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BOGDANOV-TAKENS SINGULARITY OF A NEURAL
NETWORK MODEL WITH DELAY

XIAOQIN P. WU

Abstract. In this article, we study Bogdanov-Takens (BT) singularity of a

tree-neuron model with time delay. By using the frameworks of Campbell-

Yuan [2] and Faria-Magalhães [4, 5], the normal form on the center manifold
is derived for this singularity and hence the corresponding bifurcation dia-

grams such as Hopf, double limit cycle, and triple limit cycle bifurcations are

obtained. Examples are given to verify some theoretical results.

1. Introduction

The objective of this manuscript is to study codimension-2 (Bogdanov-Takens
(BT)) bifurcation of the tree-neuron model with delay

dv1(t)
dt

= −v1(t) + f1(v3(t)− bv3(t− τ)),

dv2(t)
dt

= −v2(t) + f2(v1(t)− bv1(t− τ)),

dv3(t)
dt

= −v3(t) + f3(v2(t)− bv2(t− τ)).

(1.1)

Here fi is a C4 functions with fi(0) = 0 (i = 1, 2, 3), ai = f ′i(0) > 0 corresponds
to the range of the continuous variable vi, b > 0 is the measure of the inhibitory
influence of the past history, and τ > 0 is the time delay due to the time for other
neurons to respond. This model is a little bit different from the ones studied in
[1, 3, 6, 7, 9] in which our functions fi(x) (i = 1, 2, 3) can be different.

Neural networks or neural nets have been studied by many researchers since Hop-
field [7] constructed a simplified neural network model of a linear circuit consisting
of a resistor and a capacitor connected to other neurons via nonlinear sigmoidal ac-
tivation functions and have been applied to artificial neural network and artificial
brain and other fields. In this article, we focus on System (1.1).
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Let ui(t) = vi(t)− bvi(t− τ) (i = 1, 2, 3). Then (1.1) can be written as

du1(t)
dt

= −u1(t) + f1(u3(t))− bf1(u3(t− τ)),

du2(t)
dt

= −u2(t) + f2(u1(t))− bf2(u1(t− τ)),

du3(t)
dt

= −u3(t) + f3(u2(t))− bf3(u2(t− τ)).

(1.2)

Clearly (0, 0, 0) is an equilibrium point of (1.2) and hence the linearized system at
(0, 0, 0) is

du1(t)
dt

= −u1(t) + a1u3(t)− ba1u3(t− τ),

du2(t)
dt

= −u2(t) + a2u1(t)− ba2u1(t− τ),

du3(t)
dt

= −u3(t) + a3u2(t)− ba3u2(t− τ),

whose corresponding characteristic equation is

∆(λ) = (λ+ 1)3 − a3(1− be−λτ )3 = 0 (1.3)

where a3 = a1a2a3 and ai = f ′i(0) (i = 1, 2, 3).
The dynamical behavior and bifurcation of (1.2) have been studied extensively

[1, 3, 6, 9]. In [1, 6, 9], Hopf singularity was studied for fi(x) = tanh(x) by using τ
as bifurcation parameter. In [3], the authors found critical values of b and τ such
that a zero-Hopf singularity occurs.

Note that all the results mentioned above depend on the distribution of roots of
the characteristic equation (1.3). If (1.3) has a pair of purely imaginary roots, a
Hopf singularity occurs and hence a limit cycle may bifurcate from the equilibrium
point. If (1.3) has a simple zero root and a pair of purely imaginary roots, a
zero-Hopf singularity occurs. However, under certain conditions, the characteristic
equation may have double zero root and this has not been studied in the literature.
For a double zero eigenvalue, the corresponding Jordan matrix is either ( 0 0

0 0 ) or
( 0 1

0 0 ). Our study shows that only the latter case occurs for (1.2). More specifically,
we use (b, τ) as bifurcation parameter to obtain the critical value (b∗, τ∗) such that
the characteristic equation has a double zero and then investigate its corresponding
dynamical behaviors. Note that we can find the conditions such that the equilibrium
point is asymptotically stable. But this is not practical since cyclic behaviors are
very common in real world. This leads to study Hopf singularity and in many
cases the condition for Hopf singularity is not always satisfied. We show that, for
double zero singularity, we still can obtain limit cycles under small perturbations
of (b∗, τ∗) and under certain conditions despite of the fact that the condition for
Hopf singularity is violated. It turns out that double zero singularity has rich
dynamical behaviors. We use the frameworks of Campbell-Yuan [2] and Faria-
Magalhães [4, 5] to conduct the center manifold reduction to obtain the normal
form for this singularity and hence the corresponding bifurcation diagrams such as
Hopf, double limit cycle, and triple limit cycle bifurcations.

The rest of this manuscript is organized as follows. In Section 2, the detailed
conditions are given for the linear part of (1.2) at an equilibrium point in the
(b, τ)-parameter space to have a triple zero eigenvalue and other eigenvalues with
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negative real parts. In Section 3, the normal form of double zero singularity for
(1.2) is obtained on the center manifold by using the frameworks from [2] and [4, 5].
In Section 4, the normal form in Section 3 is used to obtain bifurcation diagrams
of the original (1.2) such as Hopf and homoclinic bifurcations, and two examples
are presented to confirm some theoretical results.

2. Distribution of eigenvalues

In the rest of this manuscript, we assume b = b∗ ≡ a−1
a and a > 1. Clearly if

τ = τ∗ ≡ 1
a−1 , we have ∆(0) = ∆′(0) = 0 and ∆′′(0) = 3

a−1 6= 0. Namely ∆(λ) = 0
has a zero root of with multiplicity 2 if τ = τ∗. Clearly (1.3) is equivalent to the
equations

λ− (a− (a− 1)e−λτ )e2kπi/3 = 0, k = 0, 1, 2.
For ω > 0, letting ∆(iω) = 0, we have

1 + iω − (a− (a− 1)e−iωτ ) = 0, (2.1)

or
1 + iω − (a− (a− 1)e−iωτ )e

2π
3 i = 0, (2.2)

or
1 + iω − (a− (a− 1)e−iωτ )e

4π
3 i = 0. (2.3)

From(2.1), after separating the real part from imaginary part, we have

cos(ωτ) = 1, sin(ωτ) =
ω

a− 1
which give ω = 0. Similarly, from (2.2), we have

cos(ωτ) =
1 + 2a−

√
3ω

2(a− 1)
, sin(ωτ) = −

√
3 + ω

2(a− 1)
.

Using cos2(ωτ) + sin2(ωτ) = 1, we obtain

4ω2 − a
√

3ω + 3a = 0.

Clearly if a < 4, this equation does not have positive roots. If a > 4, it has two
different positive roots

ω± =
√

3
2

(a±
√
a(a− 4)).

In this case, define

τ±j (a) =
1
ω±

[2(j + 1)π − arccos
1 + 2a−

√
3ω±

2(a− 1)
], j = 0, 1, 2, . . . .

If a = 4 it has a positive root ω = ω∗ ≡ 2
√

3 with multiplicity 2. In this case, define

τj =
1

2
√

3
[2(j + 1)π − π

3
], j = 0, 1, 2, . . . .

Note that if ωi is a root of (2.2), then −ωi is a root of (2.3). Now define

γ = {(a, τ) : τ =
1

a− 1
, a > 1}, l = {(a, τ) : a = 4, τ > 0},

Γ±j = {(a, τ) : τ = τ±j (a), a > 4},

and Pj = (4, τj), j = 0, 1, 2, . . . . Thus we obtain the following result (see Figure 1
for j = 0).
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Figure 1. Bifurcation diagrams in (a, τ)-plane for b = b∗

Theorem 2.1. Let b = a−1
a and a > 1. In the (a, τ)-plane, we have

(i) if (a, τ) is on the curve γ, the characteristic equation (1.3) has a double
zero root and hence a BT (double zero) singularity occurs;

(ii) if (a, τ) is on one of the curves Γ+
j = {(a, τ) : τ = τ+

j (a)} (or Γ−j = {(a, τ) :
τ = τ−j (a)}) (j = 0, 1, 2, . . . ), the characteristic equation (1.3) has a simple
zero root and a pair of purely imaginary roots ±ω+i (±ω−i) and hence a
zero-Hopf singularity occurs;

(iii) if (a, τ) is one of the points (4, τj) (j = 0, 1, 2, . . . ), the characteristic equa-
tion (1.3) has a simple zero root and a pair of purely imaginary roots 2

√
3

with multiplicity 2 and hence zero-Hopf 1:1 singularity occurs.
(iv) if (a, τ) is not one of the above, then the characteristic equation (1.3) has

a simple zero root and hence a zero (or fold) singularity occurs.

For the distribution of the rest of eigenvalues for τ > 0, we use the following
lemma.

Lemma 2.2 (Ruan and Wei [10]). Consider the transcendental polynomial

P (λ, e−λτ1 , e−λτ2) = p(λ) + q1(λ)e−λτ1 + q2(λ)e−λτ2 ,

where p, q1, q2 are real polynomials such that max{deg q1,deg q2} < deg(p) and
τ1, τ2 ≥ 0. Then as (τ1, τ2) varies, the sum of the orders of the zeros of P in the
open right half plane can change only if a zero appears on or crosses the imaginary
axis.

Note that
∆(λ)b=b∗,τ=0 = λ(λ2 + 3λ+ 3)

whose non-zero roots have negative real parts. By using Lemma 2.2, we obtain the
following result regarding the rest of eigenvalues.

Lemma 2.3. If b = b∗, all roots of the characteristic equation (1.3) have negative
real parts except zero-root and purely imaginary roots.

We remark that in this manuscript, we only study BT singularity.
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3. Computation of the normal form of double zero singularity

In this section, we use the theory of center manifold reduction for general delay
differential equations (DDEs) (see the detail in [4, 5]) to compute the normal form
of BT singularity. In the rest of this manuscript, we always assume that the as-
sumption (H1) holds. Now we treat (b, τ) as a bifurcation parameter near (b∗, τ∗).
By scaling t→ t/τ , (1.2) can be written as

du1(t)
dt

= τ(−u1(t) + f1(u3(t))− bf1(u3(t− 1))),

du2(t)
dt

= τ(−u2(t) + f2(u1(t))− bf2(u1(t− 1))),

du3(t)
dt

= τ(−u3(t) + f3(u2(t))− bf3(u2(t− 1))).

Let

fi(x) = aix+
1
2
f ′′i (0)x2 +

1
3!
f ′′′(0)x3 +O(x4).

Define C := C([−1, 0],R3), C∗ := C([0, 1],R3∗) and C1 = C1([−1, 0],R3). Let
µ1 = b− b∗, µ2 = τ − τ∗. Then on C we have

du1(t)
dt

= (τ∗ + µ2)
[
− u1(0) + a1u3(0)− a1(b∗ + µ1)u3(−1) +

1
2
f ′′1 (0)u2

3(0)

− 1
2

(b∗ + µ1)f ′′1 (0)u2
3(−1) +

1
6
f ′′′1 (0)u3

3(0)

− 1
6

(b∗ + µ1)f ′′′1 (0)u3
3(−1)

]
+O(‖µ‖2 + ‖µ‖‖y‖3),

du2(t)
dt

= (τ∗ + µ2)
[
− u2(0) + a2u1(0)− a2(b∗ + µ1)u1(−1) +

1
2
f ′′2 (0)u2

1(0)

− 1
2

(b∗ + µ1)f ′′2 (0)u2
1(−1) +

1
6
f ′′′2 (0)u3

1(0)

− 1
6

(b∗ + µ1)f ′′′2 (0)u3
1(−1)

]
+O(‖µ‖2 + ‖µ‖‖y‖3),

du3(t)
dt

= (τ∗ + µ2)
[
− u3(0) + a3u2(0)− a3(b∗ + µ1)u2(−1) +

1
2
f ′′3 (0)u2

2(0)

− 1
2

(b∗ + µ1)f ′′3 (0)u2
2(−1) +

1
6
f ′′′3 (0)u3

2(0)

− 1
6

(b∗ + µ1)f ′′′3 (0)u3
2(−1)] +O(‖µ‖2 + ‖µ‖‖y‖3).

(3.1)
Let

A =

− 1
a−1 0 a1

a−1
a2
a−1 − 1

a−1 0
0 a3

a−1 − 1
a−1

 , B =

 0 0 −a1
a

−a2
a 0 0

0 −a3
a 0

 .

Define

∆(λ) = λI − (A + Be−λ),

and the linear operator

LXt = AX(t) + BX(t− 1), for X ∈ C.
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From Section 2, we see that L has a double zero eigenvalue and all the other
eigenvalues have negative real parts. It is easy to see that

∆(0) = −(A + B), ∆′(0) = I + B.

Let u = (u1, u2, u3)T ∈ C, µ = (µ1, µ2)T , and

F (ut, µ) = (F 1(ut, µ), F 2(ut, µ), F 3(ut, µ))T ,

where

F 1(ut, µ) = −µ1a1τ
∗u3(−1) + µ2[−u1(0)− a1b

∗u3(−1)] +
1
2
f ′′1 (0)u2

3(0)

− 1
2
b∗f ′′1 (0)u2

3(−1) +
1
6
f ′′′1 (0)u3

3(0)− 1
6
b∗f ′′′1 (0)u3

3(−1)

+O(‖µ‖2 + ‖µ‖‖y‖3),

F 2(ut, µ) = −µ1a2τ
∗u1(−1) + µ2[−u2(0)− a2b

∗u1(−1)] +
1
2
f ′′2 (0)u2

1(0)

− 1
2

(b∗ + µ1)f ′′2 (0)u2
1(−1) +

1
6
f ′′′2 (0)u3

1(0)− 1
6
b∗f ′′′2 (0)u3

1(−1)

+O(‖µ‖2 + ‖µ‖‖y‖3),

F 3(ut, µ) = −µ1a3τ
∗u2(−1) + µ2[−u3(0)− a3b

∗u2(−1)] +
1
2
f ′′3 (0)u2

2(0)

− 1
2
b∗f ′′3 (0)u2

2(−1) +
1
6
f ′′′3 (0)u3

2(0)− 1
6
b∗f ′′′3 (0)u3

2(−1)

+O(‖µ‖2 + ‖µ‖‖y‖3).

Then (3.1) can be written as

u̇(t) = Lut + F (ut, µ) (3.2)

whose corresponding linear part at 0 is

u̇(t) = Lut. (3.3)

From [2], the bilinear form between C and C∗ can be expressed as

(ψ,ϕ) = ψ(0) · ϕ(0) +
∫ 0

−1

ψ(ξ + 1)Bϕ(ξ)dξ. (3.4)

Then L has a generalized eigenspace P which is invariant under the flow (3.3). Let
P ∗ be the space adjoint with P in C∗. Then C can be decomposed as C = P ⊕Q
where Q = {ϕ ∈ C : 〈ψ,ϕ〉 = 0,∀ψ ∈ P ∗}. Furthermore, we can choose the bases
Φ and Ψ for P and P ∗, respectively, such that

(Ψ,Φ) = I, Φ̇ = ΦJ, Ψ̇ = −JΨ,

where I is the identity matrix and J = ( 0 1
0 0 ) the Jordan matrix associated with the

double zero eigenvalue with geometric multiplicity 1.
Next, we obtain the explicit expressions of Φ and Ψ. According to Campbell

and Yuan [2], the basis Φ for P can be chosen as

Φ = [ϕ1, ϕ2] = [v1, v2 + θv1]

and the basis Ψ for P ∗ as

Ψ =
(
ψ1

ψ2

)
=
(
−w1s+ w2

w1

)
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where v1, v2 ∈ R3 and w1, w2 ∈ R3∗ satisfy

∆(0)v1 = 0,∆′(0)v1 + ∆(0)v2 = 0, (3.5)

w1∆(0) = 0, w1∆′(0) + w2∆(0) = 0. (3.6)

Note that (3.5) is equivalent to

(A + B)v1 = 0, (A + B)v2 = (I + B)v1,

from which we obtain

v1 =

 1
a2/a
a/a1

 , v2 =

 1
a2/a
a/a1


Similarly, (3.6) is equivalent to, respectively,

w1(A + B) = 0, w2(A + B) = w1(I + B).

In fact, we have w1 = k1(1, a/a2, a1/a), w2 = k2(1, a/a2, a1/a). We can choose
k1 = 2/3, k2 = −4/9 such that

(Φ,Ψ) = I.

Thus we obtain the bases Φ and Ψ of P and P ∗ such that Φ̇ = ΦJ and Ψ̇ = −JΨ.
Next we compute the corresponding normal form. Let u = Φx + y (here x =

(x1, x2)T ∈ R2 and y = (y1, y2, y3)T ∈ C); namely

u1(θ) = x1 + θx2 + y1(θ),

u2(θ) =
a2

a
x1 +

a2(1 + θ)
a

x2 + y2(θ),

u3(θ) =
a

a1
x1 +

a(1 + θ)
a1

x2 + y3(θ).

Then, on the center manifold y = g(x(t), θ), (3.2) becomes

ẋ = Jx+ Ψ(0)F (Φx+ g(x, θ), µ)

= Jx+
1
2
f1
2 (x, 0, µ) +

1
3!
f1
3 (x, 0, µ) +O(|µ||x|2 + |µ|2|x|+ |x|4)

(3.7)

where
1
2
f1
2 (x, 0, µ) =

( 4a
3(a− 1)

µ1x1 −
4
3

(a− 1)µ2x2,−
2a
a− 1

µ1x1 + 2(a− 1)µ2x2

)
+

1
9a2

1a2(a− 1)a4
(a2a

5f ′′1 (0) + a2
1a

4f ′′2 (0)

+ a3
1a

3
2f
′′
3 (0))(x2

1 + 2ax1x2 + ax2
2)
(
−2
3

)
,

1
3!
f1
3 (x, 0, 0)

=
2(a7a2f

′′′
1 (0) + a5a3

1f
′′′
2 (0) + a4

1a
4
2f
′′′
3 (0))

27(a− 1)a5a3
1

(x3
1 + 3ax2

1x2 + 3ax1x
2
2 + x3

2)
(
−2
3

)
.

Using the result in [2] to project on the center manifold up to the second order and
after long calculation (we omit the detail), then (3.7) can be transformed as the
following normal form,

ẋ = Jx+
1
2!
g1
2(x, 0, µ) +O(|µ|2|x|+ |x|3),
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or
ẋ1 = x2,

ẋ2 = χ1x1 + χ2x2 +A20x
2
1 +A11x1x2 +O(|µ|2|x|+ |x|3),

(3.8)

in which χj and Ajk are given by

χ1 = − 2a
a− 1

µ1,

χ2 =
4a

3(a− 1)
µ1 + 2(a− 1)µ2,

A20 =
a5a2f

′′
1 (0) + a4a2

1f
′′
2 (0) + a3

1a
3
2f
′′
3 (0)

3a4a2
1a2(a− 1)

,

A11 =
2(3a− 2)(a5a2f

′′
1 (0) + a4a2

1f
′′
2 (0) + a3

1a
3
2f
′′
3 (0))

9a4a2
1a2(a− 1)

,

if a5a2f
′′
1 (0) + a4a2

1f
′′
2 (0) + a3

1a
3
2f
′′
3 (0) 6= 0. Since

∣∣∂χ
∂µ

∣∣ = det

(
∂χ1
∂µ1

∂χ1
∂µ2

∂χ2
∂µ1

∂χ2
∂µ2

)
= −4a 6= 0,

we have that (µ1, µ2) → (χ1, χ2) is regular and hence the transversality condition
holds. If a5a2f

′′
1 (0) + a4a2

1f
′′
2 (0) + a3

1a
3
2f
′′
3 (0) = 0, then (3.7) can be transformed as

the following normal form with the third order,

ẋ = Jx+
1
2!
g1
2(x, 0, µ) +

1
3!
g1
3(x, 0, µ) +O(|µ|2|x|+ |x|4),

or
ẋ1 = x2,

ẋ2 = χ1x1 + χ2x2 +A30x
3
1 +A21x

2
1x2 +O(|µ|2|x|+ |x|4),

(3.9)

in which χj and Ajkl are given by

A30 =
a7a2f

′′′
1 (0) + a5a3

1f
′′′
2 (0) + a4

1a
4
2f
′′′
3 (0)

9a5a3
1a2(a− 1)

,

A21 =
(3a− 2)(a7a2f

′′′
1 (0) + a5a3

1f
′′′
2 (0) + a4

1a
4
2f
′′′
3 (0))

9a5a3
1a2(a− 1)

.

4. Bifurcation diagrams and computer simulation

In this section, we only give the bifurcation diagrams for (3.9) since it has much
richer dynamical behaviors than (3.8) does. Remember that, in this situation, we
have a5a2f

′′
1 (0) + a4a2

1f
′′
2 (0) + a3

1a
3
2f
′′
3 (0) = 0. Noting that a > 1 and that, if

a7a2f
′′′
1 (0) + a5a3

1f
′′′
2 (0) + a4

1a
4
2f
′′′
3 (0) 6= 0, then A30A21 > 0.

Case 1: A30 < 0 and A21 < 0. Then under the substitution

t→ A21

A30
t, x1 → −

A21√
|A30|

x1, x2 →
A2

21

|A30|3/2
x2,

System (3.9) is transformed into

ẋ1 = x2,

ẋ2 = ε1x1 + ε2x2 − x3
1 − x2

1x2,
(4.1)
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where

ε1 =
(
A21

A30

)2

χ1 = −2a(3a− 2)2

a− 1
µ1,

ε2 =
A21

A30
χ2 =

2(3a− 2)
3a2(a− 1)

(2aµ1 + 3(a− 1)2µ2).

The complete bifurcation diagrams of (4.1) can be found in [8]. Here, we just list
two results.

Lemma 4.1. Let

F 1
+ = {(ε1, ε2) : ε1 = 0, ε2 > 0},

H1 = {(ε1, ε2) : ε2 = 0, ε1 < 0},
H2 = {(ε1, ε2) : ε2 = ε1, ε1 > 0},

P = {(ε1, ε2) : ε2 =
4
5
ε1 + o(ε1), ε1 > 0}.

K = {(ε1, ε2) : ε2 = κ0ε1 + o(ε1), ε1 > 0}, κ0 ≈ 0.752.

For small ε1, ε2, then
(i) if (ε1, ε2) is in the region between the curves F 1

+ and H1 or between F 1
+ and

H2, (4.1) has a limit cycle;
(ii) if (ε1, ε2) is in the region between the curves H2 and P , (4.1) has three limit

cycles: a “big” one and two “small” ones;
(iii) if (ε1, ε2) is in the region between the curves P and K, (4.1) has two limit

cycles: the outer one is stable while the inner is unstable.

Using the expressions of ε1, ε2, we have the following result.

Theorem 4.2. Suppose that b = b∗ + µ1 and τ = τ∗ + µ2. Let

F̄ 1
+ = {(µ1, µ2) : µ1 = 0, µ2 > 0},

H̄1 = {(µ1, µ2) : µ2 = − 2a
3(a− 1)2

µ1, µ1 > 0},

H̄2 = {(µ1, µ2) : µ2 = −a(9a− 4)
3(a− 1)2

µ1, µ1 < 0},

P̄ = {(µ1, µ2) : µ2 = −2a(18a− 7)
15(a− 1)2

µ1 + o(|µ|), µ1 < 0}.

K̄ = {(µ1, µ2) : µ2 = −a(κ0(9a− 6) + 2)
3(a− 1)2

µ1 + o(|µ1|), µ1 < 0}.

For small µ1, µ2, then
(i’) if (µ1, µ2) is in the region between the curves F̄ 1

+ and H̄1 or between F̄ 1
+ and

H̄2, (1.1) has a stable limit cycle;
(ii’) if (µ1, µ2) is in the region between the curves H2 and P , (1.1) has three

limit cycles: a “big” one and two “small” ones;
(iii’) if (µ1, µ2) is in the region between the curves P and K, (1.1) has two limit

cycles: the outer one is stable while the inner is unstable.

Case 2: A30 > 0 and A21 > 0. Then under the substitution

t→ A21

A30
t, x1 →

A21√
A30

x1, x2 → −
A2

21

A
3/2
30

x2,
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System (3.9) is transformed into
ẋ1 = x2,

ẋ2 = ε1x1 + ε2x2 + x3
1 − x2

1x2,
(4.2)

where

ε1 =
(A21

A30

)2

χ1 = −2a(3a− 2)2

a− 1
µ1,

ε2 = −A21

A30
χ2 =

2(3a− 2)
3a2(a− 1)

(2aµ1 + 3(a− 1)2µ2).

The complete bifurcation diagrams of (4.2) can also be found in [8]. Here, we just
list two results.

Lemma 4.3. for small ε1, ε2, we have:
(i) System (4.2) undergoes a Hopf bifurcation for the trivial equilibrium point on

the line
H = {(ε1, ε2) : ε2 = 0, ε1 < 0}.

(ii) On the curve

C = {(ε1, ε2) : ε2 = −1
5
ε1 + o(ε1), ε1 < 0},

(4.2) undergoes a heteroclinic bifurcation. Moreover, if (ε1, ε2) is in the region
between the curves H and C (4.2) has a unique stable periodic orbit.

Using the expressions of ε1, ε2, we have the following result.

Theorem 4.4. Suppose that b = b∗ + µ1 and τ = τ∗ + µ2. For small µ1, µ2, we
have:

(i’) System (1.1) undergoes a Hopf bifurcation for the trivial equilibrium point
on the line

H̄ = {(µ1, µ2) : µ2 = − 2a
3(a− 1)2

µ1, µ1 > 0}.

(ii’) On the curve

C̄ = {(µ1, µ2) : µ2 = − a(9a+ 4)
15(a− 1)2

µ1 + o(µ1), µ1 > 0},

System (1.1) undergoes a heteroclinic bifurcation. Moreover, if (ε1, ε2) is in the
region between the curves H̄ and C̄, (1.1) has a unique stable periodic orbit.

Example 4.5. This example verifies the result in Theorem (4.4)(iii). Let

f1(x) = 2x+ x3, f2(x) = x− 2.01x3, f3(x) = x+ x3.

Then we have a1 = 2, a2 = a3 = 1, a = 3
√

2,and hence

b∗ =
3
√

2− 1
3
√

2
, τ∗ =

1
3
√

2− 1
.

Since f ′′1 (0) = f ′′2 (0) = f ′′3 (0) = 0, we have A20 = A11 = 0 and

A30 = −3.030700653228997, A21 = −5.393929340342073.

Thus in Theorem 4.2,

H̄2 = {(µ1, µ2) : µ2 = −45.623982067834476µ1, µ1 < 0},
P̄ = {(µ1, µ2) : µ2 = −38.985746915247205µ1, µ1 < 0},
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K̄ = {(µ1, µ2) : µ2 = −37.392570478626254µ1, µ1 < 0}.

If we choose (µ1, µ2) = (−0.0001, 0.0042), then it is easy to check that (µ1, µ2) is
between H̄2 and P̄ (Figure 2(a)). According to Theorem 4.2, (1.1) has three limit
cycles (Figure 2(b), 2(c) and 2(d)).

If we choose (µ1, µ2) = (−0.0001, 0.0038), then it is easy to check that (µ1, µ2)
is between P̄ and K̄ (Figure 3(a)). According to Theorem 4.2(iii), (1.1) has two
“big” limit cycles (Figure 3(b) and 3(c)).
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Figure 2. (a): (µ1, µ2) is between H̄2 and P̄ ; (b): Initial: y1(t) =
1, y2(t) = −0.14, y3(t) = −0.011 for t ≤ 0; (c): Initial: y1(t) =
0.0001, y2(t) = −0.001, y3(t) = −0.001 for t ≤ 0; (d): Initial:
y1(t) = 0.0178, y2(t) = 0.01417, y3(t) = 0.01 for t ≤ 0.

Example 4.6. This example verifies the result in Theorem 4.4(ii). Let

f1(x) = tanh(x), f2 = 3 tanh(x), f3(x) = 9 tanh(x).
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Figure 3. (µ1, µ2) = (−0.0001, 0.0038): there is one periodic
limit cycle for y1(t) = 0.1, y2(t) = 0, y3(t) = 0 when t ≤ 0.

Then a1 = 1, a2 = 3, a3 = 9 so that a = 3. Thus b∗ = 2
3 , τ∗ = 1

2 . Then

H̄ = {(µ1, µ2) : µ2 = −1
2
µ1, µ1 > 0},

C̄ = {(µ1, µ2) : µ2 =
11
20
µ1 + o(µ1), µ1 > 0}.

Choose µ1 = 0.0005, µ2 = 0.0000875 and it is easy to see that (0.0005, 0.0000875)
is in the region between the curves H̄ and C̄. According to Theorem 4.2(ii), (1.1)
has a unique stable periodic orbit (see Figure 4).

Conclusion. Neural networks are important both in theory and in application. In
this article, we discussed BT singularity of a neural network model and obtained its
corresponding normal. Using this normal form, we obtained interesting dynamical
behaviors such as Hopf and double limit cycle bifurcations. Two examples were
given to verify our theoretical results.
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Figure 4. When (µ1, µ2) = (0.0005, 0.0000875) lies between the
curves H̄ and C̄, a periodic solution is bifurcated from the origin.
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