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EXISTENCE RESULTS FOR MULTIVALUED OPERATORS OF
MONOTONE TYPE IN REFLEXIVE BANACH SPACES

DHRUBA R. ADHIKARI

ABSTRACT. Let X be a real reflexive Banach space and X™* its dual space.
Let T : X D D(T) — 2X" be an operator of class Ag(Sy), where G C X.
A result concerning the existence of pathwise connected sets in the range of
T is established, and as a consequence, an open mapping theorem is proved.
In addition, for certain operators T of class Bg(S4+), the existence of nonzero
solutions of 0 € Tx in G1 \ G2, where G1,G2 C X satisfy 0 € G2 and Go C
(1, is established. The Skrypnik’s topological degree theory is used, utilizing
approximating schemes for operators of classes Ag(S+) and Bg(S+), along
with the methodology of a recent invariance of domain result by Kartsatos
and the author.

1. INTRODUCTION AND PRELIMINARIES

In what follows, X is a real reflexive Banach space and X* its dual space. The
norms of both X and X* will be denoted by || - | which will be understood from
the context of its use. We denote by (x*, x) the value of the functional z* € X* at
x € X. The symbol D and D denote the strong boundary and closure of the set
D, respectively. The symbol B(xzg,r) denotes the open ball of radius r with center
at xg.

For a sequence {z,} in X, we denote its strong convergence to zp in X by
T, — xg and its weak convergence to zog in X by z, — x9. An operator T :
X D D(T) — Y is said to be “bounded” if it maps bounded subsets of the domain
D(T) onto bounded subsets of Y, where Y is another Banach space. The value
of T at = will be denoted by either Tx or any other notation clearly understood
from the context of its use. The operator T is said to be “compact” if it maps
bounded subsets of D(T) onto relatively compact subsets of Y. It is said to be
“demicontinuous” if it is strong-to-weak continuous on D(T'). The symbols R and
R, denote (—oo,00) and [0,00), respectively. The normalized duality mapping
J:X D> D(J) — 2% is defined by

Jr={a" € X*: (2", 2) = ||z, []2"]| = =]}, =€X.

The Hahn-Banach theorem ensures that D(J) = X, and therefore J : X — 2% is
a multivalued mapping defined on the whole space X. By a well-known renorming

2010 Mathematics Subject Classification. 47TH14, 47TH05, 47TH11.

Key words and phrases. Browder and Skrypnik degree theory; invariance of domain;
nonzero solutions; bounded demicontinuous operator of type (S4).

(©2017 Texas State University.

Published November 15, 2017.



2 D. R. ADHIKARI EJDE-2017/CONF/24

theorem due to Trojanski [I8], one can always renorm the reflexive Banach space
X with an equivalent norm with respect to which both X and X* become locally
uniformly convex (therefore strictly convex). Henceforth, we assume that X is a
locally uniformly convex reflexive Banach space. With this setting, the normalized
duality mapping J is single-valued homeomorphism from X onto X*.

For a multivalued operator T from X to X*, we write T : X D D(T) — 2%,
where D(T) = {z € X : Tx # ()} is the effective domain of T. We denote by Gr(T)
the graph of T', i.e., Gr(T) = {(z,y) : x € D(T), y € Tx}.

An operator T : X D D(T) — 2% is said to be “monotone” if for every x,y €
D(T) and every u € Tz, v € Ty we have

(u—wv,z—y)>0.

A monotone operator T is said to be “maximal monotone” if Gr(T) is maximal

in X x X*, when X x X* is partially ordered by the set inclusion. In our setting,
a monotone operator T' is maximal monotone if and only if R(T' 4+ AJ) = X* for all
A € (0,00).

Definition 1.1. An operator C : X D D(C) — X* is said to be of type (S ) if for
every sequence {z,} C D(C) with z,, = z¢ in X and
lim sup(Cxp, z, — 20) <0,

n—oo

we have x, — z9 € D(C) in X.
Definition 1.2. An operator C : X D D(C) — X* is said to be pseudomonotone
if for every sequence {x,} C D(C) with z, — xo in X and

lim sup(Cx,,, x,, — xg) < 0,

we have lim,, oo (Czp, x, — 29) =0, and if z € D(C), then Czx,, = Cxzp in X.

Definition 1.3. The family C(¢) : X D D — X*,t € [0, 1], of operators is said to
be a homotopy of type (S4) if for any sequences {x,,} C D with x,, — x¢ in X and
{tn} C[0,1] with ¢, — to and

lim Sup<c(tn)xnvxn - x0> < 07
we have x,, — 20 in X, g € D and C(t,)z, — C(to)xo in X*. A homotopy C(¥)
of type (S5 ) is bounded if the set

{C(t)x | t€]0,1], x € D}
is bounded.

We next define the classes Bg(S+) and Ag(S4+) of multivalued operators from
X to X*.

Definition 1.4. Let G be an open subset of X. An operator T': X D D(T) — 2%
is of class Bg/(S) if there exists a sequence {7}, }, called an approximating sequence
of T, of bounded demicontinuous mappings of type (S;) from G to X* with the
following conditions.
(A1) For each C > 0 there exists K > 0 such that (T,,z,z) > —K for all z € G
with ||z|| < C and for all n € N.
(A2) Let {t,} C [0,1], {z,,} C G with t, — 0, and let {T},,, } be any subsequence
of {T,}. f z,, = 2 in X and ¢,T,,,x, — 2z in X*, then z = 0.
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(A3) Let {z,} C G and {T},,} be any subsequence of {T,,}. If x, — z in X,
T, x, — win X* and
lim sup(T,, Tn, Tn) < (w,x),
n—oo
then z, — zin X, x € D(T) and w € Tx.
If the condition (A2) above is replaced by the following condition, the operator T
is said to be of class Ag(Sy ).
(A2) Let {t,} € [0,1], {x,} € G with t, — 0, and let {T},,} be any subsequence
of {T,,}. f z,, —» z in X and t,T},, 2, — 2z in X*, then z = 0.

Definition 1.5. Let G be an open subset of X. An operator T : X D D(T) —
25" is of class Bg(PM) (or Ag(PM)) if there exists a sequence {T},}, called an
approximating sequence of T', of bounded pseudomonotone mappings from G to X*
satisfying the conditions (A1), (A2) (or (A1), (;12)) and the following condition.
(A4) Let {x,} C G and {T,,} be any subsequence of {T},}. If x, — x in X,
T, xn — win X* and
lim sup(T,,, Tn, zn) < (w, ),

n—oo

then (T, T, ) — (w,z), and if z € G, then x € D(T) and w € T.

Remark 1.6. If G C X is open, then the following property holds true (cf. [11]
Lemma 2.2, p.9]). If T € Ag(PM) and A bounded demincontinuous of type (S4)
on G, then T+ A € Ag(S+). In particular, T+ J € Ag(Sy).

The operators of class Ag(S4) were introduced by Kittila in [II] and are multi-
valued generalizations of bounded demicontinuous operators of type (S1). Several
examples of operators of type Ag(PM) are given in [I1}, pp.36-43] in the context of
elliptic equations with zeroth-order strongly nonlinear perturbations, higher-order
elliptic equations with lower-order strongly nonlinear perturbations, and elliptic
equations with highest-order strongly nonlinear perturbations. A topological degree
theory was developed in [I1] for such operators, and then the theory was applied to
the study of strongly nonlinear elliptic partial differential equations in divergence
form. Kittila [IT], p.13] also showed that a densely defined maximal monotone op-
erator T : X D D(T) — 2X°, 0 € D(T), 0 € TO satisfies T € Ax(PM). It can
be seen that the operator T+ A is also of class Bg(S4), where A bounded dem-
incontinuous of type (S;) on X. In the proof of the result given below, we only
include the part that is different from the one for showing T' € Ax(PM) in [II],
and therefore T' € Bx (PM).

Theorem 1.7. Let T : X D D(T) — 2% be a mazimal monotone operator with

0€ D(T), 0 € TO and D(T) = X. Then T € Bx(PM).

Proof. The Yosida approximant T, = (T~ + %J’l)*1 : X — X* where n is a
positive integer, is single-valued maximal monotone and continuous operator with
T,0 = 0. It is well-known that T,z — T°z on D(T), where T%x is the unique
element of Tx having minimal norm, i.e. |T%z|| = dist(0,Tz). We only prove that
T satisfies the condition (A2). The other conditions follow from exactly the same
arguments as in the proof of [I1 Theorem 2.1].

To verify the condition (A2), let {t,,} C [0,1], {x,} C G be such that ¢, — 0 and
xn — xo in X, and let {7}, } be any subsequence of {T,,} such that ¢,T;,, =, — 2
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in X*. Let z € D(T). Then T,,, x — T°z in X*, and so t,T},,x — 0. Since T},
is monotone, we have

(tnTim, Tn — tnTm, ©, 2y — ) > 0.
Letting n — oo yields

(z,00 —x) >0 for all z € D(T). (1.1)

Let y € X. Since D(T) = X, there exists a sequence {y;} C D(T) such that
y; — xo — y. Substituting y; for z in (L.1), we get

(2,20 —y;) >0 for all j.

Letting j — oo yields (z,y). Since y € X is arbitrary, we obtain z = 0. This verifies
the condition (A2). O

The first main result of this paper is the existence of nonzero solutions of 0 € Tz,
where T' € B;(S4). For additional facts related to the existence of nonzero solutions
of nonlinear operator equations in Banach spaces, the reader is referred to Kartsatos
and the author [2], and Ding and Kartsatos [§].

The second main result concerns an open mapping theorem for operators of class
Ac(S4), which extends the open mapping theorem of Park in [I3] for bounded
demicontinous operators of type (Si). A multivalued degree for operators in
Ac(Sy) is developed by Kittila [11] via the Skyrpnik’s degree (cf. [I7]). In this
paper, the methodologies in [I1], a recent paper of the author and Kartsatos [2],
and Kartsatos and Skrypnik [I0] as well as various properties of the Skrypnik’s
degree have been utilized. Open mapping theorems date back as far as Brouwer [5]
for continuous injections in R™. Schauder [16] extended the Brouwer’s open map-
ping theorem to infinite dimensional Banach spaces for operators of the form I+ C
with C compact. Tromba [I9] extended the Schauder’s result to Fredholm maps
of index zero. For other results concerning various continuity conditions on the
main operators, the reader is referred to Berkovits [3], Deimling [6], Kartsatos [7],
Nagumo [12], Petryshyn [I4] [I5] (for A-proper mappings), Skrypnik [I7, p.59] and
the references therein. For the existence of pathwise connected sets in the ranges
of certain operators, the reader is referred to [8, Q] and the references therein.

2. MAIN RESULTS

The first main result is the existence of nonzero solutions of the operator inclusion
0 € Tx, where T : X D D(T) — 2% is of the class Bo (S, ), G C X.

Theorem 2.1. Assume that G1,G2 C X are open, bounded with 0 € G and
Gy CGy. Let T : X D D(T) — 2X7 be an operator of class Bg,(Sy). Moreover,
we assume the following conditions.
(H1) There exists v* € X*, v* # 0, such that \* & Tx for every (\,x) €
Ry x (D(T) N OGh).
(H2) For every (A, xz) € Ry x (D(T)N9IG2), we have 0 ¢ (T + AJ)x.
Then there exists x € D(T) N (G1 \ G2) such that 0 € Tx.

Proof. Since T' € Bg, (S+), there exists an approximating sequence {T},} in the
sense of Definition satisfying the conditions (A1)—(A3). Consider the approxi-
mate equation

Tz = 0. (2.1)
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We first show that (2.1)) has a solution z,, € G \ G2 for sufficiently large n. To this
end, we first show that there exists 79 > 0 and ng such that the equation

T,z =T0" (2.2)

has no solution in G for every 7 > 79 and for all n > ng. Assuming the contrary
implies the existence of {7,} C (0,00), {z,} C G;, and a subsequence of {T},}
which we again denote by {T,}, such that 7,, — oo, z, — x9, and

Tnx, = o', (2.3)

Since v* # 0, we have || Tz, || — oo, and therefore

T, Ty v*

— .
[Tawnll o]l
Let t,, = 1/||Thzy| and h = v*/||v*||. This implies that ¢,T,x, — h and t, — 0.
By the condition (A2), we get h = 0, which is a contradiction.
Consider the homotopy

H,(s,x) := Tpx — s1ov*, (s,2) €[0,1] x Gy, (2.4)

where n > ng. We show that the equation H,(s,2) = 0 has no solution on dG; for
sufficiently large n and for all s € [0,1]. Assume the contrary and let {z,} C G,
and {s,} C [0, 1] be such that s, — s, , — g, and

Tynn = spToV".

Since Tz, — so7ov*, the condition (A3) yields z,, — zo € 9G1, 29 € D(T) and
s0Tov* € Txp. This contradicts the hypothesis (H1). By following an argument
used in the proof of [I, Theorem 1], we can show that T, — s7ov* is a bounded
demicontinuous mapping of type (S;) for each n, and therefore H,(s,x) is an
admissible homotopy for the Skrypnik’s degree, dg, .

Suppose that dg, (Hp,(1,-),G1,0) # 0 for a sufficiently large n; > ng, then the
equation

Th,x = T1ov"
has a solution z € G1; however, this contradicts our choice of 79. Consequently,
dS+ (Tna le 0) = dS+ (Hn(o, ')7 Gl» 0) = dS+ (Hn(la ')a le 0) =0 (25)

for all n > nyg.
Consider the homotopy

Hao(s,z) = sThz + (1 —s)Jz, (s,x)€[0,1] x Ga.

We show that there exists ny > mg such that the equation H,(s,z) = 0 has no
solution on 0Gs for any s € [0,1] and for any n > n;. Let us assume the contrary
and choose sequences {x,,} C 0G2, {sn} C [0, 1], and a subsequence of {7}, } denoted
again by itself, such that x, — xg, s, — S, and

SnTnxn + (1 = sp)Jxy = 0. (2.6)

Since JO = 0 and J is injective, we must have s,, > 0 for all n. Also, if s,, = 1 for all
large n, then T),z,, = 0, and the condition (A3) yields x,, — xg € 0G2, x¢ € D(T),
and 0 € T'zg. This is a contradiction to (H2). Suppose now that s, — 0. Then

1

(Thn, xn) = —(S— — 1)<an,xn> — —00.
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This is a contradiction to the condition (A1) because the boundedness {x,,} implies
the existence of K > 0 such that (T,,x,,x,) > —K for all n. Thus, so € (0,1] and
(2.6) implies
Thx, — —(i — l)j* = w,
S0
where j* € X* satisfies Jx,, — j*. Since J is monotone, we have
1

<Tnmnaxn - I0> = 7(87 — 1)<Jﬂ§n7l’n — I0>
1
= (- = D[{Jza — Jao, 20 — x0) + (Jz0, 20 — 20)]
1
< —(; - 1)<J$0,l‘n — l‘0>.

Since X is reflexive, (Jxg, z, — x9) — 0. This implies that
lim sup(T,,zy, T, — xo) < 0.
n—oo
This along with
lim sup(T,, zn, x,) lelimsup(T,zp, xn — xo) + lim sup(T,, z,, xo)
n—oo n—oo n—oo
implies
lim Sup<Tn$n7 xn> < <w7 x0>'

The condition (A3) yields z,, — x¢ € G2, zg € D(T) and w € Tzy. The continuity
of J implies Jx,, — Jxg = j*, so that
1
w = —(— — I)Jxo € Txg,
S0
i.e.

0€T£L'0+(1

g - 1):]1'0,

which contradicts (H2). For the sake of convenience, we assume that ng is suffi-
ciently large so that we make take ny = ng.

Since an affine homotopy of bounded demicontinuous (Sy) mappings is an ad-
missible homotopy for the Skrynik’s degree, ds_ , we have

dS+(Tn7G2’0) = dS+ (Hn(]-v ')7G2’0)
= dS+ (Hn(07)7G270)
= ds+(J,G2,O) =1
for all n > ng. Thus, for all n > ng, we have
dS+ (Tnlevo) 7é dS+ (T’n7G270)'

By the excision property of the Skrypnik’s degree, for each n > ng there exists a
solution x,, € Gy \ Gg of T,,x,, = 0. We may assume that x,, = z¢ in X and the
condition (A3) implies that x, — z9 € G1\ G2, o € D(T) and 0 € Tzy. Note
that

G4 \GQ = (Gl \ GQ) U 8(G1 \Gz) - (Gl \GQ) U 0G, U 0Gs.
By the conditions (H2) and (H2), g ¢ 0G1U9G,. Thus, zg € D(T)N(G1\Gz2). O
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We proceed to prove a result about placing pathwise connected sets in the ranges
of certain operators of class A (S4). As a consequence, we obtain an open mapping
theorem for such operators.

Proposition 2.2. Let T : X D D(T) — 2% be of class Ag(Sy) with an ap-
prozimating sequence {T,,}, where G C X is open and bounded. Assume that
T +eJ(- —xo) is injective on G for each € > 0 and for every xo € D(T). Moreover,
assume that for each xo € D(T), there exists a bounded ¢, : RT — R such that
(Thx,x0) < ¢uo(|2|]) for all x € OG and for all large n. For a pathwise connected
set M C X*, assume that T(D(T)NG)NM # 0 and T(D(T)NOG)NM = (. Then
M cCcT(D(T)NG).

Proof. Let yo € T(D(T) N G) N M. Then there exists g € D(T) N G such that
yo € Txg. Let p € M. Take f :[0,1] — M be a path in M such that f(0) = yo
and f(1) = p. We now claim that there exist ng € N such that

Thx + %J(m —x9) = f(t) (2.7)

has no solution € 9G for any t € [0,1] and for all n > ngy. Assuming the contrary
and without loosing the generality, let {z,} C 0G with z, — = and {¢,} C [0, 1]
with ¢,, — to be such that

Tz, + %J(mn a0) = f(tn).

This implies that T,, 2, — f(t9). Since x,, — x, we have

limsup(T,xpn, zn) < (f(t0), x),

and then by the condition (A3) of Definition we have ©,, — z, x € D(T) and
f(to) € Tx. Since f(tg) € M and x € D(T) N IG, we have a contradiction to
T(D(T)NOG)N M = 0.

Consider the homotopy equation

H(2,1) = Tya + %J(m —w0) — f(t) = 0. (2.8)

We have already established that this equation has no solution on 0G for sufficiently
large n and for any ¢ € [0,1], and therefore this is an admissible homotopy of type

(S4).

Consider the homotopy equation
1
Gp(z,t)=(1-1) (Tnx + EJ(J? —Zg) — y0> +tJ(x — ) = 0. (2.9)

We show that (2.9) has no solution on 9G for any t € [0,1] and for all n > ng. If
not, let {z,} C 0G with x,, = = and {t,} C [0, 1] with ¢, — ¢o such that

(1-— tn)(Tnxn + %J(a:n —Tp) — yo) +tnJ(xy —x20) = 0. (2.10)

Since ([2.7)) has no solution on dG for any n > ng and ¢t € [0, 1], we see that ¢, =0
is impossible for all large n. Since J is injective, t, = 1 is also impossible. Suppose
to = 1. The equation (2.10) implies

(1 = to)(Tnn, T — o) + an Ty — $0||2 = (1 —tn){yo, Tn — 7o), (2.11)

where
1—-1t,
ayp = — + t,,.
n
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Since G is bounded, there exists C' > 0 such that ||z, | < C for all n. By the con-
dition (A;), there exists a K > 0 such that (T, x,,x,) > —K for all n. Also,
by the hypothesis, there exists a bounded function ¢,, : Ry — R such that
(Tnp, x0) < ¢(||zy]|) for all n. Then, in view of (2.11)), we have

— (1= tn) K = (1 = 1), ([[znl]) + anllzn — 2ol < (1 = tn) (o, 2 — o). (2.12)

Since t, — 1, a, — 1 and ¢, is bounded, letting n — oo in (2.12) yields z,, —
xo € 0G, which is a contradiction.

Next, we assume that ¢ty € [0,1). If tg = 0, define o, = 12; . Then «,, | 0 and

1
Thrn + (E + O‘n)J(xn — T0) = Yo- (2.13)

This equation is like (2.8) for which we have already proved the impossibility of
solutions on G with f(t) = yo. For the remaining case, to € (0,1), we define

1 tn
ﬁn - ﬁ + 1— tn .
Then £, — [y := 120 > 0. Then the equation becomes
Thoy + 571‘](1'71 - :L'()) = Yo- (214)

If
lim sup(T,, z, x, — ) > 0,

n—oo

then, by passing to a subsequence, let

q:= lim (Thzp,z, —z) > 0.

n—oo
In view of (2.14)), this yields
lim sup{(BnJ (zn, — o), (n, — 20) — (z — 20)) = —¢ < 0.

Since B, — Bo > 0 and J is of type (S4), we obtain x,, — = € dG. From this and
(2.14]), we get Tz, — w := —FoJ(x — o) + yo. By the condition (A3), we obtain
x € D(T) and w € Tz, i.e. yo € Tax + foJ(x — xp). This leads to a contradiction
to the injectivity of T 4 eJ(- — z) because = # x.

Thus, H,(x,t) and G, (x,t) are admissible homotopies for the Skrypnik’s degree,
ds, , for the mappings of type (S4). By the invariance of the degree under these
homotopies, we have

Qs (T J( — o) = p,G,0) = ds, (Ha(,1), G, 0)
=dg, (Hy(-,0),G,0)
=dg, (Gn(-,0),G,0)
=dg, (Gn(-,1),G,0)
=dg, (J(- — 20),G,0) =1

Here, the last equality follows by considering the
Qz,t) =1 —-t)J(z —xo) + tJx
with a continuous curve y(t) = tJxzo so that
ds, (J(- = 20),G,0) = ds, (Q(-,0),G,0)
=ds, (Q(,1),G, Jxo)

S )-homotopy
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=ds, (J,G, Jxg) = 1.
Therefore, for every n, there exists x,, € G such that
H,(z,,1)=0,
ie.
Thxy, + %J(xn —xo) = p,

which implies T}z, — p. By the condition (A3), we deduce that x,, — = € G,
x € D(T), and p € Tz. Since T(D(T)NIG) N M = (), we can only have z € G.
Since p was an arbitrary point in M, we obtain M C T(D(T) N G). O

We use Proposition to prove the following open mapping theorem for opera-
tors of class Ag(S4+).

Theorem 2.3 (Open Mapping). Let T : X D D(T) — 2% be of class Ag(S,.) with
an approzimating sequence T, where G C X is open. Assume that T + eJ(- — xo)
is locally injective on G for each € > 0 and for every xo € D(T'). Moreover, assume
that for each xy € D(T) and for each r > 0, there exists a bounded ¢, : Rt — R
such that {Th,x,z0) < ¢ (|2|]) for all z € G N OB(xo,7) and for all large n. Then
T(D(T)NG) is open.

Proof. Let yo € T(D(T)NG). Then there exists 2p € G such that yy € T'zo. Since
T is locally injective on G, there is r > 0 such that T is injective on B(xg,7)ND(T),
where B(zg,r) C G. Tt is then clear that yo ¢ T(D(T) N IB(x,T)).

We claim that there exists § > 0 such that B(yg,d) N T(D(T) N IB(xzo,r)) = 0.
Assume the contrary, and let y,, € B(yo, 1/n)NT(D(T)NIB(xg,7)). Then y, — yo
and y,, € Tz, with z,, € 0B(x¢, ), and therefore the condition (A3) applies because
Zn — 2 (up to subsequence) and y, — yo. We get x,, — « € dB(xo,7), x € D(T)
and yo € Tx. This contradicts yo ¢ T(D(T) N OB (xg,r)).

Since B(yo, ) NT(D(T) NIB(xo,7)) =0, yo € T(D(T) N B(xp,7)) and the ball
B(yo, d) is pathwise connected, we can apply Proposition to obtain B(yg,d) C
T(D(T) N B(zo,r)). Since yo was arbitrary, T(D(T) N G) is open. O

It would be interesting to establish analogous results via degree theories for
operators of the form A 4 T, where A : X D D(A) — 2% is maximal monotone
and T is of class Ag(Sy). Similar results are also expected for the sum L+ A+ T
in the spirit of results in [2], where L is linear maximal monotone operator (densely
defined) and T is of class Ag(S+) with respect to D(L). The class Ag(S+) with
respect to D(L) can be defined in a fashion similar to operators of type (Sy) with
respect to D(L) as considered by Berkovits-Mustonen in [4].
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