);

(2) If (λ, u, v) is a degenerate solution of (5.1), and f(0) ≥ 0 or g(0) ≥ 0,
then for any solution (φ, ψ) of (5.2), φ and ψ are symmetric with respect
to x = 0, i.e. φ(−x) = φ(x) and ψ(−x) = ψ(x).

Proof. The symmetry of u and v follows from a result of Troy [31]. We prove that
φ and ψ are symmetric with respect to x = 0 if f(0) ≥ 0 or g(0) ≥ 0. From
Theorem 1 in [31], u′(x) > 0 and v′(x) > 0 in (−1, 0). Then (L − H)(u′, v′) = 0
in (−1, 0) and u′(x) ≥ 0, v′(x) ≥ 0 for x = −1 and x = 0. We claim that if
f(0) ≥ 0 or g(0) ≥ 0, then either u′(−1) > 0 or v′(−1) > 0. Suppose not, then
u′(−1) = v′(−1) = 0, and x = −1 is a local minimum of u(x) and v(x). So g(0) ≤ 0
and f(0) ≤ 0. If f(0) = 0, then f(v) > 0 for v > 0 since f ′(v) > 0. But integrating
v′′ + f(v) = 0 over (−1, 0), we obtain

∫ 1

0
f(v(x))dx = 0 since v′(−1) = v′(0) = 0,

that is a contradiction. Hence f(0) < 0 and g(0) < 0. But we assume f(0) ≥ 0 or
g(0) ≥ 0, that is a contradiction again. Thus either u′(−1) 6= 0 or v′(−1) 6= 0, then
from Lemma 3.1 part 5, µ1((L−H)|(−1,0)) > 0. and the maximum principle holds
from Lemma 3.1 part 4. Now let ξ(x) = φ(−x) − φ(x) and η(x) = ψ(−x) − ψ(x)
for x ∈ (−1, 0). Then (L − H)(ξ, η) = 0 for x ∈ (−1, 0) and ξ(−1) = ξ(0) = 0,
η(−1) = η(0) = 0. Then from Lemma 3.1 part 4, ξ(x) ≡ 0 and η(x) ≡ 0, hence φ
and ψ are symmetric with respect to x = 0. �

The results in Theorem 5.1 are well-known for scalar equations, see Gidas, Ni,
Nirenberg [11] and Lin and Ni [19], and they have played an important role in prov-
ing the exact multiplicity of positive solutions of scalar semilinear elliptic equations
(see [15, 16, 21, 22]). We remark that the condition f(0) ≥ 0 or g(0) ≥ 0 in The-
orem 5.1 part 2 cannot be removed. Indeed if f(0) < 0 and g(0) < 0, then it is
possible that (5.1) has a positive solution (u, v) such that u′(±1) = v′(±1) = 0,
and in that case (φ, ψ) = (u′, v′) is not symmetric but odd with respect to x = 0.
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An example is when f(v) = v−1 and g(u) = u−1, then u(x) = v(x) = 1 + cos(πx)
is such a solution when λ = π2.

Next we show a variational identity satisfied by solutions of (5.1). Let

H(x) = u′(x)v′(x) + λF (v(x)) + λG(u(x)), (5.3)

where F (v) =
∫ v

0
f(t)dt and G(u) =

∫ u
0
g(t)dt. Then for a solution (λ, u(x), v(x))

of (5.1), H ′(x) ≡ 0 for x ∈ [−1, 1] from the equations. This implies that

u′(±1)v′(±1) = λ[F (v(0)) +G(u(0))]. (5.4)

Hence

F (v(0)) +G(u(0)) ≥ 0. (5.5)

Moreover if (u, v) is a solution such that u′(±1)v′(±1) = 0, then it is necessary
that F (v(0)) + G(u(0)) = 0. Note that such a property is well-known for the
scalar equation u′′ + λf(u) = 0. (5.5) gives a restriction on the possible value of
(u(0), v(0)). Another restriction is

f(v(0)) ≥ 0, g(u(0)) ≥ 0, and f(v(0)) + g(u(0)) > 0. (5.6)

This follows from the fact that u(0) and v(0) are the maximum values of u(x) and
v(x) respectively.

From Theorem 5.1, we could consider the systems on the interval (0, 1) instead
of (−1, 1). Hence we consider

u′′ + λf(v) = 0, x ∈ (0, 1),

v′′ + λg(u) = 0, x ∈ (0, 1),

u′(0) = v′(0) = 0, u(1) = v(1) = 0,

(5.7)

and, (at least when f(0) ≥ 0 or g(0) ≥ 0)

φ′′ + λf ′(v(x))ψ = 0, x ∈ (0, 1),

ψ′′ + λg′(u(x))φ = 0, x ∈ (0, 1),

φ′(0) = ψ′(0) = 0, φ(1) = ψ(1) = 0.

(5.8)

To further study the solution set of (5.1) (or equivalently (5.7)), we consider the
initial value problem

u′′ + f(v) = 0, x > 0,

v′′ + g(u) = 0, x > 0,

u′(0) = v′(0) = 0,

u(0) = α > 0, v(0) = β > 0.

(5.9)

We denote the solution of (5.9) by (u(x;α, β), v(x;α, β)) or simply (u(x), v(x))
when there is no confusion. The solution (u(x), v(x)) can be extended to a maximal
interval (0, R(α, β)) so that u(x) > 0 and v(x) > 0 in (0, R(α, β)). In the following
we will use R = R(α, β) when there is no confusion.

Any positive solution of (5.1) with (u(0), v(0)) = (α, β) satisfies f(β) > 0 and
g(α) > 0. Hence we define I = {(α, β) ∈ R+ × R+ : f(β) > 0, g(α) > 0}. For
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(α, β) ∈ I, u′ < 0 and v′ < 0 in (0, δ), and we partition I into the following classes:

U =
{

(α, β) ∈ I : R <∞, u > 0, v > 0, u′ < 0, v′ < 0, x ∈ (0, R),

u(R) = 0, v(R) > 0
}
,

V =
{

(α, β) ∈ I : R <∞, u > 0, v > 0, u′ < 0, v′ < 0, x ∈ (0, R),

u(R) > 0, v(R) = 0},
N =

{
(α, β) ∈ I : R <∞, u > 0, v > 0, u′ < 0, v′ < 0, x ∈ (0, R),

u(R) = 0, v(R) = 0
}
,

G =
{

(α, β) ∈ I : R =∞, u > 0, v > 0, u′ < 0, v′ < 0, x ∈ (0,∞),

lim
x→∞

u(x) = lim
x→∞

v(x) = 0
}
,

P = I\ (U ∪ V ∪N ∪G) .

(5.10)

If (α, β) ∈ N , then a rescaled (u(x/R;α, β), v(x/R;α, β)) satisfies (5.1) with λ =
[R(α, β)]2. Since R is uniquely determined by (α, β) from the uniqueness of solution
of ODEs, then λ is uniquely determined by (α, β) ∈ N .

We consider the linearized equation of (5.9). Assume that (u, v) is a positive
solution of (5.9). Let (φ1, ψ1) satisfy

φ′′1 + f ′(v)ψ1 = 0, 0 < x < R,

ψ′′1 + g′(u)φ1 = 0, 0 < x < R,

φ1(0) = 1, φ′1(0) = 0,

ψ1(0) = 0, ψ′1(0) = 0;

(5.11)

and let (φ2, ψ2) satisfy

φ′′2 + f ′(v)ψ2 = 0, 0 < x < R,

ψ′′2 + g′(u)φ2 = 0, 0 < x < R,

φ2(0) = 0, φ′2(0) = 0,

ψ2(0) = 1, ψ′2(0) = 0.

(5.12)

The following oscillatory result is similar to Sturm comparison lemma for scalar
equation: (this is a special case of [2, Lemma 2.2])

Lemma 5.2. Let (u, v) be a solution of (5.9) such that u(x) > 0, v(x) > 0,
u′(x) < 0 and v′(x) < 0 for x ∈ (0, R), and let φi, ψi (i = 1, 2) be defined as in
(5.11) and (5.12). Assume that (f, g) satisfies (1.2). Then

(1) φ1(x) > 0 and ψ1(x) < 0 for x ∈ (0, R];
(2) ψ2(x) > 0 and φ2(x) < 0 for x ∈ (0, R].

Proof. We only prove it for φ1 and ψ1, and the proof for the other case is similar.
Since φ1(0) > 0, ψ1(0) = 0, ψ′1(0) = 0, and ψ′′1 (0) = −λg′(u)φ1(0) < 0. Then for
some x0 > 0, φ1(x) > 0 and ψ1(x) < 0 in (0, x0). Define

x1 = sup{0 < x < R : φ1(x) > 0 and ψ1(x) < 0 in (0, x0)}. (5.13)

If x1 = R, then the result holds. So we assume x1 < R. Then either φ1(x1) =
0 or ψ1(x1) = 0. If ψ1(x1) = 0, then ψ1(x) < 0 in (0, x1) and ψ′1(x1) ≥ 0.
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Then multiplying the equation of ψ1 in (5.11) by v′, multiplying the equation of v′

((v′)′′ + λg′(u)u′ = 0) by ψ1, subtracting and integrating on (0, x1), we obtain

[ψ′1v
′ − ψ1v

′′] |x1
0 = −λ

∫ x1

0

g′(u)(φ1v
′ − ψ1u

′)dx. (5.14)

The left hand side is ψ′1(x1)v′(x1) ≤ 0, and the right hand side is positive since
g′(u) > 0, φ1 > 0, ψ1 < 0, u′ < 0 and v′ < 0. That is a contradiction. Similarly we
can show that φ1(x1) = 0 also leads to a contradiction. Hence x1 = R, and from
the equations in (5.11), it is also clear that φ1(R) > 0 and ψ1(R) < 0. �

Next we show that Lemma 5.2 implies the solution set can be parameterized by
a single parameter. This is another key ingredient for our exact multiplicity results.
The following result is similar to the one in Korman and Shi [17] (see Lemma 1 and
Proposition 1):

Lemma 5.3. Suppose that f, g are C1 and satisfy (1.2). Then for each α > 0,
there exists at most one β = β(α) > 0 such that (5.1) has a positive solution with
u(0) = α and v(0) = β, and the value of parameter λ is determined by (α, β(α)).

Proof. We claim that for each α > 0, there exists at most one β > 0 such that
(α, β) ∈ N . Suppose that (α0, β0) ∈ N , we show that (α0, β) ∈ U if β > β0, and
(α0, β) ∈ V if 0 < β < β0. Assume that R0 = R(α0, β0) and 0 < β < β0. Define
R1 = sup{r > 0 : u(x;α0, β) > 0, v(x;α0, β) > 0}. We claim R1 < R0. Define
φ(x) = u(x;α0, β0) − u(x;α0, β) and ψ(x) = v(x;α0, β0) − v(x;α0, β), then (φ, ψ)
satisfies

φ′′ + f ′(V )ψ = 0, x ∈ (0, R∗),

ψ′′ + g′(U)φ = 0, x ∈ (0, R∗),

φ(0) = 0, φ′(0) = 0,

ψ(0) = β0 − β > 0, ψ′(0) = 0,

where R∗ = min(R0, R1), U(x) = t1(x)u(x;α0, β0) + (1− t1(x))u(x;α0, β) > 0, and
U2 = t2(x)v(x;α0, β0)+(1−t2(x))v(x;α0, β) > 0. Then from Lemma 5.2, ψ(x) > 0
and φ(x) < 0 for x ∈ (0, R∗], and φ has at most one zero in (0, R∗]. This implies
that at R∗, u(R∗;α0, β0) < u(R∗;α0, β) and v(R∗;α0, β0) > v(R∗;α0, β). Thus
R∗ = R1, v(R1;α0, β) = 0, and (α0, β) ∈ V . Similarly (α0, β) ∈ U if β > β0. �

From the discussions above, the subset N defined in (5.10) can be parameterized
by either α or β. Here we write

N = {(α, β(α)) : α ∈ N1}, (5.15)

where N1 ⊂ R+. Thus N or N1 is the admissible maximum values of solutions
to (5.1). For each α ∈ N1, let R(α) = R(α, β(α)) be defined as in the proof
of Lemma 5.3. Then (u(x/R(α);α, β(α)), v(x/R(α);α, β(α))) satisfies (5.1) with
λ(α) = [R(α)]2. We have the following properties:

Lemma 5.4. Assume that f, g satisfy (1.3). Let N , N1, R(α) and β(α) and λ(α)
be defined as above, let α ∈ N1, and let (λ0, U(x), V (x)) be the solution of (5.1)
with (U(0), V (0)) = (α, β(α)). Then β′(α) > 0.

Proof. We see that (u(x), v(x)) = (U(x/R(α)), V (x/R(α))) is the solution of (5.9)
with initial value (α, β(α)).
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Differentiating u(R(α);α, β(α)) = 0 and v(R(α);α, β(α)) = 0, we obtain

u′(R(α))R′(α) + φ1(R(α)) + β′(α)φ2(R(α)) = 0,

v′(R(α))R′(α) + ψ1(R(α)) + β′(α)ψ2(R(α)) = 0,
(5.16)

where φi and ψi are defined in (5.11) and (5.12). Suppose that β′(α) ≤ 0. Then
φ1(R(α)) + β′(α)φ2(R(α)) > 0 and ψ1(R(α)) + β′(α)ψ2(R(α)) < 0 from Lemma
5.2. But u′(α) ≤ 0 and v′(α) ≤ 0. That is a contradiction. Therefore we must have
β′(α) > 0. �

The results proved so far in this section hold when either (1.2) or (1.3) is satisfied.
The last result is our main result for the structure of solutions of initial value
problem (5.9) when both (1.2) and (1.3) are satisfied.

Theorem 5.5. Assume that f, g : R+ → R+ satisfy (1.2) and (1.3). Then for each
α > 0, there exists a unique β = β(α) > 0 such that (5.1) has a positive solution
(u, v) with u(0) = α, v(0) = β, with β′(α) > 0 and limα→∞ β(α) = ∞. Moreover,
let U, V,N,G and P be defined as in (5.10), then P = G = ∅, I = R+ × R+ =
U ∪ V ∪N , and

U = {(α, β) : α > 0, β > β(α)},
V = {(α, β) : α > 0, 0 < β < β(α)},
N = {(α, β) : α > 0, β = β(α)}.

(5.17)

Proof. We fix α > 0. First we show that if β > 0 is small enough, then (α, β) ∈
V , which is defined in (5.10). If v(0) = β, then 0 ≤ v(x) ≤ β for x ∈ [0, R].
Hence u′′ = −f(v) ≥ −f(β), and u(x) − α ≥ −(1/2)f(β)x2 for x ∈ [0, R]. We
choose β1 > 0 such that 2β1f(β1) ≤ αg(α/2). Then for x0 =

√
2β1/g(α/2),

u(x) ≥ u(x0) ≥ α − β1f(β1)/g(α/2) ≥ α/2. On the other hand, for x ∈ [0, x0],
v′′ = −g(u) ≤ −g(α/2) hence v(x) ≤ β − (1/2)g(α/2)x2. In particular, v(x0) ≤ 0.
Therefore R ≤ x0 and (α, β) ∈ V for each β ∈ (0, β1). Similarly one can show
that if we choose β2 > 0 such that 2αf(α) ≤ β2g(β2/2), then (α, β) ∈ U for each
β ≥ β2.

Similar to the proof of Lemma 5.3, one can show that if (α, β3) ∈ V , then
(α, β) ∈ V for 0 < β < β3; and if (α, β4) ∈ U , then (α, β) ∈ U for β > β4. On
the other hand, U and V are both open subsets of R+ × R+ from the continuous
dependence of solutions on the initial values. Define β0 = sup{β > 0 : (α, β) ∈ V }.
Again from the proof of Lemma 5.3, R(α, β) is increasing in β for β ∈ (0, β0). Hence
R∗ = limβ→β0 R(α, β) exists. If R∗ =∞, then (α, β0) ∈ G and it is necessary that
u′, v′ → 0 as x → ∞. But from (1.3), F (β0) + G(α) > 0, thus (5.4) leads to a
contradiction. Hence R∗ < ∞, and (α, β0) ∈ N since U and V are both open.
From Lemma 5.3, for any β > β0, we have (α, β) ∈ U . Hence β(α) = β0 is the
unique value inducing a positive solution of (5.1). This also proves that P = G = ∅,
I = R+ × R+ = U ∪ V ∪N , and (5.17) holds. �

Theorem 5.5 shows that when (1.2) and (1.3) are satisfied (hence it is a positone
problem), then the admissible initial condition (α, β) for positive solutions of (5.1)
are on a monotone increasing curve N = {(α, β(α) : α > 0} connecting (0, 0) and
(∞,∞). Hence we only need to consider the solutions of (5.9) with initial conditions
in N , and the function R(α) determines the uniqueness or multiplicity of positive
solutions to (5.1). The set N1 defined above is the entire R+ for this case, but this
may not be true when either (1.2) or (1.3) is not satisfied.
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For the sublinear case, the uniqueness of positive solution of (5.1) has been
proved in Section 4 even for the general bounded domains. Hence we will not use
the approach given in this section for that case again. We point out for the sublin-
ear case, R′(α) > 0 always hold. For the result in Theorem 4.1, when at least one
of f(0) and g(0) is positive, then limα→0+ R(α) = 0 and limα→∞+ R(α) =∞; when
f(0) = g(0) = 0, and f ′(0) > 0, g′(0) > 0, then limα→0+ R(α) = π4/(16f ′(0)g′(0))
and limα→∞+ R(α) = ∞. Note that λ1((−1, 1)) = π2/4. For the result in The-
orem 4.2, when (4.5) is satisfied, then limα→0+ R(α) = π4/(16f ′(0)g′(0)) and
limα→∞+ R(α) = π4/(16k1k2); when f and g are negative for large u, v > 0, then
limα→0+ R(α) = π4/(16f ′(0)g′(0)) and limα→∞+ R(α) =∞.

6. One-dimensional superlinear problem

In this section we apply the theory developed in Section 5 for the solutions of
(5.1) with superlinear f and g. Our main result is the following.

Theorem 6.1. Assume that f, g : R+ → R+ are superlinear, f(0) = g(0) = 0, f, g
satisfy (1.2), and

lim
u→∞

g(u)
u

= lim
v→∞

f(v)
v

=∞. (6.1)

(1) If at least one of f ′(0) and g′(0) equals to 0, then (5.1) has a unique positive
solution (uλ, vλ) for all λ > 0;

(2) If f ′(0) > 0 and g′(0) > 0, then for λ∗ = λ1/
√
f ′(0)g′(0), (5.1) has no

positive solution when λ ≥ λ∗, and (5.1) has a unique positive solution
(uλ, vλ) for 0 < λ < λ∗.

Moreover, {(λ, uλ, vλ) : 0 < λ < λ∗} (in the first case, we assume λ∗ = ∞) is a
smooth curve such that uλ(0) and vλ(0) are decreasing in λ.

Proof. If f ′(0) > 0, g′(0) > 0, then by using f(v) ≥ f ′(0)v and g(u) ≥ g′(0)u for
u, v ≥ 0, and similar to (4.4), we have

0 =
∫ 1

−1

[u′′ + λf(v)]Ψ1dx+
∫ 1

−1

[v′′ + λg(u)]Φ1dx

=
∫ 1

−1

Φ1[−λ∗g′(0)u+ λg(u)]dx+
∫ 1

−1

Ψ1[−λ∗f ′(0)v + λf(v)]dx > 0,
(6.2)

if λ ≥ λ∗ and u, v > 0, where (Φ1,Ψ1) is same as in the proof of Theorem 4.1. Hence
(5.1) has no positive solution when λ ≥ λ∗. On the other hand, if (i) f ′(0) > 0,
g′(0) > 0, and λ < λ∗, or (ii) at least one of f ′(0) and g′(0) equals to 0, then one
can use the results in [4, 10] to obtain the existence of a positive solution of (1.1) for
any bounded smooth domain in Rn by using degree theory or variational method.

For the one-dimensional problem (5.1), each positive solution corresponds to
an (α, β(α)) ∈ N , from Theorem 5.5. To prove the uniqueness, we prove that
R′(α) < 0 for any α > 0. For that purpose, we consider the solution (Ac, Bc) of
the initial value problem

A′′c + f ′(v)Bc = 0, 0 < x < R,

B′′c + g′(u)Ac = 0, 0 < x < R,

Ac(0) = 1, A′c(0) = 0,

Bc(0) = c > 0, B′c(0) = 0,

(6.3)
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for c ≥ 0. Apparently (Ac, Bc) = (φ1, ψ1)+c(φ2, ψ2). From (5.16), it is sufficient to
determine the sign of Ac(R(α)) (which also equals to the sign of Bc(R(α))), where
c = β′(α). To the contrary, we assume that Ac(R(α)) ≥ 0 and Bc(R(α)) ≥ 0. First
we prove that Ac(x) and Bc(x) must change sign. Suppose that Ac(x) > 0 and
Bc(x) > 0 for x ∈ [0, R(α)). By integrating the equation Bc(u′′ + f(v)) = 0 and
u(B′′c + g′(u)Ac) = 0 on (0, R(α)), we obtain∫ R(α)

0

[g′(u)uAc − f(v)Bc]dx = Bc(R(α))u′(R(α)). (6.4)

Similarly we also have∫ R(α)

0

[f ′(v)vBc − g(u)Ac]dx = Ac(R(α))v′(R(α)). (6.5)

Then by adding (6.4) and (6.5), we obtain∫ R(α)

0

[g′(u)u− g(u)]Acdx+
∫ R(α)

0

[f ′(v)v − f(v)]Bcdx

= Bc(R(α))u′(R(α)) +Ac(R(α))v′(R(α)).

Since f and g are superlinear and Ac(x) > 0 and Bc(x) > 0 for x ∈ [0, R(α)), then
the left hand side is positive. On the other hand, the right hand side is non-positive
since u′(R(α)) < 0 and v′(R(α)) < 0. This is a contradiction.

Therefore Ac(x) and Bc(x) must change sign in (0, R(α)). To track the sign-
changing of Ac and Bc, we define

c1(x) = −φ1(x)
φ2(x)

, 0 < x ≤ R, c2(x) = −ψ1(x)
ψ2(x)

, 0 < x ≤ R, (6.6)

where (φ1, ψ1) and (φ2, ψ2) are solutions of (5.11) and (5.12) respectively. Then
from proof above, the graphs of c1(x) and c2(x) must intersect in (0, R). Let x∗ be
the smallest x > 0 such that c1(x) = c2(x) = c∗ > 0. From the definition of ci(x),
we have

c′1(x) =
φ1φ

′
2 − φ2φ

′
1

φ2
2

=

∫ x
0
f ′(v)(ψ1φ2 − ψ2φ1)ds

φ2
2

=

∫ x
0
f ′(v)φ2ψ2(c1 − c2)ds

φ2
2

,

c′2(x) =
ψ1ψ

′
2 − ψ2ψ

′
1

ψ2
2

=

∫ x
0
g′(u)(ψ2φ1 − ψ1φ2)ds

ψ2
2

=

∫ x
0
g′(u)φ2ψ2(c2 − c1)ds

ψ2
2

.

(6.7)

Since c1(x)− c2(x) > 0 for x ∈ (0, x∗), then c′1(x) < 0, c′2(x) > 0, and c1(x) > c∗ >
c2(x) for x ∈ (0, x∗). This also implies that for c = c∗, Ac∗(x) > 0 and Bc∗(x) > 0
for x ∈ [0, x∗) and Ac∗(x∗) = Bc∗(x∗) = 0.

Suppose that the graphs of c1(x) and c2(x) have another intersection point.
Let x∗∗ be the smallest x ∈ (x∗, R] such that c1(x) = c2(x) = c∗∗ > 0. Then
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c1(x) < c2(x) for x ∈ (x∗, x∗∗). Note that

c′′1(x) =
f ′(v)φ2ψ2(c1 − c2)φ2

2 − 2φ2φ
′
2

∫ x
0
f ′(v)φ2ψ2(c1 − c2)ds

φ4
2

,

c′′2(x) =
g′(u)φ2ψ2(c2 − c1)ψ2

2 − 2ψ2ψ
′
2

∫ x
0
g′(u)φ2ψ2(c2 − c1)ds

ψ4
2

.

(6.8)

If there exists x1 ∈ (x∗, x∗∗) such that c′1(x1) = 0, then

c′′1(x1) =
f ′(v)φ2ψ2(c1 − c2)

φ2
2

∣∣∣
x=x1

> 0,

since c1(x1) < c2(x1) and f ′(v(x)) > 0, φ2(x) < 0, ψ2(x) > 0 for x ∈ (0, R].
Similarly, if there exists x2 ∈ (x∗, x∗∗) such that c′2(x2) = 0, then

c′′2(x2) =
g′(u)φ2ψ2(c2 − c1)

φ2
2

∣∣∣
x=x2

< 0.

This combining with c′1(x) < 0 and c′2(x) > 0 in (0, x∗] implies that c1(x) has at
most one critical point which is a local minimum, and c2(x) has at most one critical
point which is a local maximum. In particular, the horizontal line c = c∗∗ intersects
each of c = c1(x) and c = c2(x) at most once for x ∈ [0, x∗∗), or equivalently, each of
Ac∗∗(x) and Bc∗∗(x) changes sign in (0, x∗∗) at most once. Then there are following
three possible cases:

(i) Both of Ac∗∗(x) and Bc∗∗(x) change sign in (0, x∗∗) exactly once.
(ii) Ac∗∗(x) changes sign in (0, x∗∗) exactly once, and Bc∗∗(x) does not change

sign in (0, x∗∗).
(iii) Bc∗∗(x) changes sign in (0, x∗∗) exactly once, and Ac∗∗(x) does not change

sign in (0, x∗∗).
If case (i) occurs, then

Ac∗∗(x∗∗) = Bc∗∗(x∗∗) = 0, A′c∗∗(x∗∗) ≥ 0, B′c∗∗(x∗∗) ≥ 0. (6.9)

Using the equation of Ac with c = c∗∗ and the equation of v′, we obtain

A′′c∗∗v
′ − (v′)′′Ac∗∗ + f ′(v)v′Bc∗∗ − g′(u)u′Ac∗∗ = 0. (6.10)

Similarly we have

B′′c∗∗u
′ − (u′)′′Bc∗∗ + g′(u)u′Ac∗∗ − f ′(v)v′Bc∗∗ = 0. (6.11)

Adding (6.10) and (6.11), we obtain

A′′c∗∗v
′ − (v′)′′Ac∗∗ +B′′c∗∗u

′ − (u′)′′Bc∗∗ = 0. (6.12)

Define a function

P (x) = A′c∗∗(x)v′(x)− v′′(x)Ac∗∗(x) +B′c∗∗(x)u′(x)− u′′(x)Bc∗∗(x),

x ∈ [0, R]. Then (6.12) implies that P ′(x) ≡ 0 for x ∈ (0, R). Hence, for x ∈ [0, R],

P (x) ≡ P (0) = −v′′(0)Ac∗∗(0)− u′′(0)Bc∗∗(0) = g(u(0)) + f(v(0))c∗∗ > 0. (6.13)

However, from (6.9), we have

P (x∗∗) = A′c∗∗(x∗∗)v′(x∗∗) +B′c∗∗(x∗∗)u′(x∗∗) ≤ 0, (6.14)

which is a contradiction with (6.13).
If case (ii) occurs, suppose the unique zero of Ac∗∗ in (0, x∗∗) is x1, then

Ac∗∗(x1) = Ac∗∗(x∗∗) = Bc∗∗(x∗∗) = 0, Ac∗∗(x) < 0, Bc∗∗(x) > 0 (6.15)
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in (x1, x
∗∗), and

A′c∗∗(x1) ≤ 0, A′c∗∗(x∗∗) ≥ 0. (6.16)
Then multiplying the equation of Ac∗∗ by u′, multiplying the equation of u′ by
Ac∗∗ , subtracting and integrating on (x1, x

∗∗), we obtain

A′c∗∗(x∗∗)u′(x∗∗)−A′c∗∗(x1)u′(x1) =
∫ x∗∗

x1

f ′(v)v′(Ac∗∗ −Bc∗∗)dx. (6.17)

The left hand side of (6.17) is non-positive since u′(x) < 0 in (0, R) and (6.16)
holds, while the right hand side of (6.17) is positive since f ′(v) > 0, v′ < 0 in
(0, R) and (6.15) holds. That is a contradiction. If case (iii) occurs, we can derive
a similar contradiction as case (ii).

This proves that c1(x) and c2(x) cannot intersect again in (0, R), and we have
c1(R) < c2(R). If c = β′(α) ≤ c1(R) or c ≥ c2(R), we have sgn(Ac(R(α)) 6=
sgn(Bc(R(α)), which is not possible. Hence we must have c = β′(α) belongs to
(c1(R), c2(R)), which implies that Ac(R(α)) < 0 and Bc(R(α)) < 0. This shows
that R(α) < 0 for any α > 0.

This shows that the function α 7→ R(α) is a one-to-one and onto function from
(0,∞) to its range. For the case that at least one of f ′(0) and g′(0) equals to 0, the
range is (0,∞), and for the case that f ′(0) > 0, g′(0) > 0, and λ < λ∗, the range is
(0, λ2

∗). This proves the uniqueness of positive solution to (5.1) for both cases. Let
the unique positive solution of (5.1) be (uλ(x), vλ(x)). Since λ(α) =

√
R(α) and

R(α) is decreasing in α, then α = uλ(0) is decreasing in λ. One can also obtain
that β = vλ(0) is decreasing in λ since β′(α) > 0. This completes the proof. �
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